Imaging Cultural Heritage at Different Scales: Part II, the Meso-Scale (Sites)
Abstract
:1. Introduction
- Part I, the micro-scale (manufacts);
- Part II, the meso-scale (sites);
- Part III, the macro-scale (landscapes).
2. Materials and Methods
- 3.1.1.
- Georadar;
- 3.1.2.
- Magnetometry;
- 3.1.3.
- Electrical Resistivity methods;
- 3.1.4.
- Electromagnetic Induction method;
- 3.1.5.
- Other techniques.
- 3.2.1.
- Monumental structures;
- 3.2.2.
- Submerged archeological areas;
- 3.2.3.
- Approaches aiding risk assessment and management.
3. Results: Selected Case Studies and Approaches in the Literature
3.1. Geophysical Prospection of Archeological Sites
3.1.1. Georadar (GPR)
3.1.2. Magnetometry (MAG)
3.1.3. Electrical Resistivity Methods
3.1.4. Electromagnetic Induction Method (EMI)
3.1.5. Other Methods
3.2. Other Geophysical Applications
3.2.1. Monumental Structure Geophysics
3.2.2. Submerged Archeological Areas
3.2.3. Approaches Aiding Risk Assessment and Management
3.3. Proximal Sensing Geophysics and Geomatics for Archeological Prospection
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Piroddi, L.; Abu Zeid, N.; Calcina, S.V.; Capizzi, P.; Capozzoli, L.; Catapano, I.; Cozzolino, M.; D’Amico, S.; Lasaponara, R.; Tapete, D. Imaging Cultural Heritage at Different Scales: Part I, the Micro-Scale (Manufacts). Remote Sens. 2023, 15, 2586. [Google Scholar] [CrossRef]
- Oswin, J. A Field Guide to Geophysics in Archaeology; Springer Science & Business Media: Berlin, Germany, 2009. [Google Scholar]
- Witten, A. Handbook of Geophysics and Archaeology; Routledge: London, UK, 2017. [Google Scholar]
- Schmidt, A. Geophysical Data in Archaeology: A Guide to Good Practice; Oxbow Books: Oxford, UK, 2013. [Google Scholar] [CrossRef]
- Piro, S.; Goodman, D.; Nishimura, Y. The study and characterization of Emperor Traiano’s Villa (Altopiani di Arcinazzo, Roma) using high-resolution integrated geophysical surveys. Archaeol. Prospect. 2003, 10, 1–25. [Google Scholar] [CrossRef]
- Piro, S.; Campana, S. GPR investigation in different archaeological sites in Tuscany (Italy). Analysis and comparison of the obtained results. Near Surf. Geophys. 2012, 10, 47–56. [Google Scholar] [CrossRef]
- Cozzolino, M.; Gentile, V.; Giordano, C.; Mauriello, P. Imaging Buried Archaeological Features through Ground Penetrating Radar: The Case of the Ancient Saepinum (Campobasso, Italy). Geosciences 2020, 10, 225. [Google Scholar] [CrossRef]
- Cozzolino, M.; Baković, M.; Borovinić, N.; Galli, G.; Gentile, V.; Jabučanin, M.; Mauriello, P.; Merola, P.; Živanović, M. The Contribution of Geophysics to the Knowledge of the Hidden Archaeological Heritage of Montenegro. Geosciences 2020, 10, 187. [Google Scholar] [CrossRef]
- Coolen, J.; Wallner, M.; Trausmuth, T.; König, A. New Insights into a Romanesque Basilica Church in the Deserted Town of Corvey, Germany, Based on a High-Resolution GPR Survey. ArcheoSciences 2021, 45, 35–38. [Google Scholar] [CrossRef]
- Leucci, G.; Di Giacomo, G.; Ditaranto, I.; Miccoli, I.; Scardozzi, G. Integrated Ground-penetrating Radar and Archaeological Surveys in the Ancient City of Hierapolis of Phrygia (Turkey). Archaeol. Prospect. 2013, 20, 285–301. [Google Scholar] [CrossRef]
- Urban, T.M.; Murray, C.A.; Vella, C.; Lahikainen, A. Ground-penetrating radar survey on the island of Pantelleria (Italy) reveals an ancient architectural complex with likely Punic and Roman components. J. Appl. Geophys. 2015, 123, 164–169. [Google Scholar] [CrossRef]
- Florit, C.M.; Ontiveros, M.Á.C.; Goossens, L.; Meyer, C.; Sala, R.; Ortiz, H. Geophysical survey of two rural sites in Mallorca (Balearic Islands, Spain): Unveiling Roman villae. J. Appl. Geophys. 2018, 150, 101–117. [Google Scholar] [CrossRef]
- Porcelli, F.; Sambuelli, L.; Comina, C.; Spanò, A.; Lingua, A.; Calantropio, A.; Catanzariti, G.; Chiabrando, F.; Fischanger, F.; Maschio, P.; et al. Integrated Geophysics and Geomatics Surveys in the Valley of the Kings. Sensors 2020, 20, 1552. [Google Scholar] [CrossRef] [PubMed]
- Rundkvist, M.; Viberg, A. Geophysical investigations on the Viking period platform mound at Aska in Hagebyhöga parish, Sweden. Archaeol. Prospect. 2015, 22, 131–138. [Google Scholar] [CrossRef]
- Booth, A.D.; Szpakowska, K.; Pischikova, E.; Griffin, K. Structure of an ancient Egyptian tomb inferred from ground-penetrating radar imaging of deflected overburden horizons. Archaeol. Prospect. 2015, 22, 33–44. [Google Scholar] [CrossRef]
- Leucci, G.; De Giorgi, L.; Di Giacomo, G.; Ditaranto, I.; Miccoli, I.; Scardozzi, G. 3D GPR survey for the archaeological characterization of the ancient Messapian necropolis in Lecce, South Italy. J. Archaeol. Sci. Rep. 2016, 7, 290–302. [Google Scholar] [CrossRef]
- Piro, S.; Haynes, I.; Liverani, P.; Zamuner, D. GPR investigation to map the subsoil of the St. John Lateran Basilica (Rome, Italy). Boll. Geofis. Teor. Appl. 2017, 58, 431–444. [Google Scholar]
- Masini, N.; Leucci, G.; Vera, D.; Sileo, M.; Pecci, A.; Garcia, S.; López, R.; Holguín, H.; Lasaponara, R. Towards Urban Archaeo-Geophysics in Peru. The Case Study of Plaza de Armas in Cusco. Sensors 2020, 20, 2869. [Google Scholar] [CrossRef] [PubMed]
- Capozzoli, L.; Catapano, I.; De Martino, G.; Gennarelli, G.; Ludeno, G.; Rizzo, E.; Soldovieri, F.; Uliano Scelza, F.; Zuchtriegel, G. The Discovery of a Buried Temple in Paestum: The Advantages of the Geophysical Multi-Sensor Application. Remote Sens. 2020, 12, 2711. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Fontana, F.; Pipan, M.; Tian, G. GPR imaging and characterization of ancient Roman ruins in the Aquileia Archaeological Park, NE Italy. Measurement 2018, 113, 161–171. [Google Scholar] [CrossRef]
- Colombero, C.; Comina, C.; Rocchietti, D.; Garbarino, G.B.; Sambuelli, L. Ground penetrating radar surveys in the archaeological area of Augusta Bagiennorum: Comparisons between geophysical and archaeological campaigns. Archaeol. Prospect. 2021, 29, 451–464. [Google Scholar] [CrossRef]
- Schmidt, A. Electrical and magnetic methods in archaeological prospection. In Seeing the Unseen. Geophysics and Landscape Archaeology; Campana, S., Piro, S., Eds.; Taylor & Francis Group: London, UK, 2009; pp. 67–81. [Google Scholar]
- Gaffney, V.; Neubauer, W.; Garwood, P.; Gaffney, C.; Löcker, K.; Bates, R.; De Smedt, P.; Baldwin, E.; Chapman, H.; Hinterleitner, A.; et al. Durrington walls and the Stonehenge Hidden Landscape Project 2010–2016. Archaeol. Prospect. 2018, 25, 255–269. [Google Scholar] [CrossRef]
- Boschi, F. Magnetic Prospecting for the Archaeology of Classe, Archaeological Prospection. Archaeol. Prospect. 2012, 19, 219–227. [Google Scholar] [CrossRef]
- Bárta, J.; Belov, T.; Frolík, J.; Jirků, J. Applications of Geophysical Surveys for Archaeological Studies in Urban and Rural Areas in Czech Republic and Armenia. Geosciences 2020, 10, 356. [Google Scholar] [CrossRef]
- Caldara, M.; Ciminale, M.; De Santis, V.; Noviello, M. A Multidisciplinary Approach to Reveal and Interpret ‘Missing’ Archaeological Features at the Masseria Pantano Site in Apulia. Archaeol. Prospect. 2014, 21, 301–309. [Google Scholar] [CrossRef]
- Urban, T.M.; Rasic, J.T.; Alix, C.; Anderson, D.D.; Chisholm, L.; Jacob, R.W.; Manning, S.W.; Mason, O.K.; Tremayne, A.H.; Vinson, D. Magnetic detection of archaeological hearths in Alaska: A tool for investigating the full span of human presence at the gateway to North America. Quat. Sci. Rev. 2019, 211, 73–92. [Google Scholar] [CrossRef]
- Fitton, T.; Contreras, D.A.; Gidna, A.O.; Mabulla, A.Z.; Prendergast, M.E.; Grillo, K.M. Detecting and mapping the ‘ephemeral’: Magnetometric survey of a Pastoral Neolithic settlement at Luxmanda, Tanzania. Antiquity 2022, 96, 298–318. [Google Scholar] [CrossRef]
- Lasaponara, R.; Masini, N.; Rizzo, E.; Orefici, G. New discoveries in the Piramide Naranjada in Cahuachi (Peru) using satellite, Ground Probing Radar and magnetic investigations. J. Archaeol. Sci. 2011, 38, 2031–2039. [Google Scholar] [CrossRef]
- Shi, Z.; Tian, G.; Hobbs, R.W.; Wo, H.; Lin, J.; Wu, L.; Liu, H. Magnetic gradient and ground penetrating radar prospecting of buried earthen archaeological remains at the Qocho City site in Turpan, China. Near Surf. Geophys. 2015, 13, 477–485. [Google Scholar] [CrossRef]
- Linford, N.; Linford, P.; Martin, L.; Payne, A. Recent Results from the English Heritage Caesium Magnetometer Systemin Comparison with Recent Fluxgate Gradiometers. Archaeol. Prospect. 2007, 14, 151–166. [Google Scholar] [CrossRef]
- Mathé, V.; Leveque, F.; Mathé, P.-E.; Chevallier, C.; Pons, Y. Soil anomaly mapping using a caesium magnetometer: Limits in the low magnetic amplitude case. J. Appl. Geophys. 2006, 58, 202–217. [Google Scholar] [CrossRef]
- Herwanger, J.; Maurer, H.; Green, A.J.; Leckebusch, J. 3-D inversions of magnetic gradiometer data in archaeological prospecting: Possibilities and limitations. Geophysics 2020, 65, 3–849. [Google Scholar]
- Argote, D.L.; Tejero, A.; Chavez, R.E.; Lopez, P.A.; Bravo, R. 3D modelling of magnetic data from an archaeological site in north-western Tlaxcala state, Mexico. J. Archaeol. Sci. 2009, 36, 1661–1671. [Google Scholar] [CrossRef]
