Groundwater Storage Response to Extreme Hydrological Events in Poyang Lake, China’s Largest Fresh-Water Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. GRACE and Hydrological Data
2.2.1. GRACE/Gravity Recovery and Climate Experiment—Follow-On (GRACE-FO) Data
2.2.2. Global Land Data Assimilation System (GLDAS) Data
2.2.3. Driving Variables for Spatial Downscaling of GRACE Data
2.2.4. Meteorological and Agricultural Drought Indices
2.3. Methods
2.3.1. Convolutional Neural Network (CNN)—Attention Mechanism (A)—Long Short-Term Memory (LSTM)
2.3.2. Estimating Drought and Flood Recovery Time
2.3.3. GRACE-SGSAI
3. Results
3.1. Validation and Assessment of Downscaled TWS Anomalies
3.2. Spatiotemporal Variation of GWS Anomalies
3.3. Estimating Hydrological Drought and Flood Recovery Time
3.4. Groundwater Drought: Correlation with Meteorological, Agricultural, and Groundwater Droughts
4. Discussion
4.1. Factors Influencing GWS Anomalies Variations
4.2. GWS Anomalies in Response to Hydrological Changes
4.3. The Impact of Drought and Flood Events on Water Resource Recovery
4.4. Connections Between Groundwater Drought and Other Drought Types
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, C.; Guo, Z. Plans to Protect China’s Depleted Groundwater. Science 2022, 375, 827. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhong, B.; Chen, J.; Li, J.; Wang, H. Investigation of 2020–2022 Extreme Floods and Droughts in Sichuan Province of China Based on Joint Inversion of GNSS and GRACE/GFO Data. J. Hydrol. 2024, 632, 130868. [Google Scholar] [CrossRef]
- Sun, A.; Scanlon, B.; AghaKouchak, A.; Zhang, Z. Using GRACE Satellite Gravimetry for Assessing Large-Scale Hydrologic Extremes. Remote Sens. 2017, 9, 1287. [Google Scholar] [CrossRef]
- Wu, W.-Y.; Lo, M.-H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.-F.; Ducharne, A.; Yang, Z.-L. Divergent Effects of Climate Change on Future Groundwater Availability in Key Mid-Latitude Aquifers. Nat. Commun. 2020, 11, 3710. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Pal, S.C.; Chakrabortty, R.; Chowdhuri, I.; Saha, A.; Shit, M. Climate Change and Groundwater Overdraft Impacts on Agricultural Drought in India: Vulnerability Assessment, Food Security Measures and Policy Recommendation. Sci. Total Environ. 2022, 849, 157850. [Google Scholar] [CrossRef]
- Amanambu, A.C.; Obarein, O.A.; Mossa, J.; Li, L.; Ayeni, S.S.; Balogun, O.; Oyebamiji, A.; Ochege, F.U. Groundwater System and Climate Change: Present Status and Future Considerations. J. Hydrol. 2020, 589, 125163. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Jarin, M.; Xie, X. Increasingly Frequent Extreme Weather Events Urge the Development of Point-of-Use Water Treatment Systems. npj Clean Water 2022, 5, 36. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Hu, Q.; Zhang, D.; Ye, X. Lake Flooding Sensitivity to the Relative Timing of Peak Flows between Upstream and Downstream Waterways: A Case Study of Poyang Lake, China. Hydrol. Process. 2017, 31, 4217–4228. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global Patterns and Dynamics of Climate–Groundwater Interactions. Nat. Clim. Chang. 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, T.; Mallants, D.; Tian, H.; Owen, D.D.R. Numerical Modelling of Stable Isotope (2H and 18O) Transport in a Hydro-Geothermal System: Model Development and Implementation to the Guide Basin, China. J. Hydrol. 2019, 569, 93–105. [Google Scholar] [CrossRef]
