Forecasting and Evaluation of Ecosystem Services Supply-Demand Under SSP-RCP Scenarios in the Henan Segment of the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Pre-Processing
2.3. Methods
2.3.1. Land Use Simulation
2.3.2. Estimates of ESSD
- Water yield
- 2.
- Food production
- 3.
- Carbon storage
2.3.3. Matching Supply and Demand for ESs
3. Results
3.1. Supply and Demand Analysis of ESs in 2020
3.2. Forecasts of ESSD for Different Scenarios, 2020–2050
3.3. Matching ESSD in Different Scenarios, 2020–2050 Analysis
4. Discussion
4.1. Comparison with Other Studies
4.2. Implications for Ecological Management
4.3. Limitations and Improvements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costanza, R.; De Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Zhang, C.; Zhao, Z. The Research Trends of Ecosystem Services and the Paradigm in Geography. Acta Geogr. Sin. 2011, 66, 1618–1630. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Redhead, J.W.; May, L.; Oliver, T.H.; Hamel, P.; Sharp, R.; Bullock, J.M. National scale evaluation of the InVEST nutrient retention model in the United Kingdom. Sci. Total Environ. 2018, 610–611, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Shen, Z.; Zhang, Z.; Xiong, J. Advance in simulation of social-ecological system coupling under the perspective of ecosystem services. Acta Geogr. Sin. 2024, 79, 134–146. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Duan, B.; Hu, X.; Cherubini, F. Coupling trade-offs and supply-demand of ecosystem services (ES): A new opportunity for ES management. Geogr. Sustain. 2021, 2, 275–280. [Google Scholar] [CrossRef]
- Peng, J.; Tian, L.; Zhang, Z.; Zhao, Y.; Green, S.M.; Quine, T.A.; Liu, H.; Meersmans, J. Distinguishing the impacts of land use and climate change on ecosystem services in a karst landscape in China. Ecosyst. Serv. 2020, 46, 101199. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Zhao, M.; Liu, Y.; Tian, L. Research progress on ecosystem service trade-offs: From cognition to decision-making. Acta Geogr. Sin. 2017, 72, 960–973. [Google Scholar] [CrossRef]
- Ma, L.; Liu, H.; Peng, J.; Wu, J. A review of ecosystem services supply and demand. Acta Geogr. Sin. 2017, 72, 1277–1289. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Liang, Z.; Wang, Y.; Sun, F. Research progress and prospect for the relationships between ecosystem services supplies and demands. J. Nat. Resour. 2021, 36, 1909–1922. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Pattanayak, S.K. Valuing watershed services: Concepts and empirics from southeast Asia. Agric. Ecosyst. Environ. 2004, 104, 171–184. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, Y.; Yu, C.; Luo, L.; Pan, Y. Land management influences trade-offs and the total supply of ecosystem services in alpine grassland in Tibet, China. J. Environ. Manag. 2017, 193, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yang, T.; Deng, M. Ecosystem Services’ Supply–Demand Assessment and Ecological Management Zoning in Northwest China: A Perspective of the Water–Food–Ecology Nexus. Sustainability 2024, 16, 7223. [Google Scholar] [CrossRef]
- Wang, C.; Li, B.; Li, J.; Bai, J.; Zhang, Y. Adaptive management of mountain ecosystems based on carbon sequestration: Based on the “state-flow-utility” framework. Ecol. Indic. 2024, 168, 112703. [Google Scholar] [CrossRef]
- Wang, L.; Gong, J.; Ma, S.; Wu, S.; Zhang, X.; Jiang, J. Ecosystem service supply–demand and socioecological drivers at different spatial scales in Zhejiang Province, China. Ecol. Indic. 2022, 140, 109058. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Dai, J.; Zhai, T.; Li, Z. The relationship between supply and demand of ecosystem services and its spatio-temporal variation in the Yellow River Basin Journal of Natural Resources. J. Nat. Resour. 2021, 36, 148–161. [Google Scholar] [CrossRef]