- Cella, F.; Fedi, M. High-resolution geophysical 3D imaging for archaeology by magnetic and EM data: The case of the iron age settlement of Torre Galli, Southern Italy. Surv. Geophys. 2015, 36, 831–850. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Giannopoulos, A.; Tsourlos, P.; Vargemezis, G.; Tealby, J.M.; Sarris, A.; Papazachos, C.B.; Savopoulou, T. A large scale geophysical survey in the archaeological site of Europos. J. Appl. Geophys. 1994, 32, 85–98. [Google Scholar] [CrossRef]
- Hargrave, M.L.; Somers, L.E.; Larson, T.K.; Shields, R.; Dendy, J. The Role of Resistivity Survey in Historic Site Assessment and Management: An Example from Fort Riley, Kansas. Hist. Archaeol. 2002, 36, 89–110. [Google Scholar] [CrossRef]
- Gaffney, C.; Goodchild, H.; Harrison, S. Geophysical and Topographical Survey of the Theatre at Ancient Sparta; Birmingham Archaeology Report, PN 1643; Birmingham Archaeology: Birmingham, UK, 2007. [Google Scholar]
- Cozzolino, M.; Caliò, L.M.; Gentile, V.; Mauriello, P.; Di Meo, A. The Discovery of the Theater of Akragas (Valley of Temples, Agrigento, Italy): An Archaeological Confirmation of the Supposed Buried Structures from a Geophysical Survey. Geosciences 2020, 10, 161. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Giovanni, E.; Mauriello, P.; Vanni Desideri, A.; Patella, D. Resistivity tomography in the park of Pratolino at Vaglia (Florence, Italy). Archaeol. Prospect. 2012, 19, 253–260. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Giovanni, E.; Mauriello, P.; Piro, S.; Zamuner, D. Geophysical Methods for Cultural Heritage Management; Springer: Cham, Switzerland, 2018; p. 211. [Google Scholar]
- Mauriello, P.; Patella, D. A data-adaptive probability-based fast ERT inversion method. Prog. Electromagn. Res. 2009, 97, 275–290. [Google Scholar] [CrossRef]
- Masini, N.; Capozzoli, L.; Chen, P.; Chen, F.; Romano, G.; Lu, P.; Tang, P.; Sileo, M.; Ge, Q.; Lasaponara, R. Towards an Operational Use of Geophysics for Archaeology in Henan (China): Methodological Approach and Results in Kaifeng. Remote Sens. 2017, 9, 809. [Google Scholar] [CrossRef]
- Vött, A.; Willershäuser, T.; Hadler, H.; Obrocki, L.; Fischer, P.; Heinzelmann, M. Geoarchaeological evidence of Ostia’s river harbour operating until the fourth century AD. Archaeol. Anthropol. Sci. 2020, 12, 88. [Google Scholar] [CrossRef]
- AL-Hameedawi, M.M.; Thabit, J.M.; AL-Menshed, F.H. Electrical resistivity tomography and ground-penetrating radar methods to detect archaeological walls of Babylonian houses near Ishtar temple, ancient Babylon city, Iraq. Geophys. Prospect. 2022, 71, 1792–1806. [Google Scholar] [CrossRef]
- Leucci, G.; Greco, F. 3D ERT Survey to Reconstruct Archaeological Features in the Subsoil of the “Spirito Santo” Church Ruins at the Site of Occhiolà (Sicily, Italy). Archaeology 2012, 1, 1–6. [Google Scholar]
- Orlando, L. GPR to constrain ERT data inversion in cavity searching: Theoretical and practical applications in archaeology. J. Appl. Geophys. 2013, 89, 35–47. [Google Scholar] [CrossRef]
- Compare, V.; Cozzolino, M.; Mauriello, P.; Patella, D. Resistivity probability tomography at the Castle of Zena (Italy). Eurasip. J. Image Video 2009, 2009, 693274. [Google Scholar] [CrossRef]
- Tsourlos, P.; Papadopoulos, N.; Yi, M.J.; Kim, J.H.; Tsokas, G. Comparison of measuring strategies for the 3-D electrical resistivity imaging of tumuli. J. Appl. Geophys. 2014, 101, 77–85. [Google Scholar] [CrossRef]
- Yi, M.J.; Kim, J.H.; Song, Y.; Cho, S.J.; Chung, S.H.; Suh, J.H. Three-dimensional imaging of subsurface structures using resistivity data. Geophys. Prospect. 2001, 49, 483–497. [Google Scholar] [CrossRef]
- Papadopoulos, N.G.; Yi, M.J.; Kim, J.H.; Tsourlos, P.; Tsokas, G.N. Geophysical investigation of tumuli by means of surface 3D Electrical Resistivity Tomography. J. Appl. Geophys. 2010, 70, 192–205. [Google Scholar] [CrossRef]
- Cozzolino, M.; Mauriello, P.; Patella, D. The Extended data-adaptive Probability-based Electrical Resistivity Tomography Inversion Method (E-PERTI) for the characterization of the buried ditch of the ancient Egnazia (Puglia, Italy). Appl. Sci. 2022, 12, 2690. [Google Scholar] [CrossRef]
- Elwaseif, M.; Slater, L. Quantifying tomb geometries in resistivity images using watershed algorithms. J. Archaeol. Sci. 2010, 37, 1424–1436. [Google Scholar] [CrossRef]
- Arato, A.; Piro, S.; Sambuelli, L. 3D inversion of ERT data on an archaeological site using GPR reflection and 3D inverted magnetic data as a priori information. Near Surf. Geophys. 2015, 13, 545–556. [Google Scholar] [CrossRef]
- Akca, İ.; Balkaya, Ç.; Pülz, A.; Alanyalı, H.S.; Kaya, M.A. Integrated geophysical investigations to reconstruct the archaeological features in the episcopal district of Side (Antalya, Southern Turkey). J. Appl. Geophys. 2019, 163, 22–30. [Google Scholar] [CrossRef]
- Al-Saadi, O.S.; Schmidt, V.; Becken, M.; Fritsch, T. Very-high-resolution electrical resistivity imaging of buried foundations of a Roman villa near Nonnweiler, Germany. Archaeol. Prospect. 2018, 25, 209–218. [Google Scholar] [CrossRef]
- Ullrich, B.; Günther, T.; Rücker, C. Electrical resistivity tomography methods for archaeological prospection. Conference: Layers of perception. In Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA), Berlin, Germany, 2–6 April 2007. [Google Scholar]
- Fischanger, F.; Catanzariti, G.; Comina, C.; Sambuelli, L.; Morelli, G.; Barsuglia, F.; Ellaithy, A.; Porcelli, F. Geophysical anomalies detected by electrical resistivity tomography in the area surrounding Tutankhamun’s tomb. J. Cult. Herit. 2019, 36, 63–71. [Google Scholar] [CrossRef]
- Pazzi, V.; Ceccatelli, M.; Ciani, L.; Patrizi, G.; Guidi, G.; Cappuccini, L.; Casagli, N.; Catelani, M. Analysis of the Influence of the GPS Errors Occurred While Collecting Electrode Coordinates on the Electrical Resistivity of Tumuli. Sensors 2020, 20, 2966. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Tsourlos, P.I.; Kim, J.H.; Papazachos, C.B.; Vargemezis, G.; Bogiatzis, P. Assessing the Condition of the Rock Mass over the Tunnel of Eupalinus in Samos (Greece) using both Conventional Geophysical Methods and Surface to Tunnel Electrical Resistivity Tomography. Archaeol. Prospect. 2014, 21, 277–291. [Google Scholar] [CrossRef]
- Bellanova, J.; Calamita, G.; Catapano, I.; Ciucci, A.; Cornacchia, C.; Gennarelli, G.; Giocoli, A.; Fisangher, F.; Ludeno, G.; Morelli, G.; et al. GPR and ERT Investigations in Urban Areas: The Case-Study of Matera (Southern Italy). Remote Sens. 2020, 12, 1879. [Google Scholar] [CrossRef]
- Rizzo, E.; Capozzoli, L.; De Martino, G.; Grimaldi, S. Urban geophysical approach to characterize the subsoil of the main square in San Benedetto del Tronto town (Italy). Eng. Geol. 2019, 257, 105133. [Google Scholar] [CrossRef]
- Cozzolino, M.; Gentile, V.; Mauriello, P.; Peditrou, A. Non-Destructive Techniques for Building Evaluation in Urban Areas: The Case Study of the Redesigning Project of Eleftheria Square (Nicosia, Cyprus). Appl. Sci. 2020, 10, 4296. [Google Scholar] [CrossRef]
- Capozzoli, L.; Fornasari, G.; Giampaolo, V.; De Martino, G.; Rizzo, E. Multi-Sensors Geophysical Monitoring for Reinforced Concrete Engineering Structures: A Laboratory Test. Sensors 2021, 21, 5565. [Google Scholar] [CrossRef]
- Klanica, R.; Grison, H.; Šteffl, J.; Beránek, R. Assessing the Volume of Defensive Structures for Architectural Energetics Analysis Using 3D Electrical Resistivity Tomography. Remote Sens. 2022, 14, 2652. [Google Scholar] [CrossRef]
- Zeid, N.A.; Bignardi, S.; Russo, P.; Peresani, M. Deep in a Paleolithic archive: Integrated geophysical investigations and laser-scanner reconstruction at Fumane Cave, Italy. J. Archaeol. Sci. Rep. 2019, 27, 101976. [Google Scholar]
- Torrese, P.; Zucca, F.; Martini, S.; Benazzi, S.; Drohobytsky, D.; Gravel-Miguel, C.; Hodgkins, J.; Meyer, D.; Miller, C.; Peresani, M.; et al. NegrinoGround truth validated 3D electrical resistivity imaging of the archaeological deposits at Arma Veirana cave (northern Italy). J. Quat. Sci. 2022, 37, 1112–1132. [Google Scholar] [CrossRef]
- Frfhlich Gugler, I.M.; Gex, P. Electromagnetic survey of a Celtic tumulus. J. Appl. Geophys. 1996, 35, 15–25. [Google Scholar] [CrossRef]
- Conyers, L.B.; Ernenwein, E.G.; Grealy, M.; Lowe, K.M. Electromagnetic Conductivity Mapping for Site Prediction in Meandering River Floodplains. Archaeol. Prospect. 2008, 15, 81–91. [Google Scholar] [CrossRef]
- Simpson, D.; Lehouck, A.; Van Meirvenne, M.; Bourgeois, J.; Thoen, E.; Vervloet, J. Geoarchaeological prospection of a medieval manor in the Dutch Polders using an electromagnetic induction sensor in combination with soil augerings. Geoarchaeology 2008, 23, 305–319. [Google Scholar] [CrossRef]
- Simpson, D.; Lehouck, A.; Verdonck, L.; Vermeersch, H.; Van Meirvenne, M.; Bourgeois, J.; Thoen, E.; Docter, R. Comparison between electromagnetic induction and fluxgate gradiometer measurements on the buried remains of a 17th century castle. J. Appl. Geophys. 2009, 68, 294–300. [Google Scholar] [CrossRef]
