Spatial Distribution of Urban Anthropogenic Carbon Emissions Revealed from the OCO-3 Snapshot XCO2 Observations: A Case Study of Shanghai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. OCO-3 Snapshot XCO2 Observations
2.3. Sentinel-5 TROPOMI NO2 Observations
2.4. WRF-CMAQ Model
2.5. CO2 Fluxes
2.5.1. Anthropogenic CO2 Emission Inventory
2.5.2. Ecosystem, Ocean, and Wildfire Carbon Fluxes
2.6. The Calculation of Simulated XCO2
3. Results
3.1. The Differences Between the CO2 Anthropogenic Emission Inventories in Shanghai
3.2. The Comparison of XCO2 Simulations
3.3. Comparison of Simulated XCO2 with Satellite Observations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seto, K.C.; Dhakal, S.; Bigio, A.; Blanco, H.; D’elgado, G.; Dewar, D.; Huang, L.; Inaba, A.; Kansal, A.; Lwasa, S.; et al. Human settlements, infrastructure, and spatial planning. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Stocker, T.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1–30. [Google Scholar] [CrossRef]
- Qi, C.; Wang, Q.; Ma, X.; Ye, L.; Yang, D.; Hong, J. Inventory, environmental impact, and economic burden of GHG emission at the city level: Case study of Jinan, China. J. Clean. Prod. 2018, 192, 236–243. [Google Scholar] [CrossRef]
- Cai, B.; Cui, C.; Zhang, D.; Cao, L.; Wu, P.; Pang, L.; Zhang, J.; Dai, C. China city-level greenhouse gas emissions inventory in 2015 and uncertainty analysis. Appl. Energy 2019, 253, 113579. [Google Scholar] [CrossRef]
- Cai, B.; Lu, J.; Wang, J.; Dong, H.; Liu, X.; Chen, Y.; Chen, Z.; Cong, J.; Cui, Z.; Dai, C.; et al. A benchmark city-level carbon dioxide emission inventory for China in 2005. Appl. Energy 2019, 233, 659–673. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Shao, S.; Guan, D. An emissions-socioeconomic inventory of Chinese cities. Sci. Data 2019, 6, 190027. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Guan, D.; Liu, J.; Mi, Z.; Liu, Z.; Liu, J.; Schroeder, H.; Cai, B.; Chen, Y.; Shao, S.; et al. Methodology and applications of city level CO2 emission accounts in China. J. Clean. Prod. 2017, 161, 1215–1225. [Google Scholar] [CrossRef]
- Patiño-Aroca, M.; Parra, A.; Borge, R. On-road vehicle emission inventory and its spatial and temporal distribution in the city of Guayaquil, Ecuador. Sci. Total. Environ. 2022, 848, 157664. [Google Scholar] [CrossRef]
- Jing, Q.; Bai, H.; Luo, W.; Cai, B.; Xu, H. A top-bottom method for city-scale energy-related CO2 emissions estimation: A case study of 41 Chinese cities. J. Clean. Prod. 2018, 202, 444–455. [Google Scholar] [CrossRef]
- Han, P.; Zeng, N.; Oda, T.; Zhang, W.; Lin, X.; Liu, D.; Cai, Q.; Ma, X.; Meng, W.; Wang, G.; et al. A city-level comparison of fossil-fuel and industry processes-induced CO2 emissions over the Beijing-Tianjin-Hebei region from eight emission inventories. Carbon Balance Manag. 2020, 15, 1–16. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, Z.; Xue, W.; Yan, G.; Shi, X.; Zhao, D.; Zhang, Y.; Lei, Y.; Wang, J. Identification of on-road vehicle CO2 emission pattern in China: A study based on a high-resolution emission inventory. Resour. Conserv. Recycl. 2021, 175, 105891. [Google Scholar] [CrossRef]
- Zhang, Q.; Boersma, K.F.; Zhao, B.; Eskes, H.; Chen, C.; Zheng, H.; Zhang, X. Quantifying daily NOx and CO2 emissions from Wuhan using satellite observations from TROPOMI and OCO-2. Atmospheric Meas. Tech. 2023, 23, 551–563. [Google Scholar] [CrossRef]
