An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment
Abstract
1. Introduction
2. Study Area
2.1. Coastline Setting
2.2. Bevano River Mouth Evolution
2.3. Washover Fans’ Initial Formation and Development
3. Materials and Methods
3.1. Data Preparation (Pre-Processing)
3.2. Dem of Difference (Post-Processing)
3.3. Storm Data Integration
3.4. DSAS (Digital Shoreline Analysis System) Analyses, Beach Profiles and Storm Impact
- RHIGH/DHIGH is between 0 and DLOW/DHIGH: the storm is not able to impact the dune system (swash regime).
- RHIGH/DHIGH is between DLOW/DHIGH and 1: the impact category is the collision regime.
- RHIGH/DHIGH > 1 and RLOW/DHIGH < 1: the impact category is the overwash regime.
- RHIGH/DHIGH > 1 and RLOW/DHIGH > 1: inundation is expected to occur.
4. Results
4.1. Aerial and Satellite Image Analysis
4.2. Storms Impact
4.3. Volumes and Shorelines Change
4.3.1. Changes Pre- and Post-Intervention: 2004–2012
4.3.2. Natural Evolution After the Intervention: 2012–2019
4.4. Beach Profiles Variations
5. Discussion
- Before 2006: River spit formation and northward migration of the mouth (no washover fans);
- 2006–2007: Intervention to close the natural river mouth, opening of the new outlet, and dune reconstruction/revegetation;
- Storm impact in 2008 and initial washover fans formation [77];
- 2008–2019: Washover fans accretion (up to 2015); dune accretion and sediment deposition in washover throats; vegetation starts to colonise the washover fans;
- After 2019: Barrier and washover system stabilisation (vegetation cover increase).
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Capobianco, M.; Stive, M.J.F. Soft intervention technology as a tool for integrated coastal zone management. J. Coast. Conserv. 2000, 6, 33–40. [Google Scholar] [CrossRef]
- Slobbe, E.; Vriend, H.J.; Aarninkhof, S.; Lulofs, K.; Vries, M.; Dircke, P. Building with nature: In search of resilient storm surge protection strategies. Nat. Hazards 2013, 65, 947–966. [Google Scholar] [CrossRef]
- Masselink, G.; Lazarus, E.D. Defining coastal resilience. Water 2019, 11, 2587. [Google Scholar] [CrossRef]
- Martínez, M.L.; Hesp, P.A.; Gallego-Fernández, J.B. Coastal Dune Restoration: Trends and Perspectives. In Restoration of Coastal Dunes; Martínez, M.L., Gallego-Fernández, J.B., Hesp, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 323–339. [Google Scholar] [CrossRef]
- Lawlor, P.; Jackson, D.W.T. A Nature-Based Solution for Coastal Foredune Restoration: The Case Study of Maghery, County Donegal, Ireland. In Human-Nature Interactions; Misiune, I., Depellegrin, D., Egarter Vigl, L., Eds.; Springer: Cham, Switzerland, 2022; pp. 417–429. [Google Scholar] [CrossRef]
- Johnston, K.K.; Dugan, J.E.; Hubbard, D.M.; Emery, K.A.; Grubbs, M.W. Using dune restoration on an urban beach as a coastal resilience approach. Front. Mar. Sci. 2023, 10, 1187488. [Google Scholar] [CrossRef]
- Zainuddin, S.N.H.; Ariffin, E.H.; Taslin, P.N.A.; Dong, W.S.; Ramli, M.Z.; Abdul Maulud, K.N.; Awang, N.A.; Nadzri, M.I.; Ibrahim, M.S.I.; Ratnayake, A.S. Sand dune restoration as sustainable natural architectural design for coastal protection along seasonal storm-prone beach. Results Eng. 2024, 22, 102149. [Google Scholar] [CrossRef]
- Reis, C.S.; Antunes do Carmo, J.; Freitas, H. Leirosa Sand Dunes: A case study on coastal protection. In Maritime Transportation and Exploitation of Ocean and Coastal Resources; Balkema: Leiden, The Netherlands, 2005; pp. 1469–1474. [Google Scholar] [CrossRef]