- De Smedt, P.; Saey, T.; Lehouck, A.; Stichelbaut, B.; Meerschman, E.; Islam, M.M.; Van De Vijver, E.; Van Meirvenne, M. Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 ha dataset. Geoderma 2013, 199, 30–36. [Google Scholar] [CrossRef]
- Di Maio, R.; La Manna, M.; Piegari, E.; Mancini, C.; Achilli, V.; Fabris, M. Multi-methodological Geophysical Exploration for the Interpretation of the Ancient Landscape of Phaistos (Greece). Archaeol. Prospect. 2016, 23, 287–299. [Google Scholar] [CrossRef]
- Tang, P.; Chen, F.; Jiang, A.; Zhou, W.; Wang, H.; Leucci, G.; Sileo, M.; Luo, R.; Lasaponara, R.; Masini, N. Multi-frequency electromagnetic induction survey for archaeological prospection: Approach and results in Han Hangu Pass and Xishan Yang in China. Surv. Geophys. 2018, 39, 1285–1302. [Google Scholar] [CrossRef]
- Deiana, R.; Vicenzutto, D.; Deidda, G.P.; Boaga, J.; Cupitò, M. Remote Sensing, Archaeological, and Geophysical Data to Study the Terramare Settlements: The Case Study of Fondo Paviani (Northern Italy). Remote Sens. 2020, 12, 2617. [Google Scholar] [CrossRef]
- Deiana, R.; Deidda, G.P.; Cusí, E.D.; van Dommelen, P.; Stiglitz, A. FDEM and ERT measurements for archaeological prospections at Nuraghe S’Urachi (West-Central Sardinia). Archaeol. Prospect. 2022, 29, 69–86. [Google Scholar] [CrossRef]
- Tabbagh, A.; Dabas, M. Absolute magnetic viscosity determination using time-domain electromagnetic devices. Archaeol. Prospect. 1996, 3, 199–208. [Google Scholar] [CrossRef]
- Ranieri, G.; Deiana, R.; Deidda, G.P.; Haile, T.; Erriu, S.; Nuvoli, M. Tem-fast shallow soundings for archaeological investigations. In Proceedings of the 9th EAGE/EEGS Meeting, Prague, Czech Republic, 31 August–4 September 2003; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2003; p. 52. [Google Scholar]
- Ranieri, G.; Calcina, S.V.; Piroddi, L. Preventive geo-physical surveys for the evaluation of the archaeological risk: Examples from the region of the ancient Pylos (western Peloponnese, Greece). In Proceedings of the 21st International Conference on Computational Science and Its Applications (ICCSA), Cagliari, Italy, 13–16 September 2021; IEEE: New York, NY, USA, 2021; pp. 242–250. [Google Scholar]
- Trogu, A.; Ranieri, G.; Calcina, S.; Piroddi, L. The ancient Roman aqueduct of Karales (Cagliari, Sardinia, Italy): Applicability of geophysics methods to finding the underground remains. Archaeol. Prospect. 2014, 21, 157–168. [Google Scholar] [CrossRef]
- Drahor, M.G. Integrated geophysical studies in the upper part of Sardis archaeological site, Turkey. J. Appl. Geophys. 2006, 59, 205–223. [Google Scholar] [CrossRef]
- Bayrak, M.; Gürer, A.; Gürer, Ö.F.; İlkışık, O.M. Delineation of the Acemhöyük settlement mound in Turkey using 2-D and pseudo-3-D VLF imaging. Arab. J. Geosci. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Papamarinopoulos, S.P. The detection of King Xerxes’ Canal by the use of shallow reflection and refraction seismics—Preliminary results. Geophys. Prospect. 1997, 45, 389–401. [Google Scholar] [CrossRef]
- Deidda, G.P.; Balia, R. An ultrashallow SH-wave seismic reflection experiment on a subsurface ground model. Geophysics 2001, 66, 1097–1104. [Google Scholar] [CrossRef]
- Balia, R. Shallow reflection survey in the Selinunte National Archaeological Park (Sicily, Italy). Boll. Geofis. Teor. Appl. 1992, 34, 121–131. [Google Scholar]
- Karastathis, V.K.; Papamarinopoulos, S.; Jones, R.E. 2-D velocity structure of the buried ancient canal of Xerxes: An application of seismic methods in archaeology. J. Appl. Geophys. 2001, 47, 29–43. [Google Scholar] [CrossRef]
- Nogoshi, M.; Igarashi, T. On the propagation characteristics of microtremors. J. Seism. Soc. Jpn. 1970, 23, 264–280. [Google Scholar]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railw. Tech. Res. Inst. Q. Rep. 1989, 30, 25–33. [Google Scholar]
- Gutenberg, B. Two types of microseisms. J. Geophys. Res. 1958, 63, 595–597. [Google Scholar] [CrossRef]
- Asten, M.W. Geological control on the three-component spectra of Rayleigh-wave microseisms. Bull. Seismol. Soc. Am. 1978, 68, 1623–1636. [Google Scholar]
- Asten, M.W.; Henstridge, J.D. Array estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics 1984, 49, 1828–1837. [Google Scholar] [CrossRef]
- Castellaro, S.; Imposa, S.; Barone, F.; Chiavetta, F.; Gresta, S.; Mulargia, F. Georadar and passive seismic survey in the Roman Amphitheatre of Catania (Sicily). J. Cult. Herit. 2008, 9, 357–366. [Google Scholar] [CrossRef]
- Bottari, C.; Urbini, S.; Bianca, M.; D’Amico, M.; Marchetti, M.; Pizzolo, F. Buried archaeological remains connected to the Greek-Roman harbor at Tindari (north-east Sicily): Results from geomorphological and geophysical investigations. Ann. Geophys. 2012, 55, 223–234. [Google Scholar] [CrossRef]
- Wilken, D.; Wunderlich, T.; Majchczack, B.; Andersen, J.; Rabbel, W. Rayleigh-wave resonance analysis: A methodological test on a Viking age pit house. J. Cult. Herit. 2015, 9, 357–366. [Google Scholar] [CrossRef]
- Abu Zeid, N.; Corradini, E.; Bignardi, S.; Morandi, N.; Nizzo, V. The passive seismic technique “HVSR” as a reconnaissance tool for mapping paleo-soils: The case of the Pilastri archaeological site, Northern Italy. Archaeol. Prospect. 2017, 24, 245–258. [Google Scholar] [CrossRef]
- Tsokas, G.N.; Papazachos, C.B.; Vafidis, A.; Loukoyiannakis, M.Z.; Vargemezis, G.; Tzimeas, K. The detection of monumental tombs buried in tumuli by seismic re-fraction. Geophysics 1995, 60, 1735–1742. [Google Scholar] [CrossRef]
- Ranieri, G. The Application of Geophysical methods to resolve a fascinating archaeological query. In Proceedings of the 5th EEGS-ES Meeting, Cape Town, South Africa, 28 September–1 October 1999; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 1999; p. 35. [Google Scholar]
- Forte, E.; Pipan, M. Integrated seismic tomography and ground-penetrating radar (GPR) for the high-resolution study of burial mounds (tumuli). J. Archaeol. Sci. 2008, 35, 2614–2623. [Google Scholar] [CrossRef]
- Polymenakos, L.; Tweeton, D. Reevaluating a seismic traveltime tomography survey at Kastas tumulus (Amphipolis, Greece). J. Archaeol. Sci. Rep. 2015, 4, 434–446. [Google Scholar] [CrossRef]
- Polymenakos, L.; Tweeton, D. Non-invasive characterization of a burial tumulus with use of seismic P-wave velocity and attenuation tomography. J. Archaeol. Sci. Rep. 2017, 13, 36–48. [Google Scholar] [CrossRef]
- Gołębiowski, T.; Pasierb, B.; Porzucek, S.; Łój, M. Complex prospection of medieval underground salt chambers in the village of Wiślica, Poland. Archaeol. Prospect. 2018, 25, 243–254. [Google Scholar] [CrossRef]
- Rabbel, W.; Erkul, E.; Stümpel, H.; Wunderlich, T.; Pašteka, R.; Papco, J.; Niewöhner, P.; Bariş, Ş.; Çakin, O.; Pekşen, E. Discovery of a Byzantine Church in Iznik/Nicaea, Turkey: An educational case history of geophysical prospecting with combined methods in urban areas. Archaeol. Prospect. 2015, 22, 1–20. [Google Scholar] [CrossRef]
- Moussa, M. Gamma-ray spectrometry: A new tool for exploring archaeological sites; a case study from East Sinai, Egypt. J. Appl. Geophys. 2001, 48, 137–142. [Google Scholar] [CrossRef]
- Robinson, V. Atomic archaeology? Using portable gamma surveying techniques to identify buried archaeological. Spectrosc. Eur. 2022, 34, 20–23. [Google Scholar] [CrossRef]
- Robinson, V.; Clark, R.; Black, S.; Fry, R.; Beddow, H. Portable gamma ray spectrometry for archaeological prospection: A preliminary investigation at Silchester Roman Town. Archaeol. Prospect. 2022, 29, 353–367. [Google Scholar] [CrossRef]
- Beni, T.; Borselli, D.; Bonechi, L.; Lombardi, L.; Gonzi, S.; Melelli, L.; Turchetti, M.A.; Fanò, L.; D’Alessandro, R.; Gigli, G.; et al. Laser scanner and UAV digital photogrammetry as support tools for cosmic-ray muon radiography applications: An archaeological case study from Italy. Sci. Rep. 2023, 13, 19983. [Google Scholar] [CrossRef] [PubMed]
- Saracino, G.; Ambrosino, F.; Bonechi, L.; Cimmino, L.; D’Alessandro, R.; D’Errico, M.; Noli, P.; Scognamiglio, L.; Strolin, P. Applications of muon absorption radiography to the fields of archaeology and civil engineering. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20180057. [Google Scholar] [CrossRef] [PubMed]
- Tsourlos, P.I.; Tsokas, G.N. Non-destructive electrical resistivity tomography survey at the south walls of the Acropolis of Athens. Archaeol. Prospect. 2011, 18, 173–186. [Google Scholar] [CrossRef]
- Angelis, D.; Tsourlos, P.; Tsokas, G.; Vargemezis, G.; Zacharopoulou, G.; Power, C. Combined application of GPR and ERT for the assessment of a wall structure at the Heptapyrgion fortress (Thessaloniki, Greece). J. Appl. Geophys. 2018, 152, 208–220. [Google Scholar] [CrossRef]
- Balia, R.; Pirinu, A. Geophysical surveying of the ancient walls of the town of Cagliari, Italy, by means of refraction and up-hole seismic tomography techniques. Archaeol. Prospect. 2018, 25, 147–153. [Google Scholar] [CrossRef]
