An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment
Abstract
:1. Introduction
2. Study Area
2.1. Coastline Setting
2.2. Bevano River Mouth Evolution
2.3. Washover Fans’ Initial Formation and Development
3. Materials and Methods
3.1. Data Preparation (Pre-Processing)
3.2. Dem of Difference (Post-Processing)
3.3. Storm Data Integration
3.4. DSAS (Digital Shoreline Analysis System) Analyses, Beach Profiles and Storm Impact
- RHIGH/DHIGH is between 0 and DLOW/DHIGH: the storm is not able to impact the dune system (swash regime).
- RHIGH/DHIGH is between DLOW/DHIGH and 1: the impact category is the collision regime.
- RHIGH/DHIGH > 1 and RLOW/DHIGH < 1: the impact category is the overwash regime.
- RHIGH/DHIGH > 1 and RLOW/DHIGH > 1: inundation is expected to occur.
4. Results
4.1. Aerial and Satellite Image Analysis
4.2. Storms Impact
4.3. Volumes and Shorelines Change
4.3.1. Changes Pre- and Post-Intervention: 2004–2012
4.3.2. Natural Evolution After the Intervention: 2012–2019
4.4. Beach Profiles Variations
5. Discussion
- Before 2006: River spit formation and northward migration of the mouth (no washover fans);
- 2006–2007: Intervention to close the natural river mouth, opening of the new outlet, and dune reconstruction/revegetation;
- Storm impact in 2008 and initial washover fans formation [77];
- 2008–2019: Washover fans accretion (up to 2015); dune accretion and sediment deposition in washover throats; vegetation starts to colonise the washover fans;
- After 2019: Barrier and washover system stabilisation (vegetation cover increase).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capobianco, M.; Stive, M.J.F. Soft intervention technology as a tool for integrated coastal zone management. J. Coast. Conserv. 2000, 6, 33–40. [Google Scholar] [CrossRef]
- Slobbe, E.; Vriend, H.J.; Aarninkhof, S.; Lulofs, K.; Vries, M.; Dircke, P. Building with nature: In search of resilient storm surge protection strategies. Nat. Hazards 2013, 65, 947–966. [Google Scholar] [CrossRef]
- Masselink, G.; Lazarus, E.D. Defining coastal resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef]
- Martínez, M.L.; Hesp, P.A.; Gallego-Fernández, J.B. Coastal Dune Restoration: Trends and Perspectives. In Restoration of Coastal Dunes; Martínez, M.L., Gallego-Fernández, J.B., Hesp, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 323–339. [Google Scholar] [CrossRef]
- Lawlor, P.; Jackson, D.W.T. A Nature-Based Solution for Coastal Foredune Restoration: The Case Study of Maghery, County Donegal, Ireland. In Human-Nature Interactions; Misiune, I., Depellegrin, D., Egarter Vigl, L., Eds.; Springer: Cham, Switzerland, 2022; pp. 417–429. [Google Scholar] [CrossRef]
- Johnston, K.K.; Dugan, J.E.; Hubbard, D.M.; Emery, K.A.; Grubbs, M.W. Using dune restoration on an urban beach as a coastal resilience approach. Front. Mar. Sci. 2023, 10, 1187488. [Google Scholar] [CrossRef]
- Zainuddin, S.N.H.; Ariffin, E.H.; Taslin, P.N.A.; Dong, W.S.; Ramli, M.Z.; Abdul Maulud, K.N.; Awang, N.A.; Nadzri, M.I.; Ibrahim, M.S.I.; Ratnayake, A.S. Sand dune restoration as sustainable natural architectural design for coastal protection along seasonal storm-prone beach. Results Eng. 2024, 22, 102149. [Google Scholar] [CrossRef]