- Ide, K.; Hosono, T.; Kagabu, M.; Fukamizu, K.; Tokunaga, T.; Shimada, J. Changes of Groundwater Flow Systems after the 2016 Mw 7.0 Kumamoto Earthquake Deduced by Stable Isotopic and CFC-12 Compositions of Natural Springs. J. Hydrol. 2020, 583, 124551. [Google Scholar] [CrossRef]
- Tóth, Á.; Havril, T.; Simon, S.; Galsa, A.; Monteiro Santos, F.A.; Müller, I.; Mádl-Szőnyi, J. Groundwater Flow Pattern and Related Environmental Phenomena in Complex Geologic Setting Based on Integrated Model Construction. J. Hydrol. 2016, 539, 330–344. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.; Zhang, Q.; Cheng, J.; Li, J.; Zhang, D.; Liu, Y. Projection of Drought-Flood Abrupt Alternation in a Humid Subtropical Region under Changing Climate. J. Hydrol. 2023, 624, 129875. [Google Scholar] [CrossRef]
- Schmidt, F.; Wainwright, H.M.; Faybishenko, B.; Denham, M.; Eddy-Dilek, C. In Situ Monitoring of Groundwater Contamination Using the Kalman Filter. Environ. Sci. Technol. 2018, 52, 7418–7425. [Google Scholar] [CrossRef] [PubMed]
- Secci, D.; Molino, L.; Zanini, A. Contaminant Source Identification in Groundwater by Means of Artificial Neural Network. J. Hydrol. 2022, 611, 128003. [Google Scholar] [CrossRef]
- Banaei, S.M.A.; Javid, A.H.; Hassani, A.H. Numerical Simulation of Groundwater Contaminant Transport in Porous Media. Int. J. Environ. Sci. Technol. 2021, 18, 151–162. [Google Scholar] [CrossRef]
- Sang, C.; Tan, L.; Cai, Q.; Ye, L. Long-Term (2003−2021) Evolution Trend of Water Quality in the Three Gorges Reservoir: An Evaluation Based on an Enhanced Water Quality Index. Sci. Total Environ. 2024, 915, 169819. [Google Scholar] [CrossRef]
- Foroumandi, E.; Nourani, V.; Jeanne Huang, J.; Moradkhani, H. Drought Monitoring by Downscaling GRACE-Derived Terrestrial Water Storage Anomalies: A Deep Learning Approach. J. Hydrol. 2023, 616, 128838. [Google Scholar] [CrossRef]
- Song, X.; Chen, H.; Chen, T.; Qin, Z.; Chen, S.; Yang, N.; Deng, S. GRACE-Based Groundwater Drought in the Indochina Peninsula during 1979–2020: Changing Properties and Possible Teleconnection Mechanisms. Sci. Total Environ. 2024, 908, 168423. [Google Scholar] [CrossRef]
- Ali, S.; Liu, D.; Fu, Q.; Cheema, M.J.M.; Pham, Q.B.; Rahaman, M.M.; Dang, T.D.; Anh, D.T. Improving the Resolution of GRACE Data for Spatio-Temporal Groundwater Storage Assessment. Remote Sens. 2021, 13, 3513. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, Q.; Gao, H.; Wen, Y.; Zhou, S. Dynamic Monitoring of Poyang Lake Water Area and Storage Changes from 2002 to 2022 via Remote Sens. and Satellite Gravimetry Techniques. Remote Sens. 2024, 16, 2408. [Google Scholar] [CrossRef]
- Yazdian, H.; Salmani-Dehaghi, N.; Alijanian, M. A Spatially Promoted SVM Model for GRACE Downscaling: Using Ground and Satellite-Based Datasets. J. Hydrol. 2023, 626, 130214. [Google Scholar] [CrossRef]
- Cai, J.; Luo, J.; Wang, S.; Yang, S. Feature Selection in Machine Learning: A New Perspective. Neurocomputing 2018, 300, 70–79. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Adv. Neural Inf. Process. Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef]
- AlBdairi, A.J.A.; Xiao, Z.; Alkhayyat, A.; Humaidi, A.J.; Fadhel, M.A.; Taher, B.H.; Alzubaidi, L.; Santamaría, J.; Al-Shamma, O. Face Recognition Based on Deep Learning and FPGA for Ethnicity Identification. Appl. Sci. 2022, 12, 2605. [Google Scholar] [CrossRef]
- Chen, S.; Xu, X.; Zhang, Y.; Shao, D.; Zhang, S.; Zeng, M. Two-Stream Convolutional LSTM for Precipitation Nowcasting. Neural Comput. Appl. 2022, 34, 13281–13290. [Google Scholar] [CrossRef]