- Gately, C.K.; Hutyra, L.R. Large Uncertainties in Urban-Scale Carbon Emissions. J. Geophys. Res. Atmos. 2017, 122, 11–242. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, F.; Zeng, N.; Oda, T. Comparing a global high-resolution downscaled fossil fuel CO2 emission dataset to local inventory-based estimates over 14 global cities. Carbon Balance Manag. 2020, 15, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Ogle, S.M.; Davis, K.; Lauvaux, T.; Schuh, A.; Cooley, D.; West, T.O.; Heath, L.S.; Miles, N.L.; Richardson, S.; Breidt, F.J.; et al. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2concentration data. Environ. Res. Lett. 2015, 10, 034012. [Google Scholar] [CrossRef]
- Su, M.; Shi, Y.; Yang, Y.; Guo, W. Impacts of different biomass burning emission inventories: Simulations of atmospheric CO2 concentrations based on GEOS-Chem. Sci. Total. Environ. 2023, 876, 162825. [Google Scholar] [CrossRef]
- Ciais, P.; Crisp, D.; van der Gon, H.D.; Engelen, R.; Janssens-Maenhout, G.; Heiman, M.; Rayner, P.; Scholze, M. Towards a European Operational Observing System to Monitor Fossil: CO2 Emissions: Final Report from the Expert Group; European Commission: Brussels, Belgium, 2015. [Google Scholar] [CrossRef]
- Duren, R.M.; Miller, C.E. Measuring the carbon emissions of megacities. Nat. Clim. Chang. 2012, 2, 560–562. [Google Scholar] [CrossRef]
- Kort, E.A.; Frankenberg, C.; Miller, C.E.; Oda, T. Space-based observations of megacity carbon dioxide. Geophys. Res. Lett. 2012, 39, L17806. [Google Scholar] [CrossRef]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Gaudet, B.; Gurney, K.R.; Huang, J.; O’Keefe, D.; et al. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.; Ghosh, S.; Mueller, K.; Karion, A.; Roest, G.; Gourdji, S.M.; Lopez-Coto, I.; Gurney, K.R.; Parazoo, N.; Verhulst, K.R.; et al. The Impact of COVID-19 on CO2 Emissions in the Los Angeles and Washington DC/Baltimore Metropolitan Areas. Geophys. Res. Lett. 2021, 48, e2021GL092744. [Google Scholar] [CrossRef]
- Lian, J.; Lauvaux, T.; Utard, H.; Bréon, F.-M.; Broquet, G.; Ramonet, M.; Laurent, O.; Albarus, I.; Cucchi, K.; Ciais, P. Assessing the Effectiveness of an Urban CO2 Monitoring Network over the Paris Region through the COVID-19 Lockdown Natural Experiment. Environ. Sci. Technol. 2022, 56, 2153–2162. [Google Scholar] [CrossRef]
- Eldering, A.; Taylor, T.E.; O’Dell, C.W.; Pavlick, R. The OCO-3 mission: Measurement objectives and expected performance based on 1 year of simulated data. Atmospheric Meas. Tech. 2019, 12, 2341–2370. [Google Scholar] [CrossRef]
- Taylor, T.E.; Eldering, A.; Merrelli, A.; Kiel, M.; Somkuti, P.; Cheng, C.; Rosenberg, R.; Fisher, B.; Crisp, D.; Basilio, R.; et al. OCO-3 early mission operations and initial (vEarly) XCO2 and SIF retrievals. Remote. Sens. Environ. 2020, 251, 112032. [Google Scholar] [CrossRef]
- Osterman, G.; O’Dell, C.; Eldering, A.; Fisher, B.; Crios, D.; Cheng, C.; Frankenberg, C.; Lambert, A.; Gunson, M.; Mandrake, L.; et al. Orbiting Carbon Observatory-2 & 3 Data Product User’s Guide, Operational Level 2 Data Versions 10 and Lite File Version 10 and VEarly. 2020. Available online: https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/OCO2_OCO3_B10_DUG.pdf (accessed on 11 October 2024).