- Jenks, G.K. Restoring the natural functional capacity of coastal dune ecosystems: Utilising research records for New Zealand littoral refurbishment as a proxy for analogous global responses. J. Coast. Conserv. 2018, 22, 623–665. [Google Scholar] [CrossRef]
- Hébert, C.; Paulin, A.; Tétégan Marion, S. Monitoring of Dune Restoration Techniques to Protect Against Coastal Erosion and Flooding: Case Study of a Beach in Le Goulet (N.B.). SSRN 2022, 20. [Google Scholar] [CrossRef]
- Mulder, J.P.M.; Tonnon, P.K. “Sand Engine”: Background and Design of a Mega-Nourishment Pilot in the Netherlands. Int. Conf. Coastal. Eng. 2011, 35, 1–10. [Google Scholar] [CrossRef]
- Stive, M.J.F.; de Schipper, M.A.; Luijendijk, A.P.; Aarninkhof, S.G.J.; van Gelder-Maas, C.; van Thiel de Vries, J.S.M.; de Vries, S.; Henriquez, M.; Marx, S.; Ranasinghe, R. A new alternative to saving our beaches from sea-level rise: The sand engine. J. Coast. Res. 2013, 29, 1001–1008. [Google Scholar] [CrossRef]
- de Schipper, M.A.; de Vries, S.; Ruessink, G.; de Zeeuw, R.C.; Rutten, J.; van Gelder-Maas, C.; Stive, M.J.F. Initial spreading of a mega feeder nourishment: Observations of the Sand Engine pilot project. Coast. Eng. 2016, 111, 23–38. [Google Scholar] [CrossRef]
- Roest, B.; de Vries, S.; de Schipper, M.; Aarninkhof, S. Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics. J. Mar. Sci. Eng. 2021, 9, 37. [Google Scholar] [CrossRef]
- Luijendijk, A.P.; Ranasinghe, R.; de Schipper, M.A.; Huisman, B.A.; Swinkels, C.M.; Walstra, D.J.R.; Stive, M.J.F. The initial morphological response of the Sand Engine: A process-based modelling study. Coast. Eng. 2017, 119, 1–14. [Google Scholar] [CrossRef]
- van Westen, B.; Luijendijk, A.P.; de Vries, S.; Cohn, N.; Leijnse, T.W.B.; de Schipper, M.A. Predicting marine and aeolian contributions to the Sand Engine’s evolution using coupled modelling. Coast. Eng. 2024, 188, 104444. [Google Scholar] [CrossRef]
- Orams, M.B. Sandy beaches as a tourism attraction: A management challenge for the 21st century. J. Coast. Res. 2003, 35, 74–84. [Google Scholar]
- King, P.; Symes, D. Potential loss in GNP and GSP from a failure to maintain California’s beaches. Shore Beach 2004, 72, 3–8. [Google Scholar]
- Brown, S.; Nicholls, R.J.; Woodroffe, C.D.; Hanson, S.; Hinkel, J.; Kebede, A.S.; Neumann, B.; Vafeidis, A.T. Chapter 5: Sea-level rise impacts and responses: A global perspective in Coastal Hazards. In Coastal Research Library; Finkl, C.W., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 1000. [Google Scholar] [CrossRef]
- Bryant, D.B.; Bryant, M.A.; Sharp, J.A.; Bell, G.L.; Moore, C. The response of vegetated dunes to wave attack. Coast. Eng. 2019, 152, 103506. [Google Scholar] [CrossRef]
- Sloss, C.R.; Shepherd, M.; Hesp, P. Coastal Dunes: Geomorphology. Nat. Educ. 2012, 3, 2. [Google Scholar]
- Yousefi Lalimi, F.; Silvestri, S.; Moore, L.J.; Marani, M. Coupled topographic and vegetation patterns in coastal dunes: Remote sensing observations and ecomorphodynamic implications. J. Geophys. Res. Biogeosci. 2017, 122, 119–130. [Google Scholar] [CrossRef]
- Donnelly, C.; Kraus, N.; Larson, M. State of Knowledge on Measurement and Modeling of Coastal Overwash. J. Coast. Res. 2006, 224, 965–991. [Google Scholar] [CrossRef]
- Matias, A.; Ferreira, O.; Vila-Concejo, A.; Garcia, T.; Alveirinho Dias, J. Classification of washover dynamics in barrier islands. Geomorphology 2008, 97, 655–674. [Google Scholar] [CrossRef]
- Matias, A.; Masselink, G. Overwash Processes: Lessons from Fieldwork and Laboratory Experiments. In Coastal Storms: Processes and Impacts; Ciavola, P., Coco, G., Eds.; Wiley: Hoboken, NJ, USA, 2016; pp. 175–194. [Google Scholar] [CrossRef]