- Agga, A.; Abbou, A.; Labbadi, M.; Houm, Y.E.; Ou Ali, I.H. CNN-LSTM: An Efficient Hybrid Deep Learning Architecture for Predicting Short-Term Photovoltaic Power Production. Electr. Power Syst. Res. 2022, 208, 107908. [Google Scholar] [CrossRef]
- Huang, M.; Tian, D.; Liu, H.; Zhang, C.; Yi, X.; Cai, J.; Ruan, J.; Zhang, T.; Kong, S.; Ying, G. A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c -Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers. Complexity 2018, 2018, 8241342. [Google Scholar] [CrossRef]
- Vidya, B.; Sasikumar, P. Parkinson’s Disease Diagnosis and Stage Prediction Based on Gait Signal Analysis Using EMD and CNN–LSTM Network. Eng. Appl. Artif. Intell. 2022, 114, 105099. [Google Scholar] [CrossRef]
- Ghimire, S.; Yaseen, Z.M.; Farooque, A.A.; Deo, R.C.; Zhang, J.; Tao, X. Streamflow Prediction Using an Integrated Methodology Based on Convolutional Neural Network and Long Short-Term Memory Networks. Sci. Rep. 2021, 11, 17497. [Google Scholar] [CrossRef]
- Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; Zheng, Y. GeoMAN: Multi-Level Attention Networks for Geo-Sensory Time Series Prediction. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 13–19 July 2018; International Joint Conferences on Artificial Intelligence Organization: Stockholm, Sweden, 2018; pp. 3428–3434. [Google Scholar]
- O’Dwyer, J.; Chique, C.; Weatherill, J.; Hynds, P. Impact of the 2018 European Drought on Microbial Groundwater Quality in Private Domestic Wells: A Case Study from a Temperate Maritime Climate. J. Hydrol. 2021, 601, 126669. [Google Scholar] [CrossRef]
- Mathivha, F.I.; Nkosi, M.; Mutoti, M.I. Evaluating the Relationship between Hydrological Extremes and Groundwater in Luvuvhu River Catchment, South Africa. J. Hydrol. Reg. Stud. 2021, 37, 100897. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, G.; Amankwah, S.O.Y.; Wei, X.; Hu, Y.; Feng, A. Monitoring the Summer Flooding in the Poyang Lake Area of China in 2020 Based on Sentinel-1 Data and Multiple Convolutional Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102400. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, L.; Xiang, J.; Liao, Q.; Zhang, D.; Liu, J. Response of the Microbial Community Structure to the Environmental Factors during the Extreme Flood Season in Poyang Lake, the Largest Freshwater Lake in China. Front. Microbiol. 2024, 15, 1362968. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Jian, H.; Liu, M.; Lei, S.; Yao, S.; Yan, F. Impacts of Drought and Heat Events on Vegetative Growth in a Typical Humid Zone of the Middle and Lower Reaches of the Yangtze River, China. J. Hydrol. 2023, 620, 129452. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Xu, C.-Y.; Chen, X.; Moss, E.M.; Jin, Q.; Bailey, A.M. Analysis of Poyang Lake Water Balance and Its Indication of River–Lake Interaction. SpringerPlus 2016, 5, 1555. [Google Scholar] [CrossRef]
- Li, X.; Ye, X.; Yao, J.; Lin, Y.; Xu, C.; Yuan, C. Influences of Increasing Water Release of the Three Gorges Reservoir during Dry Season on Water Regimes of Downstream Lake. Hydrol. Process. 2023, 37, e14895. [Google Scholar] [CrossRef]
- Zhang, Q.; Werner, A.D. Hysteretic Relationships in Inundation Dynamics for a Large Lake–Floodplain System. J. Hydrol. 2015, 527, 160–171. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Liu, W.; Si, B. Determination of Groundwater Recharge Mechanism in the Deep Loessial Unsaturated Zone by Environmental Tracers. Sci. Total Environ. 2017, 586, 827–835. [Google Scholar] [CrossRef]