- Kiel, M.; Eldering, A.; Roten, D.D.; Lin, J.C.; Feng, S.; Lei, R.; Lauvaux, T.; Oda, T.; Roehl, C.M.; Blavier, J.-F.; et al. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A first look at the Los Angeles megacity. Remote Sens. Environ. 2021, 258, 112314. [Google Scholar] [CrossRef]
- Zhou, M.; Ni, Q.; Cai, Z.; Langerock, B.; Nan, W.; Yang, Y.; Che, K.; Yang, D.; Wang, T.; Liu, Y.; et al. CO2 in Beijing and Xianghe Observed by Ground-Based FTIR Column Measurements and Validation to OCO-2/3 Satellite Observations. Remote. Sens. 2022, 14, 3769. [Google Scholar] [CrossRef]
- Bell, E.; O’Dell, C.W.; Taylor, T.E.; Merrelli, A.; Nelson, R.R.; Kiel, M.; Eldering, A.; Rosenberg, R.; Fisher, B. Exploring bias in the OCO-3 snapshot area mapping mode via geometry, surface, and aerosol effects. Atmospheric Meas. Tech. 2023, 16, 109–133. [Google Scholar] [CrossRef]
- Zhao, H.; Gui, K.; Yao, W.; Shang, N.; Zhang, X.; Zhang, X.; Li, L.; Zheng, Y.; Wang, Z.; Ren, H.; et al. Seasonal and Diurnal Variations in XCO2 Characteristics in China as Observed by OCO-2/3 Satellites: Effects of Land Cover and Local Meteorology. J. Geophys. Res. Atmos. 2023, 128, e2023JD038841. [Google Scholar] [CrossRef]
- Chen, J.; Hu, R.; Chen, L.; Liao, Z.; Che, L.; Li, T. Multi-sensor integrated mapping of global XCO2 from 2015 to 2021 with a local random forest model. ISPRS J. Photogram. Rem. Sens. 2024, 208, 107–120. [Google Scholar] [CrossRef]
- Lei, R.; Feng, S.; Xu, Y.; Tran, S.; Ramonet, M.; Grutter, M.; Garcia, A.; Campos-Pineda, M.; Lauvaux, T. Reconciliation of asynchronous satellite-based NO2 and XCO2 enhancements with mesoscale modeling over two urban landscapes. Remote. Sens. Environ. 2022, 281, 113241. [Google Scholar] [CrossRef]
- Wu, D.; Liu, J.; Wennberg, P.O.; Palmer, P.I.; Nelson, R.R.; Kiel, M.; Eldering, A. Towards sector-based attribution using intra-city variations in satellite-based emission ratios between CO2 and CO. Atmospheric Meas. Tech. 2022, 22, 14547–14570. [Google Scholar] [CrossRef]
- Yang, E.G.; Kort, E.A.; Ott, L.E.; Oda, T.; Lin, J.C. Using Space-Based CO2 and NO2 Observations to Estimate Urban CO2 Emissions. J. Geophys. Res. Atmos. 2023, 128, e2022JD037736. [Google Scholar] [CrossRef]
- Hakkarainen, J.; Ialongo, I.; Oda, T.; Szeląg, M.E.; O’dell, C.W.; Eldering, A.; Crisp, D. Building a bridge: Characterizing major anthropogenic point sources in the South African Highveld region using OCO-3 carbon dioxide snapshot area maps and Sentinel-5P/TROPOMI nitrogen dioxide columns. Environ. Res. Lett. 2023, 18, 035003. [Google Scholar] [CrossRef]
- Guo, W.; Shi, Y.; Liu, Y.; Su, M. CO2 emissions retrieval from coal-fired power plants based on OCO-2/3 satellite observations and a Gaussian plume model. J. Clean. Prod. 2023, 397, 136525. [Google Scholar] [CrossRef]
- Roten, D.; Lin, J.C.; Das, S.; Kort, E.A. Constraining Sector-Specific CO2 Fluxes Using Space-Based XCO2 Observations Over the Los Angeles Basin. Geophys. Res. Lett. 2023, 50, e2023GL104376. [Google Scholar] [CrossRef]
- Roten, D.; Lin, J.C.; Kunik, L.; Mallia, D.; Wu, D.; Oda, T.; Kort, E.A. The Information Content of Dense Carbon Dioxide Measurements from Space: An Urban-Focused Inversion Approach with Synthetic Data from the OCO-3 Instrument. ESS Open Archive. 2024, 28, 2024. [Google Scholar] [CrossRef]