- Pouzet, P.; Idier, D. A composite approach to document a century of overwash events in a high tide environment of southern Brittany, France. Estuar. Coast. Shelf Sci. 2024, 298, 108626. [Google Scholar] [CrossRef]
- Byrnes, M.R.; Gingerich, K.J. Cross-island profile response to Hurricane Gloria. In Proceedings Coastal Sediments ’87; ASCE: New Orleans, LA, USA, 1987; pp. 1486–1502. [Google Scholar]
- Dolan, R.; Godfrey, P. Effects of Hurricane Ginger on the barrier islands of North Carolina. Geol. Soc. Am. Bull. 1973, 84, 1329–1334. [Google Scholar] [CrossRef]
- Houser, C. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology 2008, 100, 223–240. [Google Scholar] [CrossRef]
- Houser, C.; Wernette, P.; Rentschlar, E.; Jones, H.; Hammond, B.; Trimble, S. Post-storm beach and dune recovery: Implications for barrier island resilience. Geomorphology 2015, 234, 54–63. [Google Scholar] [CrossRef]
- Rodriguez, A.B.; Theuerkauf, E.J.; Ridge, J.T.; VanDusen, B.M.; Fegley, S.R. Long-term washover fan accretion on a transgressive barrier island challenges the assumption that paleotempestites represent individual tropical cyclones. Sci. Rep. 2020, 10, 19755. [Google Scholar] [CrossRef]
- Morton, R.A.; Gonzalez, J.L.; Lopez, G.I.; Correa, I.D. Frequent non-storm washover of barrier islands, Pacific coast of Columbia. J. Coast. Res. 2000, 16, 82–87. [Google Scholar]
- Sallenger, A.H., Jr. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Donnelly, C.; Kraus, N.C.; Larson, M. Coastal Overwash; Part 1: Overview of Processes. Regional Sediment Management Demonstration Program Technical Note, ERDC/RSM-TN-14; U.S. Army Engineer Research and Development Center: Vicksburg, MS, USA, 2004; Available online: https://apps.dtic.mil/sti/tr/pdf/ADA602107.pdf (accessed on 23 January 2025).
- Nordstrom, K.F.; Gamper, U.; Fontolan, G.; Bezzi, A.; Jackson, N.L. Characteristics of Coastal Dune Topography and Vegetation in Environments Recently Modified Using Beach Fill and Vegetation Plantings, Veneto, Italy. Environ. Manag. 2009, 44, 1121–1135. [Google Scholar] [CrossRef]
- Giambastiani, B.M.S.; Greggio, N.; Sistilli, F.; Fabbri, S.; Scarelli, F.; Candiago, S.; Anfossi, G.; Lipparini, C.A.; Cantelli, L.; Antonellini, M.; et al. RIGED-RA project—Restoration and management of Coastal Dunes in the Northern Adriatic Coast, Ravenna Area—Italy. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 052038. [Google Scholar] [CrossRef]
- Bezzi, A.; Pillon, S.; Martinucci, D.; Fontolan, G. Inventory and conservation assessment for the management of coastal dunes, Veneto coasts, Italy. J. Coast. Conserv. 2018, 22, 503–518. [Google Scholar] [CrossRef]
- Della Bella, A.; Fantinato, E.; Scarton, F.; Buffa, G. Mediterranean developed coasts: What future for the foredune restoration? J. Coast. Conserv. 2021, 25, 49. [Google Scholar] [CrossRef]
- Faelga, R.; Cantelli, L.; Silvestri, S.; Giambastiani, B. Dune belt restoration effectiveness assessed by UAV topographic surveys (northern Adriatic coast, Italy). Biogeosciences 2023, 20, 4841–4855. [Google Scholar] [CrossRef]
- Della Bella, A.; Del Vecchio, S.; Fantinato, E.; Buffa, G. Coastal Dune Restoration: A Checklist Approach to Site Selection. Land 2024, 13, 135. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Armaroli, C.; Jackson, N.L.; Ciavola, P. Opportunities and constraints for managed retreat on exposed sandy shores: Examples from Emilia-Romagna, Italy. Ocean Coast. Manag. 2015, 104, 11–21. [Google Scholar] [CrossRef]