- Wang, T.; Wu, Z.; Wang, P.; Wu, T.; Zhang, Y.; Yin, J.; Yu, J.; Wang, H.; Guan, X.; Xu, H.; et al. Plant-Groundwater Interactions in Drylands: A Review of Current Research and Future Perspectives. Agric. For. Meteorol. 2023, 341, 109636. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, S.; Huang, Y.; Wan, Y.; Wu, B.; Liu, L. Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China. Sustainability 2020, 12, 3526. [Google Scholar] [CrossRef]
- Huang, F.; Chunyu, X.; Wang, Y.; Zhang, X.; Qian, B.; Zhao, D.; Xia, Z. Impacts of Streamflow and Topographic Changes on Water Level during the Dry Season of Poyang Lake, China. J. Hydrol. Eng. 2020, 25, 05020001. [Google Scholar] [CrossRef]
- Zhou, H.; Luo, Z.; Tangdamrongsub, N.; Zhou, Z.; He, L.; Xu, C.; Li, Q.; Wu, Y. Identifying Flood Events over the Poyang Lake Basin Using Multiple Satellite Remote Sens. Observations, Hydrological Models and In Situ Data. Remote Sens. 2018, 10, 713. [Google Scholar] [CrossRef]
- Tan, Z.; Wang, X.; Li, Y.; Zhang, Z.; Xue, C.; Yao, J.; You, H. The Impact of Three Gorges Dam on the Hydrological Connectivity of “off-Stream” Floodplains. J. Hydrol. 2024, 629, 130619. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Xu, G.; Cheng, S.; Zhong, Y.; Zhang, Y. Characterizing the 2022 Extreme Drought Event over the Poyang Lake Basin Using Multiple Satellite Remote Sens. Observations and In Situ Data. Remote Sens. 2023, 15, 5125. [Google Scholar] [CrossRef]
- Tian, M.; Mao, J.; Wang, K.; Xu, D. Spatio-Temporal Heterogeneity of Ecological Water Level in Poyang Lake, China. Ecol. Inform. 2024, 82, 102694. [Google Scholar] [CrossRef]
- Lan, Z.; Wenke, S. Progress and prospect of GRACE Mascon product and its application. Rev. Geophys. Planet. Phys. 2022, 53, 35–52. [Google Scholar]
- Tavella, P.; Premoli, A. Estimating the Instabilities of N Clocks by Measuring Differences of Their Readings. Metrologia 1994, 30, 479–486. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.D.C.; Yakubu, C.I.; Heck, B. Uncertainties of the Gravity Recovery and Climate Experiment Time-Variable Gravity-Field Solutions Based on Three-Cornered Hat Method. J. Appl. Remote Sens. 2016, 10, 015015. [Google Scholar] [CrossRef]
- Yi, S.; Sneeuw, N. Filling the Data Gaps Within GRACE Missions Using Singular Spectrum Analysis. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021227. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Wang, L.; Jia, B.; Yuan, X.; Xie, Z.; Yang, K.; Shi, J. The Slowdown of Increasing Groundwater Storage in Response to Climate Warming in the Tibetan Plateau. npj Clim. Atmos. Sci. 2024, 7, 286. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Yin, W.; Kang, G.; Huang, Q.; Shen, Y. Improving the Resolution of GRACE/InSAR Groundwater Storage Estimations Using a New Subsidence Feature Weighted Combination Scheme. Water 2023, 15, 1017. [Google Scholar] [CrossRef]
- Ding, K.; Zhao, X.; Cheng, J.; Yu, Y.; Luo, Y.; Couchot, J.; Zheng, K.; Lin, Y.; Wang, Y. GRACE/ML-Based Analysis of the Spatiotemporal Variations of Groundwater Storage in Africa. J. Hydrol. 2025, 647, 132336. [Google Scholar] [CrossRef]
- Zhao, K.; Fang, Z.; Li, J.; He, C. Spatial-Temporal Variations of Groundwater Storage in China: A Multiscale Analysis Based on GRACE Data. Resour. Conserv. Recycl. 2023, 197, 107088. [Google Scholar] [CrossRef]