- Song, M.; Guo, X.; Wu, K.; Wang, G. Driving effect analysis of energy-consumption carbon emissions in the Yangtze River Delta region. J. Clean. Prod. 2015, 103, 620–628. [Google Scholar] [CrossRef]
- Tian, G.; Jiang, J.; Yang, Z.; Zhang, Y. The urban growth, size distribution and spatio-temporal dynamic pattern of the Yangtze River Delta megalopolitan region, China. Ecol. Model. 2011, 222, 865–878. [Google Scholar] [CrossRef]
- Li, J.; Zhou, H.; Meng, J.; Yang, Q.; Chen, B.; Zhang, Y. Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city. Appl. Energy 2018, 226, 1076–1086. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Eldering, A.; Wennberg, P.O.; Crisp, D.; Gunson, M.R.; Fisher, B.; Frankenberg, C.; Kiel, M.; Lindqvist, H.; Mandrake, L.; et al. Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmos. Meas. Tech. 2018, 11, 6539–6576. [Google Scholar] [CrossRef]
- Wunch, D.; Toon, G.C.; Blavier, J.-F.L.; Washenfelder, R.A.; Notholt, J.; Connor, B.J.; Griffith, D.W.T.; Sherlock, V.; Wennberg, P.O. The Total Carbon Column Observing Network. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 2087–2112. [Google Scholar] [CrossRef]
- Wunch, D.; Wennberg, P.O.; Osterman, G.; Fisher, B.; Naylor, B.; Roehl, C.M.; O’Dell, C.; Mandrake, L.; Viatte, C.; Kiel, M.; et al. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON. Atmos. Meas. Tech. 2017, 10, 2209–2238. [Google Scholar] [CrossRef]
- Kiel, M.; O’Dell, C.W.; Fisher, B.; Eldering, A.; Nassar, R.; MacDonald, C.G.; Wennberg, P.O. How bias correction goes wrong: Measurement of XCO2 affected by erroneous surface pressure estimates. Atmospheric Meas. Tech. 2019, 12, 2241–2259. [Google Scholar] [CrossRef]
- de Foy, B.; Lu, Z.; Streets, D.G.; Lamsal, L.N.; Duncan, B.N. Estimates of power plant NOx emissions and lifetimes from OMI NO2 satellite retrievals. Atmospheric Environ. 2015, 116, 1–11. [Google Scholar] [CrossRef]
- Reuter, M.; Buchwitz, M.; Schneising, O.; Krautwurst, S.; O’Dell, C.W.; Richter, A.; Bovensmann, H.; Burrows, J.P. Towards monitoring localized CO2 emissions from space: Co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Meas. Tech. 2019, 19, 9371–9383. [Google Scholar] [CrossRef]
- Dou, X.; Wang, Y.; Ciais, P.; Chevallier, F.; Davis, S.J.; Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Solazzo, E.; Yan, F.; et al. Near-real-time global gridded daily CO2 emissions. Innovation 2021, 3, 100182. [Google Scholar] [CrossRef] [PubMed]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmospheric Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef]
- Wong, D.C.; Pleim, J.; Mathur, R.; Binkowski, F.; Otte, T.; Gilliam, R.; Pouliot, G.; Xiu, A.; Young, J.O.; Kang, D. WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results. Geosci. Model Dev. 2012, 5, 299–312. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Zhiquan, L.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019; Volume 145. [Google Scholar] [CrossRef]
- Byun, D.; Ching, J. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System; Environmental Protection Agency: Washington, DC, USA, 1999; EPA600/R-99/030. [Google Scholar]