- Casagrande, G.; Bezzi, A.; Fracaros, S.; Martinucci, D.; Pillon, S.; Salvador, P.; Sponza, S.; Fontolan, G. Quantifying Transgressive Coastal Changes Using UAVs: Dune Migration, Overwash Recovery, and Barrier Flooding Assessment and Interferences with Human and Natural Assets. J. Mar. Sci. Eng. 2023, 11, 1044. [Google Scholar] [CrossRef]
- Klemas, V.V. Remote Sensing of Coastal Ecosystems and Environments. In Coastal Wetlands: Alteration and Remediation; Springer: Berlin/Heidelberg, Germany; IEEE: Piscataway, NJ, USA, 2014; Volume 9, pp. 3–30. [Google Scholar] [CrossRef]
- Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion photogrammetry. Geomorphology 2014, 213, 166–182. [Google Scholar] [CrossRef]
- Ryan, J.C.; Hubbard, A.L.; Box, J.; Todd, J.; Christoffersen, P.; Carr, J.R.; Holt, T.O.; Snooke, N. UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere 2015, 9, 1–11. [Google Scholar] [CrossRef]
- Casella, E.; Rovere, A.; Pedroncini, A.; Stark, C.P.; Casella, M.; Ferrari, M.; Firpo, M. Drones as tools for monitoring beach topography changes in the Ligurian Sea (NW Mediterranean). Geo Lett. 2016, 36, 151–163. [Google Scholar] [CrossRef]
- Dąbski, M.; Zmarz, A.; Pabjanek, P.; Korczak-Abshire, M.; Karsznia, I.; Chwedorzewska, K.J. UAV-based detection and spatial analyses of periglacial landforms on Demay Point (King George Island, South Shetland Islands, Antarctica). Geomorphology 2017, 290, 29–38. [Google Scholar] [CrossRef]
- Duo, E.; Trembanis, A.C.; Dohner, S.; Grottoli, E.; Ciavola, P. Local-scale post-event assessments with GPS and UAV-based quick-response surveys: A pilot case from the Emilia–Romagna (Italy) coast. Nat. Hazards Earth Syst. Sci. 2018, 18, 2969–2989. [Google Scholar] [CrossRef]
- Giordano, C.M.; Girelli, V.A.; Lambertini, A.; Tini, M.A.; Zanutta, A. UAV Data Collection Co-Registration: LiDAR and Photogrammetric Surveys for Coastal Monitoring. Drones 2025, 9, 49. [Google Scholar] [CrossRef]
- Pranavam Ayyappan Pillai, U.; Pinardi, N.; Federico, I.; Causio, S.; Trotta, F.; Unguendoli, S.; Valentini, A. Wind-wave characteristics and extremes along the Emilia-Romagna coast. Nat. Hazards Earth Syst. Sci. 2022, 22, 3413–3433. [Google Scholar] [CrossRef]
- Brunelli, V. Analisi Evolutiva del Sistema Spiaggia-Duna in Emilia-Romagna: Processi Morfodinamici e Trasporto Eolico. Ph.D. Thesis, Università degli Studi di Ferrara, Ferrara, Italy, 2010; p. 327. Available online: https://hdl.handle.net/11392/2389172 (accessed on 20 January 2025).
- Corbau, C.; Simeoni, U.; Melchiorre, M.; Rodella, I.; Utizi, K. Regional variability of coastal dunes observed along the Emilia-Romagna littoral, Italy. Aeolian Res. 2015, 18, 169–183. [Google Scholar] [CrossRef]
- Zingg, A.W. Wind tunnel studies of movement of sedimentary material. Proc. 5th Hydraul. Conf. Bull. 1953, 34, 111–134. [Google Scholar]
- Arpae. Stato del Litorale Emiliano-Romagnolo al 2018 Erosione e Interventi di Difesa; ARPAE Emilia-Romagna: Bologna, Italy, 2018; ISBN 978-88-87854-48-0. Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/argomenti/difesa-della-costa/stato-del-litorale-emiliano-romagnolo-allanno-2007-e-piano-decennale-di-gestione/stato-litorale-slem-arpae-2020-web-leggera.pdf/@@download/file (accessed on 23 January 2025).
- Katalinić, M.; Parunov, J. Wave statistics in the Adriatic Sea based on 24 years of satellite measurements. Ocean Eng. 2018, 158, 378–388. [Google Scholar] [CrossRef]
- Armaroli, C.; Ciavola, P.; Masina, M.; Perini, L. Run-up computation behind emerged breakwaters for marine storm risk assessment. J. Coast. Res. 2009, 56, 1612–1616. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/ICS2009_runup.pdf/@@download/file (accessed on 23 January 2025).