- Reis, C.S.; Antunes do Carmo, J.; Freitas, H. Leirosa Sand Dunes: A case study on coastal protection. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Balkema: Leiden, The Netherlands, 2005; pp. 1469–1474. [Google Scholar] [CrossRef]
- Jenks, G.K. Restoring the natural functional capacity of coastal dune ecosystems: Utilising research records for New Zealand littoral refurbishment as a proxy for analogous global responses. J. Coast. Conserv. 2018, 22, 623–665. [Google Scholar] [CrossRef]
- Hébert, C.; Paulin, A.; Tétégan Marion, S. Monitoring of Dune Restoration Techniques to Protect Against Coastal Erosion and Flooding: Case Study of a Beach in Le Goulet (N.B.). SSRN 2022, 20. [Google Scholar] [CrossRef]
- Mulder, J.P.M.; Tonnon, P.K. “Sand Engine”: Background and Design of a Mega-Nourishment Pilot in the Netherlands. Int. Conf. Coastal. Eng. 2011, 35, 1–10. [Google Scholar] [CrossRef]
- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A new alternative to saving our beaches from sea-level rise: The sand engine. J. Coast. Res. 2013, 29, 1001–1008. [Google Scholar] [CrossRef]
- de Schipper, M.A.; de Vries, S.; Ruessink, G.; de Zeeuw, R.C.; Rutten, J.; van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef]
- Roest, B.; de Vries, S.; de Schipper, M.; Aarninkhof, S. Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics. J. Mar. Sci. Eng. 2021, 9, 37. [Google Scholar] [CrossRef]
- Luijendijk, A.P.; Ranasinghe, R.; de Schipper, M.A.; Huisman, B.A.; Swinkels, C.M.; Walstra, D.J.R.; Stive, M.J.F. The initial morphological response of the Sand Engine: A process-based modelling study. Coast. Eng. 2017, 119, 1–14. [Google Scholar] [CrossRef]
- van Westen, B.; Luijendijk, A.P.; de Vries, S.; Cohn, N.; Leijnse, T.W.B.; de Schipper, M.A. Predicting marine and aeolian contributions to the Sand Engine’s evolution using coupled modelling. Coast. Eng. 2024, 188, 104444. [Google Scholar] [CrossRef]
- Orams, M.B. Sandy beaches as a tourism attraction: A management challenge for the 21st century. J. Coast. Res. 2003, 35, 74–84. [Google Scholar]
- King, P.; Symes, D. Potential loss in GNP and GSP from a failure to maintain California’s beaches. Shore Beach 2004, 72, 3–8. [Google Scholar]
- Brown, S.; Nicholls, R.J.; Woodroffe, C.D.; Hanson, S.; Hinkel, J.; Kebede, A.S.; Neumann, B.; Vafeidis, A.T. Chapter 5: Sea-level rise impacts and responses: A global perspective in Coastal Hazards. In Coastal Research Library; Finkl, C.W., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 1000. [Google Scholar] [CrossRef]
- Bryant, D.B.; Bryant, M.A.; Sharp, J.A.; Bell, G.L.; Moore, C. The response of vegetated dunes to wave attack. Coast. Eng. 2019, 152, 103506. [Google Scholar] [CrossRef]
- Sloss, C.R.; Shepherd, M.; Hesp, P. Coastal Dunes: Geomorphology. Nat. Educ. 2012, 3, 2. [Google Scholar]
- Yousefi Lalimi, F.; Silvestri, S.; Moore, L.J.; Marani, M. Coupled topographic and vegetation patterns in coastal dunes: Remote sensing observations and ecomorphodynamic implications. J. Geophys. Res. Biogeosci. 2017, 122, 119–130. [Google Scholar] [CrossRef]
- Donnelly, C.; Kraus, N.; Larson, M. State of Knowledge on Measurement and Modeling of Coastal Overwash. J. Coast. Res. 2006, 224, 965–991. [Google Scholar] [CrossRef]