- Brunner, D.; Kuhlmann, G.; Henne, S.; Koene, E.; Kern, B.; Wolff, S.; Voigt, C.; Jöckel, P.; Kiemle, C.; Roiger, A.; et al. Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models. Atmospheric Meas. Tech. 2023, 23, 2699–2728. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, H.; Chen, J.M.; Ju, W.; Tian, X.; Feng, S.; Li, G.; Chen, Z.; Zhang, S.; Lu, X.; et al. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new version of the Global Carbon Assimilation System. Atmospheric Meas. Tech. 2021, 21, 1963–1985. [Google Scholar] [CrossRef]
- Xu, R.; Tong, D.; Xiao, Q.; Qin, X.; Chen, C.; Yan, L.; Cheng, J.; Cui, C.; Hu, H.; Liu, W.; et al. MEIC-global-CO2: A new global CO2 emission inventory with highly-resolved source category and sub-country information. Sci. China Earth Sci. 2023, 67, 450–465. [Google Scholar] [CrossRef]
- Oda, T.; Maksyutov, S. ODIAC Fossil Fuel CO2 Emissions Dataset (Version Name: ODIAC2022); Center for Global Environmental Research, National Institute for Environmental Studies: Tsukuba, Japan, 2015. [Google Scholar] [CrossRef]
- Huang, C.; An, J.; Wang, H.; Liu, Q.; Tian, J.; Wang, Q.; Hu, Q.; Yan, R.; Shen, Y.; Duan, Y.; et al. Highly Resolved Dynamic Emissions of Air Pollutants and Greenhouse Gas CO2 during COVID-19 Pandemic in East China. Environ. Sci. Technol. Lett. 2021, 8, 853–860. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). IPCC Guidelines for National Greenhouse Gas Inventories 2006; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Meas. Tech. 2018, 18, 14095–14111. [Google Scholar] [CrossRef]
- Cui, C.; Li, S.; Zhao, W.; Liu, B.; Shan, Y.; Guan, D. Energy-related CO2 emission accounts and datasets for 40 emerging economies in 2010–2019. Earth Syst. Sci. Data 2023, 15, 1317–1328. [Google Scholar] [CrossRef]
- Department of Climate Change of National Development and Reform Commission. 2011. Available online: http://www.cbcsd.org.cn/sjk/nengyuan/standard/home/20140113/download/shengjiwenshiqiti.pdf (accessed on 15 January 2025).
- IEA. World Energy Outlook 2022; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Gilfillan, D.; Marland, G. CDIAC-FF: Global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 2021, 13, 1667–1680. [Google Scholar] [CrossRef]
- Eyers, C.J.; Norman, P.; Middel, J.; Plohr, M.; Michot, S.; Atkinson, K.; Christou, R.A. AERO2k Global Aviation Emissions Inventories for 2002 and 2025. 2005. Available online: https://elib.dlr.de/1328/ (accessed on 15 January 2025).
- JRC: EDGAR—Emissions Database for Global Atmospheric Research. Available online: http://edgar.jrc.ec.europa.eu/ (accessed on 15 January 2025).
- Andres, R.J.; Boden, T.A.; Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B: Chem. Phys. Meteorol. 2014, 66, 23616. [Google Scholar] [CrossRef]
- Andres, R.J.; Boden, T.A.; Higdon, D.M. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example. Atmospheric Meas. Tech. 2016, 16, 14979–14995. [Google Scholar] [CrossRef]
- An, J.; Huang, Y.; Huang, C.; Wang, X.; Yan, R.; Wang, Q.; Wang, H.; Jing, S.; Zhang, Y.; Liu, Y.; et al. Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China. Atmospheric Meas. Tech. 2021, 21, 2003–2025. [Google Scholar] [CrossRef]
- World Resources Institute (WRI) and the World Business Council for Sustainable Development (WBCSD). The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. Available online: https://www.ghgprotocol.org/corporate-standard (accessed on 20 January 2025).