- Pirinu, A.; Balia, R.; Piroddi, L.; Trogu, A.; Utzeri, M.; Vignoli, G. Deepening the knowledge of military architecture in an urban context through digital representations integrated with geophysical surveys. The city walls of Cagliari (Italy). In Proceedings of the Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; IEEE: New York, NY, USA, 2018; pp. 211–215. [Google Scholar]
- Pérez-Gracia, V.; Caselles, J.O.; Clapes, J.; Osorio, R.; Martínez, G.; Canas, J.A. Integrated near-surface geophysical survey of the Cathedral of Mallorca. J. Archaeol. Sci. 2009, 36, 1289–1299. [Google Scholar] [CrossRef]
- Casas, A.; Cosentino, P.L.; Fiandaca, G.; Himi, M.; Macias, J.M.; Martorana, R.; Muñoz, A.; Rivero, L.; Sala, R. Non-invasive Geophysical Surveys in Search of the Roman Temple of Augustus Under the Cathedral of Tarragona (Catalonia, Spain): A Case Study. Surv. Geophys. 2018, 39, 1107–1124. [Google Scholar] [CrossRef]
- Fiandaca, G.; Martorana, R.; Messina, P.; Cosentino, P.L. The MYG methodology to carry out 3D electrical resistivity tomography on media covered by vulnerable surfaces of artistic value. Il Nuovo Cimento B 2010, 125, 711–718. [Google Scholar]
- Cosentino, P.; Capizzi, P.; Fiandaca, G.; Martorana, R.; Messina, P. Advances in microgeophysics for engineering and cultural heritage. J. Earth Sci. 2009, 20, 626–639. [Google Scholar] [CrossRef]
- Yilmaz, O. Geophysical investigations of historic buildings—A case study of the Great Church of St. Sophia. Lead. Edge 2013, 32, 292–296. [Google Scholar] [CrossRef]
- Yilmaz, O. Geophysical Investigations of Historic Buildings. In Engineering Seismology with Applications to Geotechnical Engineering; Yilmaz, Ö., Ed.; Society of Exploration Geo-Physicists: Tulsa, OK, USA, 2013. [Google Scholar]
- Piroddi, L.; Rassu, M. Application of GPR Prospection to Unveil Historical Stratification inside Monumental Buildings: The Case of San Leonardo de Siete Fuentes in Santu Lussurgiu, Sardinia, Italy. Land 2023, 12, 590. [Google Scholar] [CrossRef]
- Orlando, L.; De Donno, G.; Di Giambattista, L.; Palladini, L. Investigating the Foundation of the Amphiteatrum Flavium through the Passage of Commodus. Ann. Geophys. 2017, 60, 0437. [Google Scholar] [CrossRef]
- Argote-Espino, D.; Tejero-Andrade, A.; Cifuentes-Nava, G.; Iriarte, L.; Farías, S.; Chávez, R.E.; López, F. 3D electrical prospection in the archaeological site of El Pahñú, Hidalgo State, Central Mexico. J. Archaeol. Sci. 2013, 40, 1213–1223. [Google Scholar] [CrossRef]
- Chávez, R.E.; Tejero-Andrade, A.; Cifuentes, G.; Argote-Espino, D.L.; Hernández-Quintero, E. Karst detection beneath the pyramid of El Castillo, Chichen Itza, Mexico, by non-invasive ERT-3D methods. Sci. Rep. 2018, 8, 15391. [Google Scholar] [CrossRef]
- Pazzi, V.; Tapete, D.; Cappuccini, L.; Fanti, R. An electric and electromagnetic geophysical approach for subsurface investigation of anthropogenic mounds in an urban environment. Geomorphology 2016, 273, 335–347. [Google Scholar] [CrossRef]
- Pašteka, R.; Pánisová, J.; Zahorec, P.; Papčo, J.; Mrlina, J.; Fraštia, M.; Vargemezis, G.; Kušnirák, D.; Zvara, I. Microgravity method in archaeological prospection: Methodical comments on selected case studies from crypt and tomb detection. Archaeol. Prospect. 2020, 27, 415–431. [Google Scholar] [CrossRef]
- Padín, J.; Martín, A.; Anquela, A.B. Archaeological microgravimetric prospection inside don church (Valencia, Spain). J. Archaeol. Sci. 2012, 39, 547–554. [Google Scholar] [CrossRef]
- Fais, S.; Radogna, P.V.; Romoli, E.; Matta, P.; Klingele, E.E. Microgravity for detecting cavities in an archaeological site in Sardinia (Italy). Near Surf. Geophys. 2015, 13, 495–504. [Google Scholar] [CrossRef]
- Alvarez, L.W.; Anderson, J.A.; Bedwei, F.E.; Burkhard, J.; Fakhry, A.; Girgis, A.; Goneid, A.; Hassan, F.; Iverson, D.; Lynch, G.; et al. Search for Hidden Chambers in the Pyramids: The structure of the Second Pyramid of Giza is determined by cosmic-ray absorption. Science 1970, 167, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Gòmez, H.; Carloganu, C.; Gibert, D.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A. Feasibility study of archaeological structures scanning by muon tomography. In AIP Conference Proceedings; AIP Publishing LLC.: Melville, NY, USA, 2015; Volume 1672. [Google Scholar]
- Gomez, H.; Carloganu, C.; Gibert, D.; Jacquemier, J.; Karyotakis, Y.; Marteau, J.; Niess, V.; Katsanevas, S.; Tonazzo, A. Studies on muon tomography for archaeological internal structures scanning. J. Phys. Conf. Ser. 2016, 718, 052016. [Google Scholar] [CrossRef]
- Morishima, K.; Kuno, M.; Nishio, A.; Kitagawa, N.; Manabe, Y.; Moto, M.; Takasaki, F.; Fujii, H.; Satoh, K.; Kodama, H.; et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 2017, 552, 386–390. [Google Scholar] [CrossRef]
- Baccani, G.; Bonechi, L.; Bongi, M.; Brocchini, D.; Casagli, N.; Ciaranfi, R.; Cimmino, L.; Ciulli, V.; D’Alessandro, R.; Del Ventisette, C.; et al. Muon radiography of ancient mines: The San Silvestro archaeo-mining park (Campiglia Marittima, Tuscany). Universe 2019, 5, 34. [Google Scholar] [CrossRef]
- Biondi, F.; Malanga, C. Synthetic Aperture Radar Doppler Tomography Reveals Details of Undiscovered High-Resolution Internal Structure of the Great Pyramid of Giza. Remote Sens. 2022, 14, 5231. [Google Scholar] [CrossRef]
- Margottini, C.; Spizzichino, D.; Orlando, L.; Marsella, M.; Renzi, B.; Sonnessa, A.; Pandolfi, O.; Soddu, P. Geotechnical and geophysical characterization of Moai statues—Rapa nui easter Island (Chile). In Geotechnical Engineering for the Preservation of Monuments and Historic Sites, Proceedings of the 2nd International Symposium on Geotechnical Engineering for the Preservation of Monuments and Historic Sites, Napoli, Italy, May 2013; Taylor & Francis Group: London, UK, 2013; pp. 539–547. [Google Scholar]
- Abd-el-Maguid, M.M. Underwater Archaeology in Egypt and the Protection of its Underwater Cultural Heritage. J. Mari. Arch. 2012, 7, 193–207. [Google Scholar] [CrossRef]
- Barstad, J.F. Underwater Archaeology in the 20th Century. In International Handbook of Underwater Archaeology; Ruppé, C.V., Barstad, J.F., Eds.; The Springer Series in Underwater Archaeology; Springer: Boston, MA, USA, 2002. [Google Scholar] [CrossRef]
- Donati, J.; Sarris, A. Geophysical survey in Greece: Recent developments, discoveries and future prospects. Archaeol. Rep. 2016, 62, 63–76. [Google Scholar] [CrossRef]
- Tusa, S. Research, protection and evaluation of Sicilian and Mediterranean marine cultural heritage. Conserv. Sci. Cult. Herit. 2009, 9, 79–112. [Google Scholar] [CrossRef]
- Ding, W.; Dineng, Z.; Mingwei, W.; Zhihao, L. Chapter 4 Side-scan Sonar and Sub-bottom Profiler Surveying. In High-Resolution Seafloor Survey and Applications; Anthropogenic Geomorphic Fingerprints Identification, Evolution and Hydrodynamic Response of the Inner Lingding Bay in the Last 100 Years 2020; NSFC No.41906069; Springer: Berlin/Heidelberg, Germany; Science Press: Beijing, China, 2020. [Google Scholar]
- Mattei, G.; Giordano, F. Integrated geophysical research of Bourbonic shipwrecks sunk in the Gulf of Naples in 1799. J. Archaeol. Sci. Rep. 2015, 1, 64–72. [Google Scholar] [CrossRef]
- Özdas, H.; Kizildağ, N. Archaeological and Geophysical Investigation of Submerged Coastal Structures in Kekova, Southern Coast of Turkey. Geoarchaeology Int. J. 2013, 28, 504–516. [Google Scholar] [CrossRef]
- Capozzoli, L.; Giampaolo, V.; De Martino, G.; Perciante, F.; Lapenna, V.; Rizzo, E. ERT and GPR prospecting applied to unsaturated and subwater analogue archaeological site in a full scale laboratory. Appl. Sci. 2022, 12, 1126. [Google Scholar] [CrossRef]
- Passaro, S. Marine electrical resistivity tomography for shipwreck detection in very shallow water: A case study from Agropoli (Salerno, southern Italy). J. Archaeol. Sci. 2010, 37, 1989–1998. [Google Scholar] [CrossRef]
- Oikonomou, D.; Papadopoulos, N.; Simyrdanis, K.; Cantoro, G.; Beck, J.; Loke, M.H. Processing strategies for 3-D marine dynamic electrical resistivity tomography data. In Proceedings of the 13th International Conference on Archaeological Prospection, Sligo, Ireland, 28 August–1 September 2019. [Google Scholar]
- Papadopoulos, N. Shallow Offshore Geophysical Prospection of Archaeological Sites in Eastern Mediterranean. Remote Sens. 2021, 13, 1237. [Google Scholar] [CrossRef]
- Loke, M.H.; Papadopoulos, N.; Wilkinson, P.B.; Oikonomou, D.; Simyrdanis, K.; Rucker, D.F. The inversion of data from very large three-dimensional electrical resistivity tomography mobile surveys. Geophys. Prospect. 2020, 68, 2579–2597. [Google Scholar] [CrossRef]
- Cocchi, L.; Stefanelli, P.; Carmisciano, C.; Caratori Tontini, F.; Taramaschi, L.; Cipriani, S. Marine Archaeogeophysical Prospection of Roman Salapia Settlement (Puglia, Italy): Detecting Ancient Harbour Remains. Archaeol. Prospect. 2012, 19, 89–101. [Google Scholar] [CrossRef]
- Ludeno, G.; Capozzoli, L.; Rizzo, E.; Soldovieri, F.; Catapano, I. A Microwave Tomography Strategy for Underwater Imaging via Ground Penetrating Radar. Remote Sens. 2018, 10, 1410. [Google Scholar] [CrossRef]
- EN 1998–1; Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings. CEN (European Committee for Standardization): Brussels, Belgium, 2004.