- Matias, A.; Ferreira, O.; Vila-Concejo, A.; Garcia, T.; Alveirinho Dias, J. Classification of washover dynamics in barrier islands. Geomorphology 2008, 97, 655–674. [Google Scholar] [CrossRef]
- Matias, A.; Masselink, G. Overwash Processes: Lessons from Fieldwork and Laboratory Experiments. In Coastal Storms: Processes and Impacts; Ciavola, P., Coco, G., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 175–194. [Google Scholar] [CrossRef]
- Pouzet, P.; Idier, D. A composite approach to document a century of overwash events in a high tide environment of southern Brittany, France. Estuar. Coast. Shelf Sci. 2024, 298, 108626. [Google Scholar] [CrossRef]
- Byrnes, M.R.; Gingerich, K.J. Cross-island profile response to Hurricane Gloria. In Proceedings Coastal Sediments ’87; ASCE: New Orleans, LA, USA, 1987; pp. 1486–1502. [Google Scholar]
- Dolan, R.; Godfrey, P. Effects of Hurricane Ginger on the barrier islands of North Carolina. Geol. Soc. Am. Bull. 1973, 84, 1329–1334. [Google Scholar] [CrossRef]
- Houser, C. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology 2008, 100, 223–240. [Google Scholar] [CrossRef]
- Houser, C.; Wernette, P.; Rentschlar, E.; Jones, H.; Hammond, B.; Trimble, S. Post-storm beach and dune recovery: Implications for barrier island resilience. Geomorphology 2015, 234, 54–63. [Google Scholar] [CrossRef]
- Rodriguez, A.B.; Theuerkauf, E.J.; Ridge, J.T.; VanDusen, B.M.; Fegley, S.R. Long-term washover fan accretion on a transgressive barrier island challenges the assumption that paleotempestites represent individual tropical cyclones. Sci. Rep. 2020, 10, 19755. [Google Scholar] [CrossRef]
- Morton, R.A.; Gonzalez, J.L.; Lopez, G.I.; Correa, I.D. Frequent non-storm washover of barrier islands, Pacific coast of Columbia. J. Coast. Res. 2000, 16, 82–87. [Google Scholar]
- Sallenger, A.H., Jr. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Donnelly, C.; Kraus, N.C.; Larson, M. Coastal Overwash; Part 1: Overview of Processes. Regional Sediment Management Demonstration Program Technical Note, ERDC/RSM-TN-14; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2004; Available online: https://apps.dtic.mil/sti/tr/pdf/ADA602107.pdf (accessed on 23 January 2025).
- Nordstrom, K.F.; Gamper, U.; Fontolan, G.; Bezzi, A.; Jackson, N.L. Characteristics of Coastal Dune Topography and Vegetation in Environments Recently Modified Using Beach Fill and Vegetation Plantings, Veneto, Italy. Environ. Manag. 2009, 44, 1121–1135. [Google Scholar] [CrossRef]
- Giambastiani, B.M.S.; Greggio, N.; Sistilli, F.; Fabbri, S.; Scarelli, F.; Candiago, S.; Anfossi, G.; Lipparini, C.A.; Cantelli, L.; Antonellini, M.; et al. RIGED-RA project—Restoration and management of Coastal Dunes in the Northern Adriatic Coast, Ravenna Area—Italy. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 052038. [Google Scholar] [CrossRef]
- Bezzi, A.; Pillon, S.; Martinucci, D.; Fontolan, G. Inventory and conservation assessment for the management of coastal dunes, Veneto coasts, Italy. J. Coast. Conserv. 2018, 22, 503–518. [Google Scholar] [CrossRef]
- Della Bella, A.; Fantinato, E.; Scarton, F.; Buffa, G. Mediterranean developed coasts: What future for the foredune restoration? J. Coast. Conserv. 2021, 25, 49. [Google Scholar] [CrossRef]