- Underwood, E.C.; Hollander, A.D.; Safford, H.D.; Kim, J.B.; Srivastava, L.; Drapek, R.J. The impacts of climate change on ecosystem services in southern California. Ecosyst. Serv. 2019, 39, 101008. [Google Scholar] [CrossRef]
- Pham, H.V.; Sperotto, A.; Torresan, S.; Acuña, V.; Jorda-Capdevila, D.; Rianna, G.; Marcomini, A.; Critto, A. Coupling scenarios of climate and land-use change with assessments of potential ecosystem services at the river basin scale. Ecosyst. Serv. 2019, 40, 101045. [Google Scholar] [CrossRef]
- Salimi, S.; Scholz, M. Impact of future climate scenarios on peatland and constructed wetland water quality: A mesocosm experiment within climate chambers. J. Environ. Manag. 2021, 289, 112459. [Google Scholar] [CrossRef] [PubMed]
- Mouratiadou, I.; Biewald, A.; Pehl, M.; Bonsch, M.; Baumstark, L.; Klein, D.; Popp, A.; Luderer, G.; Kriegler, E. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environ. Sci. Policy 2016, 64, 48–58. [Google Scholar] [CrossRef]
- Bisselink, B.; De Roo, A.; Bernhard, J.; Gelati, E. Future projections of water scarcity in the Danube River Basin due to land use, water demand and climate change. J. Environ. Geogr. 2018, 11, 25–36. [Google Scholar] [CrossRef]
- Tao, F.; Yokozawa, M.; Liu, J.; Zhang, Z. Climate change, land use change, and China’s food security in the twenty-first century: An integrated perspective. Clim. Change 2008, 93, 433–445. [Google Scholar] [CrossRef]
- Palm, C.A.; Smukler, S.M.; Sullivan, C.C.; Mutuo, P.K.; Nyadzi, G.I.; Walsh, M.G. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 19661–19666. [Google Scholar] [CrossRef] [PubMed]
- Raymond, L.; Gotham, D.; McClain, W.; Mukherjee, S.; Nateghi, R.; Preckel, P.V.; Schubert, P.; Singh, S.; Wachs, E. Projected climate change impacts on Indiana’s Energy demand and supply. Clim. Change 2019, 163, 1933–1947. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Lee, S.; Mickelson KE, B.; Elsner, M.M. Effects of projected climate change on energy supply and demand in the Pacific Northwest and Washington State. Clim. Change 2010, 102, 103–128. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Kurban, A.; Van De Voorde, T.; De Maeyer, P.; Zhang, C. Coupled SSPs-RCPs scenarios to project the future dynamic variations of water-soil-carbon-biodiversity services in Central Asia. Ecol. Indic. 2021, 129, 107936. [Google Scholar] [CrossRef]
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Kriegler, E.; O’Neill, B.C.; Ebi, K.L.; Riahi, K.; Carter, T.R.; Edmonds, J.; Hallegatte, S.; Kram, T.; Mathur, R.; et al. A new scenario framework for Climate Change Research: Scenario matrix architecture. Clim. Change 2013, 122, 373–386. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Chaowiwat, W.; Wang, C. Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand. Sci. Total Environ. 2022, 807, 150741. [Google Scholar] [CrossRef]
- Wu, C.; Coffield, S.R.; Goulden, M.L.; Randerson, J.T.; Trugman, A.T.; Anderegg WR, L. Uncertainty in US forest carbon storage potential due to climate risks. Nat. Geosci. 2023, 16, 422–429. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C. Ecological Protection and High-quality Development in the Yellow River Basin: Framework, Path, and Countermeasure. Bull. Chin. Acad. Sci. 2020, 35, 875–883. [Google Scholar] [CrossRef]
- Xiao, D.; Niu, H.; Yan, H.; Fan, L.; Zhao, S. Spatiotemperal evolution of land use pattern in the Yellow River Basin (Henan section) from 1990 to 2018. Trans. Chin. Soc. Agric. Eng. 2020, 36, 271–281. Available online: http://www.tcsae.org/cn/article/id/20201533 (accessed on 15 March 2024).