- EN 1998–3; Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. CEN (European Committee for Standardization): Brussels, Belgium, 2005.
- Crispino, M.; D’Apuzzo, M. Measurement and prediction of traffic-induced vibrations in a heritage building. J. Sound Vibrat. 2001, 246, 319–335. [Google Scholar] [CrossRef]
- Jakubczyk-Galczynska, A.; Jankowski, R. Traffic-induced vibrations. The impact on buildings and people. In Proceedings of the 9th International Conference Environmental Engineering, Vilnius, Lithuania, 22–23 May 2014. [Google Scholar] [CrossRef]
- D’Amico, S.; Imposa, S.; Panzera, F.; Lombardo, G.; Betti, M.; Muscat, R.; Borg, R.; Grassi, S. Evaluating dynamic behavior of historical buildings through ambient seismic noise measurement and numerical modelling. In Proceedings of the IMEKO International Conference on Metrology for Archaeology and Cultural Heritage, Lecce, Italy, 23–25 October 2017. [Google Scholar]
- Iannucci, R.; Martino, S.; Paciello, A.; D’Amico, S.; Galea, P. Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques. J. Seismol. 2020, 24, 897–916. [Google Scholar] [CrossRef]
- Gentile, C.; Saisi, A. Ambient vibration testing of historic masonry towers for structural identification and damage assessment. Constr. Build. Mater. 2007, 21, 1311–1321. [Google Scholar] [CrossRef]
- Saisi, A.; Gentile, C. Post-earthquake diagnostic investigation of a historic masonry tower. J. Cult. Herit. 2015, 16, 602–609. [Google Scholar] [CrossRef]
- Bernardeschi, K.; Padovani, C.; Pasquinelli, G. Numerical modelling of the structural behavior of Buti’s bell tower. J. Cult. Herit. 2004, 5, 371–378. [Google Scholar] [CrossRef]
- Carpinteri, A.; Invernizzi, S.; Lacidogna, G. Numerical assessment of three medieval 1085 masonry towers subjected to different loading conditions. Mason. Int. 2006, 19, 65–76. [Google Scholar]
- Girardi, M.; Padovani, C.; Pagni, A.; Pasquinelli, G. Numerical modeling of masonry towers: The case study of the Rognosa Tower in San Gimignano. In Proceedings of the Fourth International Conference on Structural Engineering, Mechanics and Computation, SEMC 2010, Cape Town, South Africa, 6–8 September 2010. [Google Scholar]
- Micelli, F.; Cascardi, A. Structural assessment and seismic analysis of a 14th century masonry tower. Eng. Fail. Anal. 2019, 107, 104198. [Google Scholar] [CrossRef]
- Facchini, L.; Betti, M. An efficient Bouc & Wen approach for seismic analysis of masonry tower. Fract. Struct. Integr. 2014, 29, 139–149. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Galano, L.; Pieraccini, M. Seismic Assessment of Historic Masonry Towers: Non-invasive Techniques and Analysis Methodologies. In Handbook of Cultural Heritage Analysis; Springer International Publishing: Cham, Switzerland, 2022; pp. 1221–1268. [Google Scholar]
- Acito, M.; Bocciarelli, M.; Chiesi, C.; Milani, G. Collapse of the clock tower in finale Emilia after the May 2012 Emilia Romagna earthquake sequence: Numerical insight. Eng. Struct. 2014, 72, 70–91. [Google Scholar] [CrossRef]
- Augenti, N.; Parisi, F. Learning from construction failures due to the 2009 L’Aquila, Italy, earthquake. J. Perform. Constr. Facil. 2010, 24, 536–555. [Google Scholar] [CrossRef]
- Atzeni, C.; Bicci, A.; Dei, D.; Fratini, M.; Pieraccini, M. Remote Survey of the Leaning Tower of Pisa by Interferometric Sensing. IEEE Geosci. Remote Sens. Lett. 2010, 7, 185–189. [Google Scholar] [CrossRef]
- Calcina, S.V.; Piroddi, L.; Ranieri, G. Fast dynamic control of damaged historical buildings: A new useful approach for Structural Health Monitoring after an earthquake. ISRN Civ. Eng. 2013, 2013, 527604. [Google Scholar] [CrossRef]
- Calcina, S.V.; Piroddi, L.; Ranieri, G. Vibration analysis of historic bell towers by means of contact and remote sensing measurements. Nondestruct. Test. Eval. 2016, 31, 4–331. [Google Scholar] [CrossRef]
- Castagnetti, C.; Bassoli, E.; Vincenzi, L.; Mancini, F. Dynamic Assessment of Masonry Towers Based on Terrestrial Radar Interferometer and Accelerometers. Sensors 2019, 19, 1319. [Google Scholar] [CrossRef]
- Marchisio, M.; Piroddi, L.; Ranieri, G.; Calcina, S.V.; Farina, P. Comparison of natural and artificial forcing to study the dynamic behaviour of bell towers in low wind context by means of ground-based radar interferometry: The case of the Leaning Tower in Pisa. J. Geophys. Eng. 2014, 11, 055004. [Google Scholar] [CrossRef]
- Montuori, A.; Luzi, G.; Stramondo, S.; Casula, G.; Bignami, C.; Bonali, E.; Bianchi, M.G.; Crosetto, M. Combined use of ground-based systems for Cultural Heritage conservation monitoring. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: New York, NY, USA, 2014. [Google Scholar]
- Nico, G.; Masci, O.; Panidi, E. Non-destructive monitoring strategies of historical constructions and tangible Culturale Heritage based on Ground-based SAR Interferometry. In Proceedings of the International Conference InterCarto/InterGIS, GI Support of Sustainable Development of Territories, Petrozavodsk (Russia), Bonn (Germany), Anchorage (USA), Anchorage, AL, USA, 19 July–1 August 2018; pp. 528–535. [Google Scholar]
- Pieraccini, M.; Fratini, M.; Dei, D.; Atzeni, C. Structural testing of Historical Heritage Site Towers by microwave remote sensing. J. Cult. Herit. 2009, 10, 174–182. [Google Scholar] [CrossRef]
- Pieraccini, M.; Dei, D.; Betti, M.; Bartoli, G.; Tucci, G.; Guardini, N. Dynamic identification of historic masonry towers through an expeditious and no-contact approach: Application to the “Torre del Mangia” in Siena (Italy). J. Cult. Herit. 2014, 15, 275–282. [Google Scholar] [CrossRef]
- Porco, G.; Costanzo, A.; Montuori, A.; Casula, G.; Luzi, G. Material damage assessment and Structural Health Monitoring of historical heritages by using NDT techniques and proximal remote sensing tools. In Proceedings of the 8th National Conference NDT of the Hellenic Society of NDT—HSNT Athens, National Hellenic Research Foundation, Athens, Greece, 8–9 May 2015. [Google Scholar]
- Luzi, G.; Montuori, A.; Bignami, C.; Crosetto, M.; Stramondo, S. Radar Interferometry for Cultural Heritage Monitoring. In Proceedings of the 11th International Conference on Non-Destructive Investigations and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage—ART-2014, Madrid, Spain, 11–13 June 2014. [Google Scholar]
- Fratini, M.; Pieraccini, M.; Atzeni, C.; Betti, M.; Bartoli, G. Assessment of vibration reduction on the Baptistery of San Giovanni in Florence (Italy) after vehicular traffic block. J. Cult. Herit. 2011, 12, 323–328. [Google Scholar] [CrossRef]
- Piroddi, L.; Calcina, S.V. Integrated Vibration Analysis for Historical Dome Structures: A Complementary Approach Based on Conventional Geophysical Methods and Remote Sensing Techniques. In Computational Science and Its Applications—ICCSA 2020; Gervasi, O., Ed.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; Volume 12255. [Google Scholar] [CrossRef]
- Atzeni, C.; Barla, M.; Pieraccini, M.; Antolini, F. Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based Synthetic-Aperture Radar. Rock Mech. Rock Eng. 2015, 48, 235–246. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L. Ground-based Radar Interferometry: A Bibliographic Review. Remote Sens. 2019, 11, 1029. [Google Scholar] [CrossRef]
- Pratesi, F.; Nolesini, T.; Bianchini, S.; Leva, D.; Lombardi, L.; Fanti, R.; Casagli, N. Early Warning GBInSAR-Based Method for Monitoring Volterra (Tuscany, Italy) City Walls. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4–1753. [Google Scholar] [CrossRef]
- Frodella, W.; Ciampalini, A.; Gigli, G.; Lombardi, L.; Raspini, F.; Nocentini, M.; Scardigli, C.; Casagli, N. Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy). Geomorphology 2016, 264, 80–94. [Google Scholar] [CrossRef]
- Tapete, D.; Casagli, N.; Luzi, G.; Fanti, R.; Gigli, G.; Leva, D. Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 2013, 40, 176–189. [Google Scholar] [CrossRef]
- Chen, F.; Guo, H.; Tapete, D.; Cigna, F.; Piro, S.; Lasaponara, R.; Masini, N. The role of imaging radar in cultural heritage: From technologies to applications. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102907. [Google Scholar] [CrossRef]
- Moscatelli, M.; Piscitelli, S.; Piro, S.; Stigliano, F.; Giocoli, A.; Zamuner, D.; Marconi, F. Integrated geological and geophysical investigations to characterize the anthropic layer of the Palatine hill and Roman Forum (Rome, Italy). Bull. Earthq. Eng. 2014, 12, 1319–1338. [Google Scholar] [CrossRef]
- Capozzoli, L.; De Martino, G.; Capozzoli, V.; Duplouy, A.; Henning, A.; Rizzo, E. The pre-Roman hilltop settlement of Monte Torretta di Pietragalla: Preliminary results of the geophysical survey. Archaeol. Prospect. 2020, 30, 33–46. [Google Scholar] [CrossRef]
- Menci, L. StereoSpace: An idea for photogrammetric data collection. Int. Arch. Photogramm. Remote Sens. 2000, 33, 395–400. [Google Scholar]
- Menci, L.; Ceccaroni, F. Digital photogrammetry. In Information Technology and Project Automation; Biagini, C., Ed.; University Press: Florence, Italy, 2002; pp. 115–138. [Google Scholar]
- Pisa, C.; Zeppa, F.; Fangi, G. Spherical photogrammetry for cultural heritage—San Galgano Abbey and the Roman Theater, Sabratha. J. Comput. Cult. Herit. (JOCCH) 2011, 4, 1–15. [Google Scholar] [CrossRef]
- Remondino, F.; El-Hakim, S. Image-based 3D modeling: A review. Photogramm. Rec. 2006, 21, 269–291. [Google Scholar] [CrossRef]