- Duo, A.; Zhao, W.; Qu, X.; Jing, R.; Xiong, K. Spatio-Temporal Variation of Vegetation Coverage and Its Response to Climate Change in North China Plain in the Last 33 Years. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 103–117. [Google Scholar]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI Anomaly for Drought Monitoring and Its Correlation with Climate Factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Thomas, A.C.; Reager, J.T.; Famiglietti, J.S.; Rodell, M. A GRACE-based Water Storage Deficit Approach for Hydrological Drought Characterization. Geophys. Res. Lett. 2014, 41, 1537–1545. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, C.; Qiu, B.; Wang, J.; Chen, J.; Zhang, Y.; Wu, C.; Liu, B.; Shu, L. Spatiotemporally Non-Stationary Evolution of Groundwater Levels in Poyang Lake Basin Driven by Meteorological and Hydrological Factors. Sci. Total Environ. 2024, 950, 175244. [Google Scholar] [CrossRef]
- Danesh, M.; Gharehbaghi, A.; Mehdizadeh, S.; Danesh, A. A Comparative Assessment of Machine Learning and Deep Learning Models for the Daily River Streamflow Forecasting. Water Resour. Manag. 2024. [Google Scholar] [CrossRef]
- Sharma, A.; Bansal, P.; Chandel, A.; Shankar, V. Modelling Stage–Discharge Relationship of Himalayan River Using ANN, SVM and ANFIS. Sustain. Water Resour. Manag. 2024, 10, 88. [Google Scholar] [CrossRef]
- Mohsen, S.; Abdel-Rehim, W.M.F.; Abdel-Aziz, M. Water Quality Classification Using an Artificial Neural Network. In Intelligent Systems, Blockchain, and Communication Technologies; Abdelgawad, A., Jamil, A., Hameed, A.A., Eds.; Lecture Notes in Networks and Systems; Springer Nature Switzerland: Cham, Switzerland, 2025; Volume 1268, pp. 262–273. ISBN 978-3-031-82376-3. [Google Scholar]
- Niazkar, M.; Menapace, A.; Brentan, B.; Piraei, R.; Jimenez, D.; Dhawan, P.; Righetti, M. Applications of XGBoost in Water Resources Engineering: A Systematic Literature Review (Dec 2018–May 2023). Environ. Model. Softw. 2024, 174, 105971. [Google Scholar] [CrossRef]
- Zhou, P.; Wang, G.; Mao, H.; Liao, F.; Shi, Z.; Huang, H. Numerical Modeling for the Temporal Variations of the Water Interchange between Groundwater and Surface Water in a Regional Great Lake (Poyang Lake, China). J. Hydrol. 2022, 610, 127827. [Google Scholar] [CrossRef]
- Li, X.; Ye, X.; Yuan, C.; Xu, C. Can Water Release from Local Reservoirs Cope with the Droughts of Downstream Lake in a Large River-Lake System? J. Hydrol. 2023, 625, 130172. [Google Scholar] [CrossRef]
- Li, Q.; Lai, G.; Devlin, A.T. A Review on the Driving Forces of Water Decline and Its Impacts on the Environment in Poyang Lake, China. J. Water Clim. Change 2021, 12, 1370–1391. [Google Scholar] [CrossRef]
- Ren, L.; He, Y.; Zhu, J.; Liu, Y.; Cai, W.; Yang, W.; Zhao, J.; Wu, C. Analysis on Driving Factors and Prediction of Dynamic Change of Poyang Lake Area. Energy Rep. 2024, 12, 495–503. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Y.; Chen, G.; Wu, J.; Wu, J. Variation of Lake-River-Aquifer Interactions Induced by Human Activity and Climatic Condition in Poyang Lake Basin, China. J. Hydrol. 2021, 595, 126058. [Google Scholar] [CrossRef]
- Yin, Y.; Xia, R.; Liu, X.; Chen, Y.; Song, J.; Dou, J. Spatial Response of Water Level and Quality Shows More Significant Heterogeneity during Dry Seasons in Large River-Connected Lakes. Sci. Rep. 2024, 14, 8373. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Deng, Y.; Li, Y.; Shu, L.; Wang, W. Simulation of Surface Water—Groundwater Interaction in the Plain Area of the Poyang Lake Considering the Change of Water Body Area. Hydrogeol. Eng. Geol. 2023, 50, 95–104. [Google Scholar]