- Masina, M.; Ciavola, P. Analisi dei livelli marini estremi e delle acque alte lungo il litorale ravennate. Studi Costieri 2011, 18, 84–98. Available online: https://www.researchgate.net/publication/285758342 (accessed on 23 January 2025). (In Italian).
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A century of land subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Taramelli, A.; Di Matteo, L.; Ciavola, P.; Guadagnano, F.; Tolomei, C. Temporal evolution of patterns and processes related to subsidence of the coastal area surrounding the Bevano River mouth (Northern Adriatic)–Italy. Ocean Coast. Manag. 2015, 108, 74–88. [Google Scholar] [CrossRef]
- Armaroli, C.; Ciavola, P.; Perini, L.; Calabrese, L.; Lorito, S.; Valentini, A.; Masina, M. Critical storm thresholds for significant morphological changes and damage along the Emilia-Romagna coastline, Italy. Geomorphology 2012, 143–144, 34–51. [Google Scholar] [CrossRef]
- Armaroli, C.; Grottoli, E.; Harley, M.D.; Ciavola, P. Beach morphodynamics and types of foredune erosion generated by storms along the Emilia-Romagna coastline, Italy. Geomorphology 2013, 199, 22–35. [Google Scholar]
- Ciavola, P.; Billi, P.; Armaroli, C.; Balouin, Y.; Preciso, E.; Salemi, E. Valutazione della morfodinamica di foce del Torrente Bevano (RA): Il ruolo del trasporto solido di fondo—Morphodynamics of the Bevano Stream outlet: The role of bedload yield. Geol. Tec. Ambient. 2005, 1, 41–57. [Google Scholar]
- Balouin, Y.; Ciavola, P.; Anfuso, G.; Armaroli, C.; Corbau, C.; Tessari, U. Morphodynamics of intertidal sand bars: Field studies in the Northern Adriatic, NE Italy. J. Coast. Res. 2006, I, 323–328. [Google Scholar]
- Balouin, Y.; Ciavola, P.; Armaroli, C. Sediment transport patterns and coastal evolution at Lido di Dante beach, Adriatic Sea. In Proceedings Coastal Dynamics; ASCE: New York, NY, USA, 2006; Volume II. [Google Scholar]
- Perini, L.; Luciani, P.; Calabrese, L. Indicatori di suscettibilità costiera ai fenomeni di erosione e inondazione marina. In Regione Emilia-Romagna, Servizio Geologico, Sismico e dei Suoli; Regione Emilia-Romagna: Bologna, Italy, 2019; Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf?set_language=it&post_path=/report_indicatori_2019_pdf/%40%40download/file/report_indicatori_2019_.pdf (accessed on 20 January 2025).
- Wright, L.D.; Short, A.D. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar]
- Merloni, N.; Speranza, M. La biodiversità: Le specie vegetali. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 1.3; pp. 10–11. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Speranza, M.; Ferroni, L.; Pritoni, G. L’intervento di vegetalizzazione della duna. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 3; pp. 26–29. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Perini, L.; Calabrese, L. Le caratteristiche e l’evoluzione dell’area di foce Bevano. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 1.1; pp. 4–7. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Calabrese, L.; Luciani, P.; Perini, L. Gli impatti delle mareggiate tra foce Fiumi Uniti e foce Fiume Savio. In Foce Bevano: Stato Dell’area Naturale Protetta e Prospettive per una sua Gestione Integrata e Sostenibile; Montanari, R., Marasmi, C., Eds.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2013; Chapter 3.2; pp. 37–45. Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/servizi/pubblicazioni/servizio-difesa-del-suolo-della-costa-e-bonifica/pdf/foce-bevano/@@download/file/Bevano%20-%20stato%20dell'area%20naturale%20protetta.pdf (accessed on 21 January 2025).
- Gardelli, M.; Caleffi, S.; Ciavola, P. Evoluzione morfodinamica della foce del Torrente Bevano. Studi Costieri 2007, 13, 53–74. (In Italian) [Google Scholar]
- Balouin, Y.; Ciavola, P.; Michel, D. Support of subtidal tracer studies to quantify the complex morphodynamics of a river outlet: The Bevano, NE Italy. J. Coast. Res. 2006, III, 602–607. [Google Scholar]
- Montanari, R. Le problematiche idrauliche a ambientali. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 2.1; pp. 19–22. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-emare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Miccoli, C.; Ceroni, M.; Castelli, M.; Malavolta, E.; Marasmi, C. Il progetto di riqualificazione funzionale nel tratto costiero in corrispondenza di foce Bevano. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 2.3; pp. 19–22. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Ciavola, P. La morfodinamica della foce dopo l’intervento. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 4.1; pp. 17–18. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf (accessed on 15 November 2024).