- Faelga, R.; Cantelli, L.; Silvestri, S.; Giambastiani, B. Dune belt restoration effectiveness assessed by UAV topographic surveys (northern Adriatic coast, Italy). Biogeosciences 2023, 20, 4841–4855. [Google Scholar] [CrossRef]
- Della Bella, A.; Del Vecchio, S.; Fantinato, E.; Buffa, G. Coastal Dune Restoration: A Checklist Approach to Site Selection. Land 2024, 13, 135. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Armaroli, C.; Jackson, N.L.; Ciavola, P. Opportunities and constraints for managed retreat on exposed sandy shores: Examples from Emilia-Romagna, Italy. Ocean Coast. Manag. 2015, 104, 11–21. [Google Scholar] [CrossRef]
- Casagrande, G.; Bezzi, A.; Fracaros, S.; Martinucci, D.; Pillon, S.; Salvador, P.; Sponza, S.; Fontolan, G. Quantifying Transgressive Coastal Changes Using UAVs: Dune Migration, Overwash Recovery, and Barrier Flooding Assessment and Interferences with Human and Natural Assets. J. Mar. Sci. Eng. 2023, 11, 1044. [Google Scholar] [CrossRef]
- Klemas, V.V. Remote Sensing of Coastal Ecosystems and Environments. In Coastal Wetlands: Alteration and Remediation; Springer: Berlin/Heidelberg, Germany; IEEE: Piscataway, NJ, USA, 2014; Volume 9, pp. 3–30. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Ryan, J.C.; Hubbard, A.L.; Box, J.; Todd, J.; Christoffersen, P.; Carr, J.R.; Holt, T.O.; Snooke, N. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Dąbski, M.; Zmarz, A.; Pabjanek, P.; Korczak-Abshire, M.; Karsznia, I.; Chwedorzewska, K.J. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology 2017, 290, 29–38. [Google Scholar] [CrossRef]
- Duo, E.; Trembanis, A.C.; Dohner, S.; Grottoli, E.; Ciavola, P. Local-scale post-event assessments with GPS and UAV-based quick-response surveys: A pilot case from the Emilia–Romagna (Italy) coast. Nat. Hazards Earth Syst. Sci. 2018, 18, 2969–2989. [Google Scholar] [CrossRef]
- Giordano, C.M.; Girelli, V.A.; Lambertini, A.; Tini, M.A.; Zanutta, A. UAV Data Collection Co-Registration: LiDAR and Photogrammetric Surveys for Coastal Monitoring. Drones 2025, 9, 49. [Google Scholar] [CrossRef]
- Pranavam Ayyappan Pillai, U.; Pinardi, N.; Federico, I.; Causio, S.; Trotta, F.; Unguendoli, S.; Valentini, A. Wind-wave characteristics and extremes along the Emilia-Romagna coast. Nat. Hazards Earth Syst. Sci. 2022, 22, 3413–3433. [Google Scholar] [CrossRef]
- Brunelli, V. Analisi Evolutiva del Sistema Spiaggia-Duna in Emilia-Romagna: Processi Morfodinamici e Trasporto Eolico. Ph.D. Thesis, Università degli Studi di Ferrara, Ferrara, Italy, 2010; p. 327. Available online: https://hdl.handle.net/11392/2389172 (accessed on 20 January 2025).
- Corbau, C.; Simeoni, U.; Melchiorre, M.; Rodella, I.; Utizi, K. Regional variability of coastal dunes observed along the Emilia-Romagna littoral, Italy. Aeolian Res. 2015, 18, 169–183. [Google Scholar] [CrossRef]
- Zingg, A.W. Wind tunnel studies of movement of sedimentary material. Proc. 5th Hydraul. Conf. Bull. 1953, 34, 111–134. [Google Scholar]
- Arpae. Stato del Litorale Emiliano-Romagnolo al 2018 Erosione e Interventi di Difesa; ARPAE Emilia-Romagna: Bologna, Italy, 2018; ISBN 978-88-87854-48-0. Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/argomenti/difesa-della-costa/stato-del-litorale-emiliano-romagnolo-allanno-2007-e-piano-decennale-di-gestione/stato-litorale-slem-arpae-2020-web-leggera.pdf/@@download/file (accessed on 23 January 2025).