- Wang, Y.; Li, C.; Cui, Y.; Cui, Y.; Xu, Y.; Hora, T.; Zaveri, E.; Rodella, A.-S.; Bai, L.; Long, D. Spatial Downscaling of GRACE-Derived Groundwater Storage Changes across Diverse Climates and Human Interventions with Random Forests. J. Hydrol. 2024, 640, 131708. [Google Scholar] [CrossRef]
- Chao, N.; Li, F.; Yu, N.; Chen, G.; Wang, Z.; Ouyang, G.; Yeh, P.J.-F. Divergent Spatiotemporal Variability of Terrestrial Water Storage and Eight Hydroclimatic Components over Three Different Scales of the Yangtze River Basin. Sci. Total Environ. 2023, 879, 162886. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gan, F.; Yan, B.; Bai, J.; Wang, F.; Jiang, R.; Xing, N.; Liu, Q. Evaluation of Groundwater Storage Depletion Using GRACE/GRACE Follow-On Data with Land Surface Models and Its Driving Factors in Haihe River Basin, China. Sustainability 2022, 14, 1108. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhong, M.; Feng, W.; Zhang, Z.; Shen, Y.; Wu, D. Groundwater Depletion in the West Liaohe River Basin, China and Its Implications Revealed by GRACE and In Situ Measurements. Remote Sens. 2018, 10, 493. [Google Scholar] [CrossRef]
- Arshad, A.; Mirchi, A.; Taghvaeian, S.; AghaKouchak, A. Downscaled-GRACE Data Reveal Anthropogenic and Climate-Induced Water Storage Decline Across the Indus Basin. Water Resour. Res. 2024, 60, e2023WR035882. [Google Scholar] [CrossRef]
- Zhai, P.; Yu, R.; Guo, Y.; Li, Q.; Ren, X.; Wang, Y.; Xu, W.; Liu, Y.; Ding, Y. The Strong El Niño of 2015/16 and Its Dominant Impacts on Global and China’s Climate. J. Meteorol. Res. 2016, 30, 283–297. [Google Scholar] [CrossRef]
- Bian, Y.; Sun, P.; Zhang, Q.; Luo, M.; Liu, R. Amplification of Non-Stationary Drought to Heatwave Duration and Intensity in Eastern China: Spatiotemporal Pattern and Causes. J. Hydrol. 2022, 612, 128154. [Google Scholar] [CrossRef]
- Feng, W.; Leung, M.Y.-T.; Wang, D.; Zhou, W.; Zhang, O.Y.W. An Extreme Drought over South China in 2020/21 Concurrent with an Unprecedented Warm Northwest Pacific and La Niña. Adv. Atmos. Sci. 2022, 39, 1637–1649. [Google Scholar] [CrossRef]
- Tao, K.; Fang, J.; Yang, W.; Fang, J.; Liu, B. Characterizing Compound Floods from Heavy Rainfall and Upstream–Downstream Extreme Flow in Middle Yangtze River from 1980 to 2020. Nat. Hazards 2023, 115, 1097–1114. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Liu, X.; Tan, Z.; Yao, J. The Role of a Seasonal Lake Groups in the Complex Poyang Lake-Floodplain System (China): Insights into Hydrological Behaviors. J. Hydrol. 2019, 578, 124055. [Google Scholar] [CrossRef]
- Zhao, G.; Hörmann, G.; Fohrer, N.; Zhang, Z.; Zhai, J. Streamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China. Water Resour. Manag. 2010, 24, 689–706. [Google Scholar] [CrossRef]
- Han, Y.; Ma, Z.; Li, M. Change Characteristics and Influencing Factors of Terrestrial Water Storage in the Beijing–Tianjin–Hebei Region in the Past 20 Years. Clim. Environ. Res. 2024, 5, 519–533. [Google Scholar]
- Li, Z.; Lu, C.; Zhang, Y.; Wu, C.; Liu, B.; Shu, L. Mechanisms of Evolution and Pollution Source Identification in Groundwater Quality of the Fen River Basin Driven by Precipitation. Sci. Total Environ. 2024, 952, 175893. [Google Scholar] [CrossRef]