- Speranza, M.; Ferroni, L.; Pritoni, G. La copertura vegetale. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 5.3; pp. 39–40. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf/@@download/file (accessed on 15 November 2024).
- Sedrati, M.; Ciavola, P.; Armaroli, C. Morphodynamic evolution of a microtidal barrier; the role of overwash: Bevano, Northern Adriatic Sea. J. Coast. Res. 2011, 696–700. [Google Scholar]
- Harris, M.; Brock, J.; Nayegandhi, A.; Duffy, M. Extracting Shorelines from NASA Airborne Topographic Lidar-Derived Digital Elevation Models; Geological Survey Open-file Report 2005-1427; U.S. Department of the Interior and U.S. Geological Survey: Reston, VA, USA, 2006. [Google Scholar]
- Robertson, W.; Whitman, D.; Zhang, K.; Leatherman, S.P. Mapping shoreline position using airborne laser altimetry. J. Coast. Res. 2004, 20, 884–892. [Google Scholar]
- Boak, E.H.; Turner, I.L. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for uncertainty in DEMs from repeat topographic surveys: Improved sediment budgets. Earth Surf. Proc. Land. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- Duo, E.; Fabbri, S.; Grottoli, E.; Ciavola, P. Uncertainty of Drone-Derived DEMs and Significance of Detected Morphodynamics in Artificially Scraped Dunes. Remote Sens. 2021, 13, 1823. [Google Scholar] [CrossRef]
- Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. Photogramm. Remote Sens. 1999, 54, 68–82. [Google Scholar] [CrossRef]
- Hladik, C.; Alber, M. Accuracy assessment and correction of a LIDAR derived salt marsh digital elevation model. Remote Sens. Environ. 2012, 121, 224–235. [Google Scholar] [CrossRef]
- Sallenger, A.H., Jr.; Krabill, W.B.; Swift, R.N.; Brock, J.; List, J.; Hansen, M.; Holman, R.A.; Manizade, S.; Sontag, J.; Meredith, A.; et al. Evaluation of Airborne Topographic Lidar for Quantifying Beach Change. J. Coast. Res. 2003, 19, 125–133. [Google Scholar]
- Arpae. Rapporto Idro-Meteo-Clima 2023; Regione Emilia-Romagna: Bologna, Italy, 2023; ISBN 978-88-87854-59-6. Available online: https://www.regione.emilia-romagna.it/urp/novita-editoriali/rapporto-idro-meteo-clima-2023 (accessed on 23 January 2025).
- Martzikos, N.T.; Prinos, P.E.; Memos, C.D.; Tsoukala, V.K. Statistical analysis of Mediterranean coastal storms. Oceanologia 2021, 63, 133–148. [Google Scholar] [CrossRef]
- Mendoza, E.T.; Jiménez, J.A. Factors Controlling Vulnerability to Storm Impacts Along the Catalonian Coast. Coast. Eng. 2005, 3087–3099. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Farris, A.S.; Kratzmann, M.G.; Bartlett, M.K.; Ergul, A.; McAndrews, J.; Cibaj, R.; Zichichi, J.L.; Thieler, E.R. Digital Shoreline Analysis System; Version 6.0; U.S. Geological Survey: Reston, VA, USA, 2024. Available online: https://code.usgs.gov/cch/dsas/-/tree/v6.0.168 (accessed on 20 January 2025).
- Holman, R.A. Extreme value statistics for wave runup on a natural beach. Coast. Eng. 1986, 9, 527. [Google Scholar]
- Fernández-Montblanc, T.; Duo, E.; Ciavola, P. Dune reconstruction and revegetation as a potential measure to decrease coastal erosion and flooding under extreme storm conditions. Ocean Coast. Manag. 2020, 188, 105075. [Google Scholar] [CrossRef]
- Harley, M.D.; Valentini, A.; Armaroli, C.; Perini, L.; Calabrese, L.; Ciavola, P. Can an early warning system help minimize the impacts of coastal storms? A case study of the 2012 Halloween storm, Northern Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 209–222. [Google Scholar] [CrossRef]
- Ciavola, P. La morfodinamica della foce prima dell’intervento. In Foce Bevano: L’area Naturale Protetta e L’intervento di Salvaguardia; Marasmi, C., Ed.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2009; Chapter 2.2; pp. 17–18. Available online: https://ambiente.regione.emilia-romagna.it/it/geologia/geologia/costa-e-mare/pdf/pubblicazione_bevano_LQ.pdf (accessed on 15 November 2024).