- Wang, Y.; Huang, C.; Hu, X.; Wei, C.; An, J.; Yan, R.; Liao, W.; Tian, J.; Wang, H.; Duan, Y.; et al. Quantifying the Impact of COVID-19 Pandemic on the Spatiotemporal Changes of CO2 Concentrations in the Yangtze River Delta, China. J. Geophys. Res. Atmos. 2023, 128, e2023JD038512. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Cihlar, J.; Goulden, M. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef]
- Ju, W.; Chen, J.M.; Black, T.A.; Barr, A.G.; Liu, J.; Chen, B. Modelling multi-year coupled carbon and water fluxes in a boreal aspen forest. Agric. For. Meteorol. 2006, 140, 136–151. [Google Scholar] [CrossRef]
- Harun, F.; Soosaar, K.; Krasnova, A.; Pisek, J. Suitability of the boreal ecosystem simulator (BEPS) model for estimating gross primary productivity in hemi-boreal upland pine forest. For. Stud. 2021, 75, 1–14. [Google Scholar] [CrossRef]
- Kang, F.; Li, X.; Du, H.; Mao, F.; Zhou, G.; Xu, Y.; Huang, Z.; Ji, J.; Wang, J. Spatiotemporal Evolution of the Carbon Fluxes from Bamboo Forests and their Response to Climate Change Based on a BEPS Model in China. Remote. Sens. 2022, 14, 366. [Google Scholar] [CrossRef]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosciences 2012, 117, G04012. [Google Scholar] [CrossRef]
- Connor, B.J.; Boesch, H.; Toon, G.; Sen, B.; Miller, C.; Crisp, D. Orbiting Carbon Observatory: Inverse method and prospective error analysis. J. Geophys. Res. Atmos. 2008, 113, D5305. [Google Scholar] [CrossRef]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm—Part 1: Description and validation against synthetic observations. Atmospheric Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef]
- Zheng, B.; Zhang, Q.; Geng, G.; Chen, C.; Shi, Q.; Cui, M.; Lei, Y.; He, K. Changes in China’s anthropogenic emissions and air quality during the COVID-19 pandemic in 2020. Earth Syst. Sci. Data 2021, 13, 2895–2907. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, H.; Jiang, F.; Feng, S.; Jia, M.; Ju, W. Anthropogenic NOx emissions of China, the US and Europe from 2019 to 2022 inferred from TROPOMI observations. Environ. Res. Lett. 2024, 19, 054024. [Google Scholar] [CrossRef]
- Cloud River Urban Research Institute. Available online: https://cici-index.com/en/881/ (accessed on 23 January 2025).
- Oda, T.; Bun, R.; Kinakh, V.; Topylko, P.; Halushchak, M.; Marland, G.; Lauvaux, T.; Jonas, M.; Maksyutov, S.; Nahorski, Z.; et al. Errors and uncertainties in a gridded carbon dioxide emissions inventory. Mitig. Adapt. Strat. Glob. Change 2019, 24, 1007–1050. [Google Scholar] [CrossRef]
- Gurney, K.R.; Liang, J.; O’Keeffe, D.; Patarasuk, R.; Hutchins, M.; Huang, J.; Rao, P.; Song, Y. Comparison of Global Downscaled Versus Bottom-Up Fossil Fuel CO2 Emissions at the Urban Scale in Four U.S. Urban Areas. J. Geophys. Res. Atmos. 2019, 124, 2823–2840. [Google Scholar] [CrossRef]