- Katalinić, M.; Parunov, J. Wave statistics in the Adriatic Sea based on 24 years of satellite measurements. Ocean Eng. 2018, 158, 378–388. [Google Scholar] [CrossRef]
- Armaroli, C.; Ciavola, P.; Masina, M.; Perini, L. Run-up computation behind emerged breakwaters for marine storm risk assessment. J. Coast. Res. 2009, 56, 1612–1616. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/ICS2009_runup.pdf/@@download/file (accessed on 23 January 2025).
- Masina, M.; Ciavola, P. Analisi dei livelli marini estremi e delle acque alte lungo il litorale ravennate. Studi Costieri 2011, 18, 84–98. Available online: https://www.researchgate.net/publication/285758342 (accessed on 23 January 2025). (In Italian).
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Taramelli, A.; Di Matteo, L.; Ciavola, P.; Guadagnano, F.; Tolomei, C. Temporal evolution of patterns and processes related to subsidence of the coastal area surrounding the Bevano River mouth (Northern Adriatic)–Italy. Ocean Coast. Manag. 2015, 108, 74–88. [Google Scholar] [CrossRef]
- Armaroli, C.; Ciavola, P.; Perini, L.; Calabrese, L.; Lorito, S.; Valentini, A.; Masina, M. Critical storm thresholds for significant morphological changes and damage along the Emilia-Romagna coastline, Italy. Geomorphology 2012, 143–144, 34–51. [Google Scholar] [CrossRef]
- Armaroli, C.; Grottoli, E.; Harley, M.D.; Ciavola, P. Beach morphodynamics and types of foredune erosion generated by storms along the Emilia-Romagna coastline, Italy. Geomorphology 2013, 199, 22–35. [Google Scholar]
- Ciavola, P.; Billi, P.; Armaroli, C.; Balouin, Y.; Preciso, E.; Salemi, E. Valutazione della morfodinamica di foce del Torrente Bevano (RA): Il ruolo del trasporto solido di fondo—Morphodynamics of the Bevano Stream outlet: The role of bedload yield. Geol. Tec. Ambient. 2005, 1, 41–57. [Google Scholar]
- Balouin, Y.; Ciavola, P.; Anfuso, G.; Armaroli, C.; Corbau, C.; Tessari, U. Morphodynamics of intertidal sand bars: Field studies in the Northern Adriatic, NE Italy. J. Coast. Res. 2006, I, 323–328. [Google Scholar]
- Balouin, Y.; Ciavola, P.; Armaroli, C. Sediment transport patterns and coastal evolution at Lido di Dante beach, Adriatic Sea. In Proceedings Coastal Dynamics; ASCE: New York, NY, USA, 2006; Volume II. [Google Scholar]
- Perini, L.; Luciani, P.; Calabrese, L. Indicatori di suscettibilità costiera ai fenomeni di erosione e inondazione marina. In Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli; Regione Emilia-Romagna: Bologna, Italy, 2019; Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf?set_language=it&post_path=/report_indicatori_2019_pdf/%40%40download/file/report_indicatori_2019_.pdf (accessed on 20 January 2025).
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar]
- Merloni, N.; Speranza, M. La biodiversità: Le specie vegetali. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 1.3; pp. 10–11. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Speranza, M.; Ferroni, L.; Pritoni, G. L’intervento di vegetalizzazione della duna. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 3; pp. 26–29. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Perini, L.; Calabrese, L. Le caratteristiche e l’evoluzione dell’area di foce Bevano. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 1.1; pp. 4–7. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Calabrese, L.; Luciani, P.; Perini, L. Gli impatti delle mareggiate tra foce Fiumi Uniti e foce Fiume Savio. In Foce Bevano: Stato Dell’area Naturale Protetta e Prospettive per una sua Gestione Integrata e Sostenibile; Montanari, R., Marasmi, C., Eds.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2013; Chapter 3.2; pp. 37–45. Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/servizi/pubblicazioni/servizio-difesa-del-suolo-della-costa-e-bonifica/pdf/foce-bevano/@@download/file/Bevano%20-%20stato%20dell'area%20naturale%20protetta.pdf (accessed on 21 January 2025).