- Soudarissanane, S.S.; Lindenbergh, R.C.; Gorte, B.G.H. Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. In Proceedings of the XXI ISPRS Congress, Commission I-VIII, Beijing, China, 3–11 July 2008; International Society for Photogrammetry and Remote Sensing: Hannover, Germany, 2008. [Google Scholar]
- Lai, L.; Sordini, M.; Campana, S.; Usai, L.; Condò, F. 4D recording and analysis: The case study of Nuraghe Oes (Giave, Sardinia). Digit. Appl. Archeol. Cult. Herit. 2015, 2, 233–239. [Google Scholar] [CrossRef]
- Gabrielli, R.; Greco, G. Umm Ar-Rasas: The Application of Integrated Methodologies for the Valorization of a Unesco Site. Glob. J. Arch. Anthropol. 2018, 6, 555688. [Google Scholar] [CrossRef]
- .Angelini, A.; Cozzolino, M.; Gabrielli, R.; Gentile, V.; Mauriello, P. Geophysical and Geomatic Methods for the Knowledge, Conservation, and Management of Jordanian Cultural Heritage. Geosciences 2023, 13, 349. [Google Scholar] [CrossRef]
- Barsanti, S.G.; Remondino, F.; Visintini, D. Photogrammetry and laser Scanning for archaeological site 3D modeling–Some critical issues. In Proceedings of the 2nd Workshop on the New Technologies for Aquileia, Aquileia, Italy, 25 June 2012; Roberto, V., Fozzat, L., Eds.; [Google Scholar]
- Arias, P.; González-Aguilera, D.; Riveiro, B.; Caparrini, N. Documentation based on orthographic images of archaeological structures: The case of a medieval wall in Pontevedra, Spain. Archaeometry 2011, 53, 858–872. [Google Scholar] [CrossRef]
- Lambers, K.; Eisenbeiss, H.; Sauerbier, M.; Kupferschmidt, D.; Gaisecker, T.; Sotoodeh, S.; Hanusch, T. Combining photogrammetry and laser scanning for the recording and modelling of the Late Intermediate Period site of Pinchango Alto, Palpa, Peru. J. Archaeol. Sci. 2007, 34, 1702–1712. [Google Scholar] [CrossRef]
- Lerma, J.L.; Navarro, S.; Cabrelles, M.; Villaverde, V. Terrestrial laser scanning and close range Photogrammetry for 3D archaeological documentation: The Upper Palaeolithic Cave of Parpalló as a case study. J. Archaeol. Sci. 2010, 37, 499–507. [Google Scholar] [CrossRef]
- Dell’Unto, N.; Landeschi, G.; Touati, A.M.L.; Dellepiane, M.; Callieri, M.; Ferdani, D. Experiencing ancient buildings from a 3D GIS perspective: A case drawn from the Swedish Pompeii Project. J. Archaeol. Method Theory 2016, 23, 73–94. [Google Scholar] [CrossRef]
- Sauerbier, M.; Eisenbeiss, H. UAVs for the documentation of archaeological Excavations. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 526–531. [Google Scholar]
- McClinton, K.E. Applications of Photogrammetric Modeling to Roman Wall Painting: A Case Study in the House of Marcus Lucretius. Arts 2019, 8, 89. [Google Scholar] [CrossRef]
- Danese, M.; Sileo, M.; Masini, N. Geophysical Methods and Spatial Information for the Analysis of Decaying Frescoes. Surv. Geophys. 2018, 39, 1149–1166. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V.; Mauriello, P.; Zullo, E. Combined Use of 3D Metric Survey and GPR for the Diagnosis of the Trapezophoros with Two Griffins Attacking a Doe of Ascoli Satriano (Foggia, Italy). Geosciences 2020, 10, 307. [Google Scholar] [CrossRef]
- Kersten, T.P.; Hinrichsen, N.; Lindstaedt, M.; Weber, C.; Schreyer, K.; Tschirschwitz, F. Architectural Historical 4D Documentation of the Old-Segeberg Town House by Photogrammetry, Terrestrial Laser Scanning and Historical Analysis. In Digital Heritage. Progress in Cultural Heritage: Documentation, Preservation, and Protection; Ioannides, M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.Y., Quak, E., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2014; Volume 8740. [Google Scholar] [CrossRef]
- Fawzy, H.E.-D. 3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy. Alex. Eng. J. 2019, 58, 4–1191. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V. The contribution of indirect topographic surveys (photogrammetry and laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 2019, 62, 3. [Google Scholar] [CrossRef]
- Cozzolino, M.; Gabrielli, R.; Galata’, P.; Gentile, V.; Greco, G.; Scopinaro, E. Combined use of 3D metric surveys and non-invasive geophysical surveys at the Stylite Tower (Umm ar-Rasas, Jordan). Ann. Geophys. 2019, 62, 3. [Google Scholar] [CrossRef]
- Angelini, A.; Cozzolino, M.; Gabrielli, R.; Gentile, V.; Mauriello, P. Three-Dimensional Modeling and Non-Invasive Diagnosis of a Huge and Complex Heritage Building: The Patriarchal Basilica of Santa Maria Assunta in Aquileia (Udine, Italy). Remote Sens. 2023, 15, 2386. [Google Scholar] [CrossRef]
- Angelini, A.; Cozzolino, M.; Foschi, B.; Gabrielli, R.; Gentile, V.; Mauriello, P.; Scopinaro, E. Joint Use of Geomatic and Geophysical Methods for the Survey and Documentation of the Vespasian’s Thermal Baths (Cittaducale, Rieti, Italy). In International Conference on Computational Science and Its Applications; Springer: Cham, Switzerland, 2024; pp. 388–405. [Google Scholar]
- Capper, J.E. Photographs of Stonehenge as seen from a War Balloon. Archaeologia 1907, 60, 571. [Google Scholar] [CrossRef]
- Verhoeven, G. Providing an archeological bird’seye view—An overall picture of ground-based means to execute low-altitude aerial photography (LAAP) in Archeology. Archaeol. Prospect. 2009, 16, 233–249. [Google Scholar] [CrossRef]
- Campana, S. Drones in archaeology. State-of-the-art and future perspectives. Archaeol. Prospect. 2017, 24, 275–296. [Google Scholar] [CrossRef]
- Colosi, F.; Fangi, G.; Gabrielli, R.; Orazi, R.; Angelini, A.; Bozzi, C.A. Planning the Archaeological Park of Chan Chan (Peru) by means of satellite images, GIS and photogrammetry. J. Cult. Herit. 2009, 10, e27–e34. [Google Scholar] [CrossRef]
- Gabrielli, R.; Angelini, A.; Portarena, D. The Shawbak Castle from a balloon. An integrated methodological approach for the study of archaeological emergencies. Archeol. Aerea 2019, 11, 50–58. [Google Scholar]
- Altan, M.O.; Celikoyan, T.M.; Kemper, G.; Toz, G. Balloon photogrammetry for cultural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 964–968. [Google Scholar]
- Ahmet, K. The Western Papaguerıa from the air: Digital imagery using kite and balloon aerial photography. In Enter the Past. The E-Way into the Four Dimensions of Cultural Heritage. CAA 2003. Computer Applications and Quantitative Methods in Archaeology, Proceedings of the 31st Conference; Wien, M.d.S., Erbe, R.K., Wien, S., Eds.; Archaeo Press: Oxford, UK; pp. 46–49.
- Bogacki, M.; Malkowski, W.; Misiewicz, K. Kite aerial photography (KAP) as a tool for completing GIS models. Ptolemais (Libya) case study. In Remote Sensing for Archaeology and Cultural Heritage Management. Proceedings of the 1st International EARSeL Workshop, CNR, Rome; Lasaponara, R., Masini, N., Eds.; Aracne: Rome, Italy, 2008; pp. 329–332. [Google Scholar]
- Vannini, G.; Nucciotti, M.; Gabrielli, R. Stratigraphy and virtual modeling: An interdisciplinary approach to the study of the archaeological site of Santa Maria di Rescamone (France-Corsica). In The Reconstruction of Archaeological Landscapes through Digital Technologies. Proceedings of the 2nd Italy-United States Workshop, Rome, Italy, 3–5 November 2003; Berkeley, USA, May 2005; Forte, M., Ed.; Archaeo Press: Oxford, UK, 2005; pp. 139–146. [Google Scholar]
- Eisenbeiss, H.; Lambers, K.; Sauerbier, M.; Li, Z. Photogrammetric documentation of an archaeological site (Palpa, Peru) Using an Autonomous Model Helicopter. In Proceedings of the CIPA 2005 XX International Symposium, Torino, Italy, 26 September 2005; Hailey TI; The Powered Parachute as an Archaeological Reconnaissance Vehicle; Archaeological Prospection. Camera and Imaging Products Association: Tokyo, Japan, 2005; Volume 12, pp. 69–78. [Google Scholar]
- Seitz, C.; Altenbach, H. Project Archeye—The quadrocopter as the archaelogist’s eye, ISPRS Zurich 2011 Workshop, 14–16 September 2011, Zurich. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII, 297–302. [Google Scholar]
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. UAV photogrammetry for mapping and 3D modelling—Current status and future perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII, 25–31. [Google Scholar]
- Rinaudo, F.; Chiabrando, F.; Lingua, A.; Spanò, A. Archaeological site monitoring: UAV photogrammetry could be an answer. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 583–588. [Google Scholar] [CrossRef]
- Campana, S.; Sordini, M.; Rizzi, A. 3D Modeling of a Romanesque church in Tuscany: Archaeological aims and geomatic techniques. In Proceedings of the 3rd International Workshop on the 3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy, 25–28 February 2009. [Google Scholar]
- Fiorillo, F.; Jiménez Fernández-Palacios, B.; Remondino, F.; Barba, S. 3d Surveying and modelling of the archaeological area of Paestum, Italy. Virtual Archaeol. Rev. 2013, 4, 55–60. [Google Scholar] [CrossRef]
- Fiorillo, F.; Remondino, F.; Barba, S.; Santoriello, A.; De Vita, C.B.; Casellato, A. 3D digitization and mapping of heritage monuments and comparison with historical drawings. In Proceedings of the XXIV International CIPA Symposium, Strasbourg, France, 2–6 September 2013; ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences II(5/W1). pp. 133–138. [Google Scholar]
- Pueschel, H.; Sauerbier, M.; Eisenbeiss, H. A 3D model of Castle Landenberg (CH) from combined photogrammetric processing of terrestrial and UAV-based images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 93–98. [Google Scholar]
- Remondino, F.; Gruen, A.; Von Schwerin, J.; Eisenbeiss, H.; Rizzi, A.; Sauerbier, M.; Richards-Rissetto, H. Multisensors 3D documentation of the Maya site of Copan. In Proceedings of the 22nd CIPA Symposium, Kyoto, Japan, 11–15 October 2009. [Google Scholar]