- Aagard, T.; Kroon, T. Decadal behaviour of a washover fan, Skallingen Denmark. Earth Surf. Process. Land. 2019, 44, 1755–1768. [Google Scholar] [CrossRef]
- Houser, C. Alongshore variation in the morphology of coastal dunes: Implications for storm response. Geomorphology 2013, 199, 48–61. [Google Scholar] [CrossRef]
- Ciavola, P.; Tondello, M.; Carniel, S.; Sclavo, M. Artificial deviation of a small inlet (Bevano, Northern Italy): Prediction of future evolution and planning of management strategies using open-source community coastal models. Coast. Eng. Proc. 2012, 1, 1–13. [Google Scholar] [CrossRef]
- Matias, A.; Ferreira, Ó.; Vila-Concejo, A.; Morris, B.; Dias, J. Short-term morphodynamics of non-storm overwash. Mar. Geo. 2010, 274, 69–84. [Google Scholar] [CrossRef]
- Feagin, R.A.; Furman, M.; Salgado, K.; Martinez, M.L.; Innocenti, R.A.; Eubanks, K.; Figlus, J.; Huff, T.P.; Sigren, J.; Silva, R. The role of beach and sand dune vegetation in mediating wave run up erosion. Estuar. Coast. Shelf Sci. 2019, 219, 97–106. [Google Scholar] [CrossRef]
- Grottoli, E.; Cilli, S.; Ciavola, P.; Armaroli, C. Sedimentation at River Mouths bounded by Coastal Structures: A Case Study along the Emilia-Romagna Coastline, Italy. J. Coast. Res. 2020, 95, 505–510. [Google Scholar] [CrossRef]
- Cilli, S.; Billi, P.; Schippa, L.; Grottoli, E.; Ciavola, P. Bedload transport and dune bedforms characteristics in sand-bed rivers supplying a retreating beach of the northern Adriatic Sea (Italy). J. Hydrol. Reg. 2021, 37, 100894. [Google Scholar] [CrossRef]
- Vittuari, L.; Speranza, M.; Ferroni, L.; Mandanici, E.; Pritoni, G. Evoluzione della copertura vegetale della duna ricostruita e sua relazione con le variazioni morfologiche superficiali. In Foce Bevano: Stato Dell’area Naturale Protetta e Prospettive per una sua Gestione Integrata E Sostenibile; Montanari, R., Marasmi, C., Eds.; Centro Stampa della Regione Emilia-Romagna: Bologna, Italy, 2013; Chapter 3.4; Available online: https://ambiente.regione.emilia-romagna.it/it/suolo-bacino/servizi/pubblicazioni/servizio-difesa-del-suolo-della-costa-e-bonifica/pdf/foce-bevano/@@download/file/Bevano%20-%20stato%20dell'area%20naturale%20protetta.pdf (accessed on 21 January 2025).