- Gardelli, M.; Caleffi, S.; Ciavola, P. Evoluzione morfodinamica della foce del Torrente Bevano. Studi Costieri 2007, 13, 53–74. (In Italian) [Google Scholar]
- Balouin, Y.; Ciavola, P.; Michel, D. Support of subtidal tracer studies to quantify the complex morphodynamics of a river outlet: The Bevano, NE Italy. J. Coast. Res. 2006, III, 602–607. [Google Scholar]
- Montanari, R. Le problematiche idrauliche a ambientali. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 2.1; pp. 19–22. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-emare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Miccoli, C.; Ceroni, M.; Castelli, M.; Malavolta, E.; Marasmi, C. Il progetto di riqualificazione funzionale nel tratto costiero in corrispondenza di foce Bevano. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 2.3; pp. 19–22. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Ciavola, P. La morfodinamica della foce dopo l’intervento. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 4.1; pp. 17–18. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf (accessed on 15 November 2024).
- Speranza, M.; Ferroni, L.; Pritoni, G. La copertura vegetale. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 5.3; pp. 39–40. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Sedrati, M.; Ciavola, P.; Armaroli, C. Morphodynamic evolution of a microtidal barrier; the role of overwash: Bevano, Northern Adriatic Sea. J. Coast. Res. 2011, 696–700. [Google Scholar]
- Harris, M.; Brock, J.; Nayegandhi, A.; Duffy, M. Extracting Shorelines from NASA Airborne Topographic Lidar-Derived Digital Elevation Models; Geological Survey Open-file Report 2005-1427; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Robertson, W.; Whitman, D.; Zhang, K.; Leatherman, S.P. Mapping shoreline position using airborne laser altimetry. J. Coast. Res. 2004, 20, 884–892. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Proc. Land. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Duo, E.; Fabbri, S.; Grottoli, E.; Ciavola, P. Uncertainty of Drone-Derived DEMs and Significance of Detected Morphodynamics in Artificially Scraped Dunes. Remote Sens. 2021, 13, 1823. [Google Scholar] [CrossRef]
- Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Sallenger, A.H., Jr.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; et al. Evaluation of Airborne Topographic Lidar for Quantifying Beach Change. J. Coast. Res. 2003, 19, 125–133. [Google Scholar]
- Arpae. Rapporto Idro-Meteo-Clima 2023; Regione Emilia-Romagna: Bologna, Italy, 2023; ISBN 978-88-87854-59-6. Available online: https://www.regione.emilia-romagna.it/urp/novita-editoriali/rapporto-idro-meteo-clima-2023 (accessed on 23 January 2025).
- Martzikos, N.T.; Prinos, P.E.; Memos, C.D.; Tsoukala, V.K. Statistical analysis of Mediterranean coastal storms. Oceanologia 2021, 63, 133–148. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jiménez, J.A. Factors Controlling Vulnerability to Storm Impacts Along the Catalonian Coast. Coast. Eng. 2005, 3087–3099. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Farris, A.S.; Kratzmann, M.G.; Bartlett, M.K.; Ergul, A.; McAndrews, J.; Cibaj, R.; Zichichi, J.L.; Thieler, E.R. Digital Shoreline Analysis System; Version 6.0; U.S. Geological Survey: Reston, VA, USA, 2024. Available online: https://code.usgs.gov/cch/dsas/-/tree/v6.0.168 (accessed on 20 January 2025).
- Holman, R.A. Extreme value statistics for wave runup on a natural beach. Coast. Eng. 1986, 9, 527. [Google Scholar]
- Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2020, 188, 105075. [Google Scholar] [CrossRef]
- Harley, M.D.; Valentini, A.; Armaroli, C.; Perini, L.; Calabrese, L.; Ciavola, P. Can an early warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, Northern Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 209–222. [Google Scholar] [CrossRef]
- Ciavola, P. La morfodinamica della foce prima dell’intervento. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 2.2; pp. 17–18. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf (accessed on 15 November 2024).