- Bendea, H.; Chiabrando, F.; Tonolo, F.G.; Marenchino, D. Mapping of archaeological areas using a low-cost UAV. The Augusta Bagiennorum test site. In AntiCIPAting the Future of the Cultural Past. Proceedings of the CIPA 2007 XXI International Symposium, Athens, Greece, 1–6 October 2007; National Technical University of Athens: Athens, Greece, 2007. [Google Scholar]
- Chiabrando, F.; Nex, F.; Piatti, D.; Rinaudo, F. UAV and RPV systems for photogrammetric surveys in archeological areas: Two tests in the Piedmont Region (Italy). J. Archaeol. Sci. 2011, 38, 697–710. [Google Scholar] [CrossRef]
- Sonnemann, T.F.; Malatesta, E.H.; Hofman, C.L. Applying UAS photogrammetry to analyze spatial patterns of indigenous settlement sites in the northern Dominican Republic. In Archaeology in the Age of Sensing; Forte, M., Campana, S., Eds.; Springer: New York, NY, USA, 2016. [Google Scholar]
- Orihuela, A.; Molina-Fajardo, M.A. UAV Photogrammetry Surveying for Sustainable Conservation: The Case of Mondújar Castle (Granada, Spain). Sustainability 2021, 13, 24. [Google Scholar] [CrossRef]
- Campana, S.; Sordini, M.; Remondino, F. Integration of geomatics techniques for the digital documentation of heritage areas. In Proceedings of the 1st European Association of Remote Sensing Laboratories (EARSeL) International Workshop on ‘Advances in Remote Sensing for Archaeology and Cultural Heritage Management’, Rome, Italy, 30 September–4 October 2008. [Google Scholar]
- Guidi, G.; Russo, M. Reality-based and reconstructive models: Digital media for cultural heritage valorization. SCIRES-IT-SCIentific RESearch Inf. Technol. 2011, 1, 71–86. [Google Scholar]
- Eisenbeiss, H.; Zhang, L. Comparison of DSMs generated from mini UAV imagery and terrestrial laser scanner in a cultural heritage application. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, XXXVI, 90–96. [Google Scholar]
- Pierdicca, R.; Frontoni, E.; Malinverni, E.S.; Colosi, F.; Orazi, R. Virtual reconstruction of archaeological heritage using a combination of photogrammetric techniques: Huaca Arco Iris, Chan Chan, Peru. Digit. Appl. Archaeol. Cult. Herit. 2016, 3, 3–80. [Google Scholar] [CrossRef]
- Shaw, R.; Corns, A. Recording archaeological excavation using terrestrial laser scanning and low cost balloon based photogrammetry. In Proceedings of the CAA 2008. Computer Applications and Quantitative Methods in Archaeology, Budapest, Hungary, 2–6 April 2008. [Google Scholar]
- Liang, H.; Li, W.; Lai, S.; Zhu, L.; Jiang, W.; Zhang, Q. The integration of terrestrial laser scanning and terrestrial and unmanned aerial vehicle digital Photogrammetry for the documentation of Chinese classical gardens–A case study of Huanxiu Shanzhuang, Suzhou, China. J. Cult. Herit. 2018, 33, 222–230. [Google Scholar] [CrossRef]
- Fabbri, S.; Chiarini, V.; Ercolani, M.; Sansavini, G.; Santagata, T.; De Waele, J. Terrestrial laser scanning, geomorphology and archaeology of a Roman gypsum quarry (Vena del Gesso Romagnola area, Northern Apennines, Italy). J. Archaeol. Sci. Rep. 2021, 36, 102810. [Google Scholar] [CrossRef]
- Guidi, G.; Russo, M.; Ercoli, S.; Remondino, F.; Rizzi, A.; Menna, F. A multi-resolution methodology for the 3D modeling of large and complex archaeological areas. Int. J. Archit. Comput. 2009, 7, 39–55. [Google Scholar]
- Barone, P.M.; Ruffell, A.; Tsokas, G.N.; Rizzo, E. Geophysical Surveys for Archaeology and Cultural Heritage Preservation. Heritage 2019, 2, 2814–2817. [Google Scholar] [CrossRef]
- Luo, L.; Wang, X.; Guo, H.; Lasaponara, R.; Zong, X.; Masini, N.; Wang, G.; Shi, P.; Khatteli, H.; Chen, F. Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sens. Environ. 2019, 232, 111280. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Agudo, P.; Pajas, J.; Pérez-Cabello, F.; Redón, J.; Lebrón, B. The Potential of Drones and Sensors to Enhance Detection of Archaeological Cropmarks: A Comparative Study between Multi-Spectral and Thermal Imagery. Drones 2018, 2, 29. [Google Scholar] [CrossRef]
- McLeester, M.; Casana, J.; Schurr, M.R.; Hill, A.C.; Wheeler, J.H. Detecting prehistoric landscape features using thermal, multi-spectral, and historical imagery analysis at Midewin National Tallgrass Prairie, Illinois. J. Archaeol. Sci. Rep. 2018, 21, 450–459. [Google Scholar]
- Uribe, P.; Angás, J.; Pérez-Cabello, F. Aerial mapping and multi-sensor approaches from remote sensing applied to the Roman Archaeological Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 461–467. [Google Scholar]
- Brooke, C.; Clutterbuck, B. Mapping Heterogeneous Buried Archaeological Features Using Multisensor Data from Unmanned Aerial Vehicles. Remote Sens. 2019, 12, 41. [Google Scholar] [CrossRef]
- Calleja, J.F.; Pagés, O.R.; Díaz-Álvarez, N.; Peón, J.; Gutiérrez, N.; Martín-Hernández, E.; Relea, A.C.; Melendi, D.R.; Álvarez, P.F. Detection of buried archaeological remains with the combined use of satellite multispectral data and UAV data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 555–573. [Google Scholar] [CrossRef]
- Casella, V.; Franzini, M.; Gorrini, M.E. Crop marks detection through optical and multi-spectral imagery acquired by UAV. In Proceedings of the 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; pp. 173–177. [Google Scholar]
- Cowley, D.; Moriarty, C.; Geddes, G.; Brown, G.; Wade, T.; Nichol, C. UAVs in Context: Archaeological Airborne Recording in a National Body of Survey and Record. Drones 2017, 2, 2. [Google Scholar] [CrossRef]
- González, J.F.; Hernández, F.V. NDVI Identification and Survey of a Roman Road in the Northern Spanish Province of Álava. Remote Sens. 2019, 11, 725. [Google Scholar] [CrossRef]
- Garzia, F.; Lombardi, M.; Papi, L. Analysis and data acquisition methodology based on flying drones for the implementation of the internet of everything to smart archaeological areas. Int. J. Herit. Arch. Stud. Repairs Maintence 2017, 2, 383–394. [Google Scholar] [CrossRef]
- Gehrke, R.; Greiwe, A. RGBI images with UAV and o_-the-shelf compact cameras: An investigation of linear sensor characteristics. EARSel Eproc. 2014, 13, 53–58. [Google Scholar]
- González, J.J.F.; González, J.I.F. Prospección arqueológica en NDVI con drones. El uso de geoEuskadi como herramienta de ponderación de un nuevo método. Rev. Mapp. 2018, 29, 24–29. [Google Scholar]
- Hill, A.C.; Laugier, E.J.; Casana, J. Archaeological Remote Sensing Using Multi-Temporal, Drone-Acquired Thermal and Near Infrared (NIR) Imagery: A Case Study at the Enfield Shaker Village, New Hampshire. Remote Sens. 2020, 12, 690. [Google Scholar] [CrossRef]
- Hill, A.C.; Rowan, Y.; Kersel, M.M. Mapping with Aerial Photographs: Recording the Past, the Present, and the Invisible at Marj Rabba, Israel. Near East. Archaeol. 2014, 77, 182–186. [Google Scholar] [CrossRef]
- Koucká, L.; Kopăcková, V.; Fárová, K.; Gojda, M. UAV Mapping of an Archaeological Site Using RGB and NIR High-Resolution Data. Proceedings 2018, 2, 351. [Google Scholar] [CrossRef]
- Lehmann, J.R.K.; Smithson, K.Z.; Prinz, T. Making the invisible visible: Using UAS-based high-resolution color-infrared imagery to identify buried medieval monastery walls. J. Unmanned Veh. Syst. 2015, 3, 58–67. [Google Scholar] [CrossRef]
- Ramón, A.G.M.; Barba, L.; Ortiz, A.; Blancas, J. Geophysical prospection at the formative site of Altica in the Teotihacan Valley Piedmont. Anc. Mesoam. 2019, 30, 267–278. [Google Scholar] [CrossRef]
- Moriarty, C.; Cowley, D.C.; Wade, T.; Nichol, C.J. Deploying multi-spectral remote sensing for multi-temporal analysis of archaeological crop stress at Ravenshall, Fife, Scotland. Archaeol. Prospect. 2019, 26, 33–46. [Google Scholar] [CrossRef]
- Šedina, J.; Hulková, M.; Pavelka, K.; Pavelka, K., Jr. RPAS for documentation of Nazca aqueducts. Eur. J. Remote. Sens. 2019, 52, 174–181. [Google Scholar]
- Raeva, P.; Pavelka, K.; Hanuš, J.; Gojda, M. Using of both hyperspectral aerial sensing and RPAS multi-spectral sensing for potential archaeological sites detection. In Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VII.; Larar, A.M., Suzuki, M., Wang, J., Eds.; SPIE: Honolulu, HI, USA, 2018; p. 47. [Google Scholar]
- Carmona, J.Á.S.; Quirós, E.; Mayoral, V.; Charro, C. Assessing the potential of multi-spectral and thermal UAV imagery from archaeological sites. A case study from the Iron Age hillfort of Villasviejas del Tamuja (Cáceres, Spain). J. Archaeol. Sci. Rep. 2020, 31, 102312. [Google Scholar]
- Abate, N.; Frisetti, A.; Marazzi, F.; Masini, N.; Lasaponara, R. Multitemporal–Multispectral UAS Surveys for Archaeological Research: The Case Study of San Vincenzo Al Volturno (Molise, Italy). Remote Sens. 2021, 13, 2719. [Google Scholar] [CrossRef]
- Brumana, R.; Oreni, D.; Van Hecke, L.; Barazzetti, L.; Previtali, M.; Roncoroni, F.; Valente, R. Combined geometric and thermal analysis from UAV platforms for archaeological heritage documenation. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W1, 49–54. [Google Scholar]
- Liu, C.; Cao, Y.; Yang, C.; Zhou, Y.; Ai, M. Pattern identification and analysis for the traditional village using low altitude UAV-borne remote sensing: Multifeatured geospatial data to support rural landscape investigation, documentation and management. J. Cult. Herit. 2020, 44, 185–195. [Google Scholar] [CrossRef]
- Magnini, L.; Bettineschi, C.; De Guio, A.; Burigana, L.; Colombatti, G.; Bettanini, C.; Aboudan, A. Multisensor-multiscale approach in studying the proto-historic settlement of Bostel in northern Italy. Archeol. Calc. 2019, 30, 347–365. [Google Scholar]