- Fu, B.; Wang, S.; Shen, Y.; Cheng, C.; Li, Y.; Feng, X.; Liu, Y. Mechanisms of Human-natural System Coupling and Optimization of the Yellow River. Basin Bull. Natl. Nat. Sci. Found. China 2021, 35, 504–509. [Google Scholar] [CrossRef]
- Ding, H.; Sun, R. Supply-demand analysis of ecosystem services based on socioeconomic and climate scenarios in North China. Ecol. Indic. 2023, 146, 109906. [Google Scholar] [CrossRef]
- Liu, W.; Tian, H.; Xu, X.; Yang, G. Evaluation of water supply function in the Economic Belt of the Northern Slope of the Tianshan Mountains based on the InVEST model. Clim. Serv. 2024, 36, 100519. [Google Scholar] [CrossRef]
- Lu, H.; LC, L.; Yan, Y.; Wang, C.; Zhao, C.; Song, Y.; Zhu, J.; Wu, G. Mapping ecosystem service supply and demand: Historical changes and projections under SSP-RCP scenarios. Acta Ecologica Sin. 2023, 43, 1309–1325. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Wang, X.; Meersmans, J.; Liu, Y.; Qiu, S. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosyst. Serv. 2019, 39, 100998. [Google Scholar] [CrossRef]
- Gong, W.; Duan, X.; Sun, Y.; Zhang, Y.; Ji, P.; Tong, X.; Qiu, Z.; Liu, T. Multi-scenario simulation of land use/cover change and carbon storage assessment in Hainan coastal zone from perspective of free trade port construction. J. Clean. Prod. 2023, 385, 135630. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Cheng, S.; Hou, W.; Song, M.; Liu, X.; Liu, Y.; Shan, Y. County-level CO2 emissions and sequestration in China during 1997–2017. Sci. Data 2020, 7, 391. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Xu, Y.; Ran, Y.; Ye, X.; Zhou, Y.; Wu, B.; Chu, B. Quantifying the supply-demand relationship of ecosystem services to identify ecological management zoning: A case study in mountainous areas of northwest Yunnan, China. Heliyon 2024, 10, e32006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Cheng, C.; Wu, X. Global LULC projection dataset from 2020 to 2100 at a 1km resolution [Dataset]. In Figshare; Peking Normal University: Beijing, China, 2023. [Google Scholar] [CrossRef]
- Xu, Z.; Peng, J.; Dong, J.; Liu, Y.; Liu, Q.; Lyu, D.; Qiao, R.; Zhang, Z. Spatial correlation between the changes of ecosystem service supply and demand: An ecological zoning approach. Landsc. Urban Plan. 2022, 217, 104258. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Jin, Z.; Qi, Y. Change and correlation analysis of the supply-demand pattern of ecosystem services in the Yangtze River Economic Belt. Acta Ecol. Sin. 2019, 39, 5414–5424. [Google Scholar] [CrossRef]
- Yin, D.; Yu, H.; Shi, Y.; Zhao, M.; Zhang, J.; Li, X. Matching supply and demand for ecosystem services in the Yellow River Basin, China: A perspective of the water-energy-food nexus. J. Clean. Prod. 2022, 384, 135469. [Google Scholar] [CrossRef]
- Yang, R.; Chen, H.; Chen, S.; Ye, Y. Spatiotemporal evolution and prediction of land use/land cover changes and ecosystem service variation in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109579. [Google Scholar] [CrossRef]
- Ai, X.; Zheng, X.; Zhang, Y.; Liu, Y.; Ou, X.; Xia, C.; Liu, L. Climate and land use changes impact the trajectories of ecosystem service bundles in an urban agglomeration: Intricate interaction trends and driver identification under SSP-RCP scenarios. Sci. Total Environ. 2024, 944, 173828. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Zhang, J.; Wu, Y.; Zhou, Y. Assessment of carbon stocks and influencing factors in terrestrial ecosystems based on surface area. iScience 2024, 27, 111431. [Google Scholar] [CrossRef]
- Li, X.; Fu, J.; Jiang, D.; Lin, G.; Cao, C. Land use optimization in Ningbo City with a coupled GA and PLUS model. J. Clean. Prod. 2022, 375, 134004. [Google Scholar] [CrossRef]
- Lu, Z.; Li, W.; Yue, R. Investigation of the long-term supply–demand relationships of ecosystem services at multiple scales under SSP–RCP scenarios to promote ecological sustainability in China’s largest city cluster. Sustain. Cities Soc. 2024, 104, 105295. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D.; Tao, W. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environ. Earth Sci. 2021, 80, 72. [Google Scholar] [CrossRef]