- Aagard, T.; Kroon, T. Decadal behaviour of a washover fan, Skallingen Denmark. Earth Surf. Process. Land. 2019, 44, 1755–1768. [Google Scholar] [CrossRef]
- Houser, C. Alongshore variation in the morphology of coastal dunes: Implications for storm response. Geomorphology 2013, 199, 48–61. [Google Scholar] [CrossRef]
- Ciavola, P.; Tondello, M.; Carniel, S.; Sclavo, M. Artificial deviation of a small inlet (Bevano, Northern Italy): Prediction of future evolution and planning of management strategies using open-source community coastal models. Coast. Eng. Proc. 2012, 1, 1–13. [Google Scholar] [CrossRef]
- Matias, A.; Ferreira, Ó.; Vila-Concejo, A.; Morris, B.; Dias, J. Short-term morphodynamics of non-storm overwash. Mar. Geo. 2010, 274, 69–84. [Google Scholar] [CrossRef]
- Feagin, R.A.; Furman, M.; Salgado, K.; Martinez, M.L.; Innocenti, R.A.; Eubanks, K.; Figlus, J.; Huff, T.P.; Sigren, J.; Silva, R. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Grottoli, E.; Cilli, S.; Ciavola, P.; Armaroli, C. Sedimentation at River Mouths bounded by Coastal Structures: A Case Study along the Emilia-Romagna Coastline, Italy. J. Coast. Res. 2020, 95, 505–510. [Google Scholar] [CrossRef]
- Cilli, S.; Billi, P.; Schippa, L.; Grottoli, E.; Ciavola, P. Bedload transport and dune bedforms characteristics in sand-bed rivers supplying a retreating beach of the northern Adriatic Sea (Italy). J. Hydrol. Reg. 2021, 37, 100894. [Google Scholar] [CrossRef]
- Vittuari, L.; Speranza, M.; Ferroni, L.; Mandanici, E.; Pritoni, G. Evoluzione della copertura vegetale della duna ricostruita e sua relazione con le variazioni morfologiche superficiali. In Foce Bevano: Stato Dell’area Naturale Protetta e Prospettive per una sua Gestione Integrata E Sostenibile; Montanari, R., Marasmi, C., Eds.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2013; Chapter 3.4; Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/servizi/pubblicazioni/servizio-difesa-del-suolo-della-costa-e-bonifica/pdf/foce-bevano/@@download/file/Bevano%20-%20stato%20dell'area%20naturale%20protetta.pdf (accessed on 21 January 2025).
Date | Type of Data | Name | Source | Resolution (m) | Scale |
---|---|---|---|---|---|
1976 | Orthophoto | Quadro di unione Volo RER 1976-78 | AGEA-RER | 0.3 | 10,000 |
September 2004 | DTM | LIDAR 2004 della Costa e del Fiume Savio | RER | 1 | 2000 |
2005 | Orthophoto | Quadro di unione AGEA 2005–2006 | AGEA-RER | 0.5 | 5000 |
June–August 2008 | Orthophoto | Ortofoto AGEA 2008 | AGEA-RER | 0.5 | 10,000 |
May–June 2011 | Orthophoto | Ortofoto AGEA 2011 | AGEA-RER | 0.5 | 10,000 |
July 2012 | DTM | DTM2012-Costa-RER | RER | 1 | / |
13 March 2015 | Satellite images | / | Google Earth | 0.5 | / |
30 April 2017 | Satellite images | / | Google Earth | 0.5 | / |
February 2019 | DTM | LIDAR 2019 della Costa | RER | 1 | 5000 |