- Parisi, E.I.; Suma, M.; Güleç Korumaz, A.; Rosina, E.; Tucci, G. Aerial platforms (UAV) surveys in the VIS and TIR range. Applications on archaeology and agriculture. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W11, 945–952. [Google Scholar] [CrossRef]
- Šedina, J.; Housarová, E.; Raeva, P. Using RPAS for the detection of archaeological objects using multi-spectral and thermal imaging. Eur. J. Remote Sens. 2019, 52, 182–191. [Google Scholar] [CrossRef]
- Skarlatos, D.; Vlachos, M. Vegetation removal from UAV derived DSMs, using combination of RGB and NIR imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV-2, 255–262. [Google Scholar] [CrossRef]
- Casana, J.; Wiewel, A.; Cool, A.; Hill, A.C.; Fisher, K.D.; Laugier, E.J. Archaeological Aerial Thermography in Theory and Practice. Adv. Archaeol. Pract. 2017, 5, 310–327. [Google Scholar] [CrossRef]
- Levin, S.; Yuan, M.; Adler, M. Thermographic Quantification for Archaeological Prospection at Picuris Pueblo, New Mexico. In Proceedings of the 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) Held Jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018), San Francisco, CA, USA, 26–30 October 2018; pp. 1–8. [Google Scholar]
- Thomas, H. Some like it hot: The impact of next generation FLIR Systems thermal cameras on archaeological thermography. Archaeol. Prospect. 2018, 25, 81–87. [Google Scholar] [CrossRef]
- Thomas, H.; Williams, E. High resolution terrestrial thermography of archaeological sites. Archaeol. Prospect. 2019, 26, 189–198. [Google Scholar] [CrossRef]
- Walker, S. Low-altitude aerial thermography for the archaeological investigation of arctic landscapes. J. Archaeol. Sci. 2020, 117, 105126. [Google Scholar] [CrossRef]
- Poirier, N.; Hautefeuille, F.; Calastrenc, C. Low Altitude Thermal Survey by Means of an Automated Unmanned Aerial Vehicle for the Detection of Archaeological Buried Structures: Thermal Archaeological Survey by Automated Unmanned Aerial Vehicle. Archaeol. Prospect. 2013, 20, 303–307. [Google Scholar] [CrossRef]
- Piga, C.; Piroddi, L.; Pompianu, E.; Ranieri, G.; Stocco, S.; Trogu, A. Integrated geophysical and aerial sensing methods for archaeology: A case history in the Punic Site of Villamar (Sardinia, Italy). Remote Sens. 2014, 6, 10986–11012. [Google Scholar] [CrossRef]
- Casana, J.; Kantner, J.; Wiewel, A.; Cothren, J. Archaeological aerial thermography: A case study at the Chaco-era Blue J community, New Mexico. J. Archaeol. Sci. 2014, 45, 207–219. [Google Scholar] [CrossRef]
- Barazzetti, L.; Brumana, R.; Oreni, D.; Cuca, B.; Previtali, M.; Roncoroni, F. Finding Buried Remains Using Thermal Images. Int. J. Herit. Digit. Era 2015, 4, 295–306. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. Enhancing Image-Based Multiscale Heritage Recording with Near-Infrared Data. ISPRS Int. J. Geo-Inf. 2020, 9, 269. [Google Scholar] [CrossRef]
- Evers, R.; Masters, P. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera. Forensic Sci. Int. 2018, 289, 408–418. [Google Scholar] [CrossRef]
- Colombatti, G.; Aboudan, A.; Bettanini, C.; Magnini, L.; Bettineschi, C.; Deotto, G.; Toninello, L.; Debei, S.; Guio, A.D.; Zanovello, P.; et al. Horus—A drone project for visual and IR imaging. In Proceedings of the 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Padua, Italy, 21–23 June 2017; pp. 589–592. [Google Scholar]
- Khan, S.; Aragão, L.; Iriarte, J. A UAV–lidar system to map Amazonian rainforest and its ancient landscape transformations. Int. J. Remote Sens. 2017, 38, 2313–2330. [Google Scholar] [CrossRef]
- Murtha, T.M.; Broadbent, E.N.; Golden, C.; Scherer, A.; Schroder, W.; Wilkinson, B.; Zambrano, A.A. Drone-Mounted Lidar Survey of Maya Settlement and Landscape. Lat. Am. Antiq. 2019, 30, 630–636. [Google Scholar] [CrossRef]
- Risbøl, O.; Gustavsen, L. LiDAR from drones employed for mapping archaeology—Potential, benefits and challenges. Archaeol. Prospect. 2018, 25, 329–338. [Google Scholar] [CrossRef]
- VanValkenburgh, P.; Cushman, K.C.; Butters, L.J.C.; Vega, C.R.; Roberts, C.B.; Kepler, C.; Kellner, J. Lasers Without Lost Cities: Using Drone Lidar to Capture Architectural Complexity at Kuelap, Amazonas, Peru. J. Field Archaeol. 2020, 45, S75–S88. [Google Scholar] [CrossRef]
- Pisciotta, A.; Vitale, G.; Scudero, S.; Martorana, R.; Capizzi, P.; D’Alessandro, A. A lightweight prototype of a magnetometric system for unmanned aerial vehicles. Sensors 2021, 21, 4691. [Google Scholar] [CrossRef]
- Garcia-Fernandez, M.; Alvarez-Lopez, Y.; Heras, F.L.; Gonzalez-Valdes, B.; Rodriguez-Vaqueiro, Y.; Pino, A.; Arboleya-Arboleya, A. GPR system on-board a UAV for non-invasive detection of buried objects. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1967–1968. [Google Scholar]
- Ludeno, G.; Catapano, I.; Renga, A.; Vetrella, A.R.; Fasano, G.; Soldovieri, F. Assessment of a micro-UAV system for microwave tomography radar imaging. Remote Sens. Environ. 2018, 212, 90–102. [Google Scholar] [CrossRef]
- Linck, R.; Kaltak, A. Drone radar: A new survey approach for Archaeological Prospection? In Proceedings of the 13th International Conference on Archaeological Prospection, Sligo, Ireland, 28 August–1 September 2019; Bonsall, J., Ed.; pp. 268–271. [Google Scholar]
- Accomando, F.; Florio, G. Drone-Borne Magnetic Gradiometry in Archaeological Applications. Sensors 2024, 24, 4270. [Google Scholar] [CrossRef]
- Niccolucci, F.; Felicetti, A.; Hermon, S. Populating the data space for cultural heritage with heritage digital twins. Data 2022, 7, 105. [Google Scholar] [CrossRef]
- Luther, W.; Baloian, N.; Biella, D.; Sacher, D. Digital twins and enabling technologies in museums and cultural heritage: An overview. Sensors 2023, 23, 1583. [Google Scholar] [CrossRef]
- Shabani, A.; Skamantzari, M.; Tapinaki, S.; Georgopoulos, A.; Plevris, V.; Kioumarsi, M. 3D simulation models for developing digital twins of heritage structures: Challenges and strategies. Procedia Struct. Integr. 2022, 37, 314–320. [Google Scholar] [CrossRef]
- Gabellone, F. Digital Twin: A new perspective for cultural heritage management and fruition. Acta Imeko 2022, 11, 7. [Google Scholar] [CrossRef]
- Dang, X.; Liu, W.; Hong, Q.; Wang, Y.; Chen, X. Digital twin applications on cultural world heritage sites in China: A state-of-the-art overview. J. Cult. Herit. 2023, 64, 228–243. [Google Scholar] [CrossRef]
- Council of Europe (1992) European Convention on the Protection of the Archaeological Heritage (Revised) (ETS No. 143), Valletta 16/01/1992—Treaty Open for Signature by the Member States and the Other States Parties to the European Cultural Convention and for Accession by the Other Non-Member States and by the EU. Available online: https://www.coe.int/en/web/culture-and-heritage/valletta-convention (accessed on 5 February 2025).
- Cerato, I.; Pescarin, S. Reconstructing past landscapes for virtual museums. In Good Practice in Archaeological Diagnostics: Non-Invasive Survey of Complex Archaeological Sites; Springer International Publishing: Cham, Switzerland, 2013; pp. 285–296. [Google Scholar]
- Ranieri, G.; Trogu, A.; Loddo, F.; Piroddi, L.; Cogoni, M. Digital museum from integrated 3D aerial photogrammetry, laser scanner and geophysics data. In Proceedings of the 24th European Meeting of Environmental and Engineering Geophysics, Porto, Portugal, 9–12 September 2018; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2018; Volume 2018, No. 1. pp. 1–5. [Google Scholar]
- Trizio, I.; Savini, F.; Giannangeli, A.; Fiore, S.; Marra, A.; Fabbrocino, G.; Ruggieri, A. Versatil tools: Digital survey and virtual reality for documentation, analysis and fruition of cultural heritage in seismic areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 377–384. [Google Scholar] [CrossRef]
- Rababeh, S.; Hanaqtah, R.; Abu-Khafajah, S. Leveraging Digitized Heritage Technologies for Smart Fruition: Heritage Understanding and Enhancement Framework. Heritage 2024, 7, 6891–6915. [Google Scholar] [CrossRef]
- Sharma, P.V. Environmental and Engineering Geophysics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Butler, D.K. Near-Surface Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2005. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piroddi, L.; Abu Zeid, N.; Calcina, S.V.; Capizzi, P.; Capozzoli, L.; Catapano, I.; Cozzolino, M.; D’Amico, S.; Lasaponara, R.; Tapete, D. Imaging Cultural Heritage at Different Scales: Part II, the Meso-Scale (Sites). Remote Sens. 2025, 17, 598. https://doi.org/10.3390/rs17040598
Piroddi L, Abu Zeid N, Calcina SV, Capizzi P, Capozzoli L, Catapano I, Cozzolino M, D’Amico S, Lasaponara R, Tapete D. Imaging Cultural Heritage at Different Scales: Part II, the Meso-Scale (Sites). Remote Sensing. 2025; 17(4):598. https://doi.org/10.3390/rs17040598
Chicago/Turabian StylePiroddi, Luca, Nasser Abu Zeid, Sergio Vincenzo Calcina, Patrizia Capizzi, Luigi Capozzoli, Ilaria Catapano, Marilena Cozzolino, Sebastiano D’Amico, Rosa Lasaponara, and Deodato Tapete. 2025. "Imaging Cultural Heritage at Different Scales: Part II, the Meso-Scale (Sites)" Remote Sensing 17, no. 4: 598. https://doi.org/10.3390/rs17040598
APA StylePiroddi, L., Abu Zeid, N., Calcina, S. V., Capizzi, P., Capozzoli, L., Catapano, I., Cozzolino, M., D’Amico, S., Lasaponara, R., & Tapete, D. (2025). Imaging Cultural Heritage at Different Scales: Part II, the Meso-Scale (Sites). Remote Sensing, 17(4), 598. https://doi.org/10.3390/rs17040598