- Huo, D.; Liu, K.; Liu, J.; Huang, Y.; Sun, T.; Sun, Y.; Si, C.; Liu, J.; Huang, X.; Qiu, J.; et al. Near-real-time daily estimates of fossil fuel CO2 emissions from major high-emission cities in China. Sci. Data 2022, 9, 1–21. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, F.; Jia, M.; Feng, S.; Lai, Y.; Ding, J.; He, W.; Wang, H.; Wu, M.; Wang, J.; et al. Improved estimation of CO2 emissions from thermal power plants based on OCO-2 XCO2 retrieval using inline plume simulation. Sci. Total. Environ. 2023, 913, 169586. [Google Scholar] [CrossRef]
Date | Local Time | Number of Footprints |
---|---|---|
20 February 2020 | 14:05 | 541 |
18 August 2020 | 14:54 | 527 |
22 December 2020 | 13:03 | 343 |
19 February 2021 | 13:41 | 864 |
22 June 2021 | 12:57 | 761 |
30 December 2021 | 09:36 | 555 |
28 July 2022 | 14:17 | 337 |
Emission Inventory | Annual Emission (Mt a−1) | Spatial Resolution |
---|---|---|
MEIC | 150 | 0.25° × 0.25° |
ODIAC | 322 | 1 km × 1 km |
LOCAL | 126 | 4 km × 4 km |
District | Emission (kt/d/km2) | ∆XCO2 (ppm) | Population Density (10,000 Persons/km2) | ||||
---|---|---|---|---|---|---|---|
MEIC | LOCAL | ODIAC | MEIC | LOCAL | ODIAC | ||
Center | 0.21 | 0.11 | 0.95 | −1.26 | −1.32 | −0.10 | 2.19 |
MH | 0.19 | 0.16 | 0.37 | 0.99 | 0.63 | 1.98 | 0.73 |
BS | 0.17 | 0.42 | 0.71 | −0.90 | −0.93 | −0.36 | 0.84 |
JD | 0.12 | 0.05 | 0.19 | −0.99 | −0.89 | −0.15 | 0.41 |
PD | 0.07 | 0.06 | 0.22 | 0.35 | 0.16 | 1.39 | 0.48 |
JS | 0.04 | 0.11 | 0.15 | 1.32 | 1.38 | 1.85 | 0.14 |
SJ | 0.08 | 0.04 | 0.14 | 0.39 | 0.18 | 1.19 | 0.33 |
QP | 0.04 | 0.02 | 0.09 | −0.70 | −0.72 | 0.28 | 0.19 |
FX | 0.03 | 0.02 | 0.09 | 1.93 | 1.72 | 2.70 | 0.17 |
CM | 0.03 | 0.01 | 0.01 | −0.49 | −0.61 | −0.03 | 0.05 |
Average | 0.10 | 0.10 | 0.29 | 0.06 | −0.04 | 0.87 | |
SD | 0.07 | 0.12 | 0.30 | 1.09 | 1.03 | 1.08 | |
CV | 69.73 | 122.38 | 104.95 | 1824.80 | −2580.86 | 124.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Li, Y.; Jiang, F.; Feng, S.; Wang, H.; Wang, J.; Wu, M.; Ju, W. Spatial Distribution of Urban Anthropogenic Carbon Emissions Revealed from the OCO-3 Snapshot XCO2 Observations: A Case Study of Shanghai. Remote Sens. 2025, 17, 1087. https://doi.org/10.3390/rs17061087
Jia M, Li Y, Jiang F, Feng S, Wang H, Wang J, Wu M, Ju W. Spatial Distribution of Urban Anthropogenic Carbon Emissions Revealed from the OCO-3 Snapshot XCO2 Observations: A Case Study of Shanghai. Remote Sensing. 2025; 17(6):1087. https://doi.org/10.3390/rs17061087
Chicago/Turabian StyleJia, Mengwei, Yingsong Li, Fei Jiang, Shuzhuang Feng, Hengmao Wang, Jun Wang, Mousong Wu, and Weimin Ju. 2025. "Spatial Distribution of Urban Anthropogenic Carbon Emissions Revealed from the OCO-3 Snapshot XCO2 Observations: A Case Study of Shanghai" Remote Sensing 17, no. 6: 1087. https://doi.org/10.3390/rs17061087
APA StyleJia, M., Li, Y., Jiang, F., Feng, S., Wang, H., Wang, J., Wu, M., & Ju, W. (2025). Spatial Distribution of Urban Anthropogenic Carbon Emissions Revealed from the OCO-3 Snapshot XCO2 Observations: A Case Study of Shanghai. Remote Sensing, 17(6), 1087. https://doi.org/10.3390/rs17061087