- Huang, H.; Feng, G.; Cao, Y.; Feng, G.; Dai, Z.; Tian, P.; Wei, J.; Cai, X. Simulation and Driving Factor Analysis of Satellite-Observed Terrestrial Water Storage Anomaly in the Pearl River Basin Using Deep Learning. Remote Sens. 2023, 15, 3983. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Yang, H.; Ndehedehe, C.; Wang, H.; Ge, Y.; Xu, J.; Xia, M.; Kalu, I.; Jing, M.; Agutu, N. Estimating Groundwater Recharge across Africa during 2003–2023 Using GRACE-Derived Groundwater Storage Changes. J. Hydrol. Reg. Stud. 2024, 56, 102046. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, L.; Li, J.; Peng, X. Responses of Deep Soil Moisture to Direct Rainfall and Groundwater in the Red Soil Critical Zone: A Four-Stage Pattern. J. Hydrol. 2024, 632, 130864. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, B.; Li, Y.; Lu, C.; Shu, L. The Effects of Damming and Dam Regulation on a River–Lake-Aquifer System: 3D Groundwater Flow Modeling of Poyang Lake (China). J. Hydrol. 2024, 636, 131311. [Google Scholar] [CrossRef]
- Wang, Y.; Molinos, J.G.; Shi, L.; Zhang, M.; Wu, Z.; Zhang, H.; Xu, J. Drivers and Changes of the Poyang Lake Wetland Ecosystem. Wetlands 2019, 39, 35–44. [Google Scholar] [CrossRef]
- Deng, S.; Wu, Q.; Wang, Z.; Wu, L.; Huang, Z.; Zhang, G. Investigating Flood Characteristics and Mitigation Measures in Plain-Type River-Connected Lakes: A Case Study of Poyang Lake. Water 2024, 16, 281. [Google Scholar] [CrossRef]
- Bai, H.; Wang, B.; Li, B.; Liu, Z.; Wen, Z.; Zhang, Y.; Xiao, F.; Xu, X.; Huang, Y. Multi-Period Early-Warning Precipitation Identification Method for the Easily Waterlogged Districts in Jiangxi Province, China. Theor. Appl. Climatol. 2024, 155, 2705–2718. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Xie, H. Drought Impacts on Hydrology and Water Quality under Climate Change. Sci. Total Environ. 2023, 858, 159854. [Google Scholar] [CrossRef]
- Shao, X.; Zhang, Y.; Ma, N.; Zhang, X.; Tian, J.; Xu, Z.; Liu, C. Drought-Induced Ecosystem Resistance and Recovery Observed at 118 Flux Tower Stations across the Globe. Agric. For. Meteorol. 2024, 356, 110170. [Google Scholar] [CrossRef]
- Mokhtar, A.; Jalali, M.; He, H.; Al-Ansari, N.; Elbeltagi, A.; Alsafadi, K.; Abdo, H.G.; Sammen, S.S.; Gyasi-Agyei, Y.; Rodrigo-Comino, J. Estimation of SPEI Meteorological Drought Using Machine Learning Algorithms. IEEE Access 2021, 9, 65503–65523. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Wang, Z.; Zhao, L.; Zhang, Q. Time Scale Selection and Periodicity Analysis of Grassland Drought Monitoring Index in Inner Mongolia. Glob. Ecol. Conserv. 2022, 36, e02138. [Google Scholar] [CrossRef]
- Parsons, D.J.; Rey, D.; Tanguy, M.; Holman, I.P. Regional Variations in the Link between Drought Indices and Reported Agricultural Impacts of Drought. Agric. Syst. 2019, 173, 119–129. [Google Scholar] [CrossRef]
- Saemian, P.; Tourian, M.J.; Elmi, O.; Sneeuw, N.; AghaKouchak, A. A Probabilistic Approach to Characterizing Drought Using Satellite Gravimetry. Water Resour. Res. 2024, 60, e2023WR036873. [Google Scholar] [CrossRef]
- Rehana, S.; Monish, N.T. Characterization of Regional Drought Over Water and Energy Limited Zones of India Using Potential and Actual Evapotranspiration. Earth Space Sci. 2020, 7, e2020EA001264. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Zhao, C.; Shan, S.; Guo, J. Seasonal and Aridity Influences on the Relationships between Drought Indices and Hydrological Variables over China. Weather. Clim. Extrem. 2021, 34, 100393. [Google Scholar] [CrossRef]