April 2020 | Orthophoto | Ortofoto AGEA 2020 RGB | AGEA-RER | 0.2 | 10,000 |
July 2023 | Orthophoto | Ortofoto RER 2023-24 RGB | RER | 0.2 | 10,000 |
Number of Storms | Total Duration [h] | Mean Duration [h] | Total Energy [m2 h] | Max Hs max [m] | Max Lev Max During Storms [m] | Max. Duration [h] | |
---|---|---|---|---|---|---|---|
2008 | 18 | 450.5 | 25.0 | 1409.2 | 3.19 | 0.87 | 75.50 |
2009 | 19 | 302.5 | 15.9 | 943.3 | 2.96 | 0.84 | 50.00 |
2010 | 17 | 316.0 | 18.6 | 1079.3 | 3.91 | 0.87 | 90.00 |
2011 | 14 | 379.5 | 27.1 | 1339.1 | 3.92 | 0.66 | 76.00 |
2012 | 14 | 277.0 | 19.8 | 1021.6 | 3.23 | 1.18 | 39.50 |
2013 | 27 | 481.5 | 17.8 | 1826.1 | 3.79 | 1.02 | 64.00 |
2014 | 11 | 244.0 | 22.2 | 891.1 | 3.52 | 0.98 | 54.00 |
2015 | 28 | 652.5 | 23.3 | 2483.5 | 4.54 | 1.31 | 90.50 |
2016 | 23 | 404.0 | 17.6 | 1379.1 | 3.11 | 0.93 | 43.00 |
2017 | 18 | 397.0 | 22.1 | 1771.0 | 3.68 | 0.96 | 101.00 |
2018 | 17 | 523.0 | 30.8 | 1860.8 | 3.10 | 1.06 | 143.50 |
2019 | 23 | 470.0 | 20.4 | 1292.5 | 3.60 | 1.22 | 66.50 |
2020 | 16 | 461.0 | 28.8 | 1620.2 | 3.11 | 1.06 | 125.00 |
2021 | 22 | 433.0 | 19.7 | 1421.3 | 3.42 | 0.92 | 111.50 |
2022 | 15 | 297.5 | 19.8 | 1095.3 | 3.67 | 0.80 | 53.50 |
2023 | 20 | 505.5 | 25.3 | 1827.1 | 3.91 | 1.16 | 81.00 |
Year | Month | Day | Hs max | Direction | Max Water Level @ Hs max | Overwash | Inundation |
---|---|---|---|---|---|---|---|
2012 | 10 | 31 | 2.43 | 87.2 | 1.01 | x | |
2013 | 2 | 2 | 3.68 | 53.4 | 0.73 | x | |
2013 | 11 | 10 | 3.79 | 64.7 | 0.92 | x | |
2015 | 2 | 5 | 4.54 | 63.3 | 1.22 | x | |
2022 | 4 | 9 | 3.55 | 35.2 | 0.59 | x | |
2023 | 1 | 20 | 3.91 | 78 | 0.75 | x | |
2023 | 5 | 16 | 3.23 | 61 | 0.83 | x |
Time Interval | Volume of Surface Lowering (TCD) [m3] | Volume of Surface Raising (TCD) [m3] | Net Volume Difference (Raw) [m3] | Net Volume Difference (TCD) [m3] |
---|---|---|---|---|
2004–2012 | 1838 ± 608 | 29,879 ± 5361 | 28,093 | 28,041 ± 5395 |
2012–2019 | 4943 ± 1763 | 7072 ± 2611 | 2039 | 2129 ± 3150 |
2004–2019 | 2331 ± 894 | 32,539 ± 4680 | 30,142 | 30,208 ± 4764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armaroli, C.; Brunetta, R.; Ciavola, P. An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment. Remote Sens. 2025, 17, 1072. https://doi.org/10.3390/rs17061072
Armaroli C, Brunetta R, Ciavola P. An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment. Remote Sensing. 2025; 17(6):1072. https://doi.org/10.3390/rs17061072
Chicago/Turabian StyleArmaroli, Clara, Riccardo Brunetta, and Paolo Ciavola. 2025. "An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment" Remote Sensing 17, no. 6: 1072. https://doi.org/10.3390/rs17061072
APA StyleArmaroli, C., Brunetta, R., & Ciavola, P. (2025). An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment. Remote Sensing, 17(6), 1072. https://doi.org/10.3390/rs17061072