- Zhao, C.; Sander, H.A. Assessing the sensitivity of urban ecosystem service maps to input spatial data resolution and method choice. Landsc. Urban Plan. 2018, 175, 11–22. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Year | Source | |
---|---|---|---|---|
Natural environment data | Land use/cover | 30 m | 2000 2005 2010 2020 | Resource and Environmental Science and Data center, Chinese Academy of Sciences (https://www.resdc.cn, accessed on 15 March 2024) |
DEM | 30 m | - | Geospatial Data Cloud (https://www.gscloud.cn, accessed on 15 March 2024) | |
Urban built-up area | 1 km | 2020 | National Tibetan Plateau Data Center (https://www.tpdc.ac.cn, accessed on 15 March 2024) | |
Carbon Density | - | - | National Ecological Science Data Center (https://www.nesdc.org.cn, accessed on 15 March 2024) | |
Precipitation | 1 km | 2020 | Space-time Tri-polar Environmental Big Data Platform (https://loess.geodata.cn, accessed on 15 March 2024) | |
Potential evapotranspiration | 1 km | 2020 | National Earth System Science Data Center (https://www.geodata.cn accessed on 15 May 2024) | |
Soil depth | 90 m | - | National Earth System Science Data Center (https://soil.geodata.cn, accessed on 15 May 2024) | |
NDVI | 1 km | 2020 | Resource and Environmental Science Data Platform (https://www.resdc.cn, accessed on 15 May 2024) | |
Future precipitation | 1 km | 2030 2050 | https://www.worldclim.org, accessed on 15 May 2024 | |
Future potential evapotranspiration | 1 km | 2030 2050 | National Tibetan Plateau/Third Pole Environment Data Center (https://www.tpdc.ac.cn/home, accessed on 15 May 2024) | |
Future land use simulation | 1 km | 2030 2050 | https://figshare.com, accessed on 15 May 2024) | |
Socio-economic data | Carbon emissions | - | 2020 | China Emissions Accounts and Datasets (CEADs) (https://www.ceads.net.cn, accessed on 15 October 2024) |
Population density | 100 m | 2020 | WorldPop Dataset (https://www.worldpop.org, accessed on 15 October 2024) | |
Water demand crop production | - | 2020 | “Henan Statistical Yearbook”, “County Statistical Yearbook”, “Henan Province Water Resources Bulletin” and Water Resources Bulletin of Each City | |
Future population density | 1 km | 2030 2050 | National Tibetan Plateau/Third Pole Environment Data Center (https://www.tpdc.ac.cn/home, accessed on 15 October 2024) | |
Future GDP | 1 km | 2030 2050 | https://zenodo.org, accessed on 15 October 2024 |
Year | Scenarios | Water Yield | Carbon Storage | Food Production | |||
---|---|---|---|---|---|---|---|
Supply/ (×109 m3) | Demand/ (×109 m3) | Supply/ (×106 t) | Demand/ (×106 t) | Supply/ (×106 t) | Demand/ (×106 t) | ||
2030 | SSP1-RCP2.6 | 7.4 | 12.1 | 446.9 | 324.1 | 24.3 | 4.1 |
SSP2-RCP4.5 | 7.1 | 12.1 | 439.6 | 333.5 | 25.3 | 4.7 | |
SSP5-RCP8.5 | 8.5 | 12.5 | 437.6 | 326.7 | 24.9 | 4.6 | |
2050 | SSP1-RCP2.6 | 8.7 | 13.6 | 451.1 | 359.2 | 23.3 | 4.4 |
SSP2-RCP4.5 | 2.9 | 13.7 | 445.1 | 387.7 | 28.4 | 5.4 | |
SSP5-RCP8.5 | 5.7 | 15.2 | 407.2 | 364.8 | 25.3 | 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Chang, Y.; Guo, B.; Liu, P. Forecasting and Evaluation of Ecosystem Services Supply-Demand Under SSP-RCP Scenarios in the Henan Segment of the Yellow River Basin, China. Remote Sens. 2025, 17, 1067. https://doi.org/10.3390/rs17061067
Wang C, Chang Y, Guo B, Liu P. Forecasting and Evaluation of Ecosystem Services Supply-Demand Under SSP-RCP Scenarios in the Henan Segment of the Yellow River Basin, China. Remote Sensing. 2025; 17(6):1067. https://doi.org/10.3390/rs17061067
Chicago/Turabian StyleWang, Chaokun, Yujie Chang, Benxin Guo, and Pengfei Liu. 2025. "Forecasting and Evaluation of Ecosystem Services Supply-Demand Under SSP-RCP Scenarios in the Henan Segment of the Yellow River Basin, China" Remote Sensing 17, no. 6: 1067. https://doi.org/10.3390/rs17061067
APA StyleWang, C., Chang, Y., Guo, B., & Liu, P. (2025). Forecasting and Evaluation of Ecosystem Services Supply-Demand Under SSP-RCP Scenarios in the Henan Segment of the Yellow River Basin, China. Remote Sensing, 17(6), 1067. https://doi.org/10.3390/rs17061067