- Lu, M.; Zhao, Q.; Ding, S.; Lu, X.; Jing, Y.; Wang, S.; Hong, Z.; Wang, A. Lag Response of Groundwater to Changes in Water and Sediment Characteristics in the Lower Yellow River, China. J. Hydrol. 2022, 612, 128048. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, Q.; Liu, J.; Li, X.; Xu, C. Distinguishing the Relative Impacts of Climate Change and Human Activities on Variation of Streamflow in the Poyang Lake Catchment, China. J. Hydrol. 2013, 494, 83–95. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, Z.; Sang, Y.-F.; Qian, J.; Feng, W.; Chen, X.; Zhou, Q. Temporal and Spatial Variations in the Terrestrial Water Storage across Central Asia Based on Multiple Satellite Datasets and Global Hydrological Models. J. Hydrol 2021, 596, 126013. [Google Scholar] [CrossRef]
- Shi, Z.; Zheng, W.; Yin, W. Improving the Reliability of the Prediction of Terrestrial Water Storage in Yunnan Using the Artificial Neural Network Selective Joint Prediction Model. IEEE Access 2021, 9, 31865–31879. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-Regression: A Basic Tool of Chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Woldesenbet, T.A.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Hydrological Responses to Land Use/Cover Changes in the Source Region of the Upper Blue Nile Basin, Ethiopia. Sci. Total Environ. 2017, 575, 724–741. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Zhang, G.; Han, S.-C.; Yeo, I.-Y.; Zhang, M. Improving the Resolution of GRACE-Based Water Storage Estimates Based on Machine Learning Downscaling Schemes. J. Hydrol 2022, 613, 128447. [Google Scholar] [CrossRef]
- Shi, Z.H.; Ai, L.; Li, X.; Huang, X.D.; Wu, G.L.; Liao, W. Partial Least-Squares Regression for Linking Land-Cover Patterns to Soil Erosion and Sediment Yield in Watersheds. J. Hydrol 2013, 498, 165–176. [Google Scholar] [CrossRef]
- Ma, R.; Cai, C.; Wang, J.; Wang, T.; Li, Z.; Xiao, T.; Peng, G. Partial Least Squares Regression for Linking Aggregate Pore Characteristics to the Detachment of Undisturbed Soil by Simulating Concentrated Flow in Ultisols (Subtropical China). J. Hydrol 2015, 524, 44–52. [Google Scholar] [CrossRef]
Method | R2 | CC | RMSE (mm) |
---|---|---|---|
CNN-A-LSTM | 0.85 | 0.94 | 41.3 |
CNN | 0.77 | 0.88 | 51.7 |
LSTM | 0.75 | 0.87 | 53.8 |
RF | 0.81 | 0.89 | 41.6 |
SVM | 0.72 | 0.86 | 56.3 |
XGBoost | 0.76 | 0.87 | 49.7 |
ANN | 0.71 | 0.87 | 58.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Lu, C.; Park, E.; Zhang, Y.; Wu, C.; Li, Z.; Chen, J.; Hannan, M.; Liu, B.; Shu, L. Groundwater Storage Response to Extreme Hydrological Events in Poyang Lake, China’s Largest Fresh-Water Lake. Remote Sens. 2025, 17, 988. https://doi.org/10.3390/rs17060988
Yu X, Lu C, Park E, Zhang Y, Wu C, Li Z, Chen J, Hannan M, Liu B, Shu L. Groundwater Storage Response to Extreme Hydrological Events in Poyang Lake, China’s Largest Fresh-Water Lake. Remote Sensing. 2025; 17(6):988. https://doi.org/10.3390/rs17060988
Chicago/Turabian StyleYu, Xilin, Chengpeng Lu, Edward Park, Yong Zhang, Chengcheng Wu, Zhibin Li, Jing Chen, Muhammad Hannan, Bo Liu, and Longcang Shu. 2025. "Groundwater Storage Response to Extreme Hydrological Events in Poyang Lake, China’s Largest Fresh-Water Lake" Remote Sensing 17, no. 6: 988. https://doi.org/10.3390/rs17060988
APA StyleYu, X., Lu, C., Park, E., Zhang, Y., Wu, C., Li, Z., Chen, J., Hannan, M., Liu, B., & Shu, L. (2025). Groundwater Storage Response to Extreme Hydrological Events in Poyang Lake, China’s Largest Fresh-Water Lake. Remote Sensing, 17(6), 988. https://doi.org/10.3390/rs17060988