Date | Type of Data | Name | Source | Resolution (m) | Scale |
---|---|---|---|---|---|
1976 | Orthophoto | Quadro di unione Volo RER 1976-78 | AGEA-RER | 0.3 | 10,000 |
September 2004 | DTM | LIDAR 2004 della Costa e del Fiume Savio | RER | 1 | 2000 |
2005 | Orthophoto | Quadro di unione AGEA 2005–2006 | AGEA-RER | 0.5 | 5000 |
June–August 2008 | Orthophoto | Ortofoto AGEA 2008 | AGEA-RER | 0.5 | 10,000 |
May–June 2011 | Orthophoto | Ortofoto AGEA 2011 | AGEA-RER | 0.5 | 10,000 |
July 2012 | DTM | DTM2012-Costa-RER | RER | 1 | / |
13 March 2015 | Satellite images | / | Google Earth | 0.5 | / |
30 April 2017 | Satellite images | / | Google Earth | 0.5 | / |
February 2019 | DTM | LIDAR 2019 della Costa | RER | 1 | 5000 |
April 2020 | Orthophoto | Ortofoto AGEA 2020 RGB | AGEA-RER | 0.2 | 10,000 |
July 2023 | Orthophoto | Ortofoto RER 2023-24 RGB | RER | 0.2 | 10,000 |
Number of Storms | Total Duration [h] | Mean Duration [h] | Total Energy [m2 h] | Max Hs max [m] | Max Lev Max During Storms [m] | Max. Duration [h] | |
---|---|---|---|---|---|---|---|
2008 | 18 | 450.5 | 25.0 | 1409.2 | 3.19 | 0.87 | 75.50 |
2009 | 19 | 302.5 | 15.9 | 943.3 | 2.96 | 0.84 | 50.00 |
2010 | 17 | 316.0 | 18.6 | 1079.3 | 3.91 | 0.87 | 90.00 |
2011 | 14 | 379.5 | 27.1 | 1339.1 | 3.92 | 0.66 | 76.00 |
2012 | 14 | 277.0 | 19.8 | 1021.6 | 3.23 | 1.18 | 39.50 |
2013 | 27 | 481.5 | 17.8 | 1826.1 | 3.79 | 1.02 | 64.00 |
2014 | 11 | 244.0 | 22.2 | 891.1 | 3.52 | 0.98 | 54.00 |
2015 | 28 | 652.5 | 23.3 | 2483.5 | 4.54 | 1.31 | 90.50 |
2016 | 23 | 404.0 | 17.6 | 1379.1 | 3.11 | 0.93 | 43.00 |
2017 | 18 | 397.0 | 22.1 | 1771.0 | 3.68 | 0.96 | 101.00 |
2018 | 17 | 523.0 | 30.8 | 1860.8 | 3.10 | 1.06 | 143.50 |
2019 | 23 | 470.0 | 20.4 | 1292.5 | 3.60 | 1.22 | 66.50 |
2020 | 16 | 461.0 | 28.8 | 1620.2 | 3.11 | 1.06 | 125.00 |
2021 | 22 | 433.0 | 19.7 | 1421.3 | 3.42 | 0.92 | 111.50 |
2022 | 15 | 297.5 | 19.8 | 1095.3 | 3.67 | 0.80 | 53.50 |
2023 | 20 | 505.5 | 25.3 | 1827.1 | 3.91 | 1.16 | 81.00 |
Year | Month | Day | Hs max | Direction | Max Water Level @ Hs max | Overwash | Inundation |
---|---|---|---|---|---|---|---|
2012 | 10 | 31 | 2.43 | 87.2 | 1.01 | x | |
2013 | 2 | 2 | 3.68 | 53.4 | 0.73 | x | |
2013 | 11 | 10 | 3.79 | 64.7 | 0.92 | x | |
2015 | 2 | 5 | 4.54 | 63.3 | 1.22 | x | |
2022 | 4 | 9 | 3.55 | 35.2 | 0.59 | x | |
2023 | 1 | 20 | 3.91 | 78 | 0.75 | x | |
2023 | 5 | 16 | 3.23 | 61 | 0.83 | x |
Time Interval | Volume of Surface Lowering (TCD) [m3] | Volume of Surface Raising (TCD) [m3] | Net Volume Difference (Raw) [m3] | Net Volume Difference (TCD) [m3] |
---|---|---|---|---|
2004–2012 | 1838 ± 608 | 29,879 ± 5361 | 28,093 | 28,041 ± 5395 |
2012–2019 | 4943 ± 1763 | 7072 ± 2611 | 2039 | 2129 ± 3150 |
2004–2019 | 2331 ± 894 | 32,539 ± 4680 | 30,142 | 30,208 ± 4764 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armaroli, C.; Brunetta, R.; Ciavola, P. An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment. Remote Sens. 2025, 17, 1072. https://doi.org/10.3390/rs17061072
Armaroli C, Brunetta R, Ciavola P. An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment. Remote Sensing. 2025; 17(6):1072. https://doi.org/10.3390/rs17061072
Chicago/Turabian StyleArmaroli, Clara, Riccardo Brunetta, and Paolo Ciavola. 2025. "An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment" Remote Sensing 17, no. 6: 1072. https://doi.org/10.3390/rs17061072
APA StyleArmaroli, C., Brunetta, R., & Ciavola, P. (2025). An Airborne Lidar-Based 15-Year Study of Dune Reconstruction and Overwash Formation in a Microtidal and Fetch Limited Environment. Remote Sensing, 17(6), 1072. https://doi.org/10.3390/rs17061072