Comparison of Broadband Surface Albedo from MODIS and Ground-Based Measurements at the Thule High Arctic Atmospheric Observatory in Pituffik, Greenland, During 2016–2024
Highlights
- MODIS MCD43A3 daily albedo is in good agreement with in situ measurements at THAAO, in northwestern Greenland.
- The agreement is excellent in snow-free days and worst for mixed and snow-covered conditions.
- MODIS albedo product has limitations when fast changes in albedo are occurring.
- The use of MODIS albedo values with best-quality flags is recommended.
Abstract
1. Introduction
2. Data
2.1. In Situ Measurements at THAAO
2.2. Satellite Albedo Measurements
2.3. Derivation of bSA from MODIS Measurements
2.4. Selection of Cloud-Free Cases
3. Results
3.1. Satellite Spatial Domain
3.2. Comparison for All-Sky Conditions
3.3. Comparison for Cloud-Free Conditions
4. Case Studies
4.1. June 2023
4.2. May–June 2024
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.; Charlock, T.P.; Smith, W.L., Jr.; Rutledge, K. A parameterization of ocean surface albedo. Geophys. Res. Lett. 2004, 31, L22301. [Google Scholar] [CrossRef]
- Conway, H.; Gades, A.; Raymond, C.F. Albedo of dirty snow during conditions of melt. Water Resour. Res. 1996, 32, 1713–1718. [Google Scholar] [CrossRef]
- Baker, D.G.; Ruschy, D.L.; Wall, D.B. The albedo decay of prairie snows. J. Appl. Meteorol. Climatol. 1990, 29, 179–187. [Google Scholar] [CrossRef]
- Perovich, D.K.; Maykut, G.A.; Grenfell, T.C. Optical Properties Of Ice And Snow In The Polar Oceans. I: Observations. Ocean Opt. VIII 1986, 637, 232–241. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Previdi, M.; Smith, K.L.; Polvani, L.M. Arctic amplification of climate change: A review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003. [Google Scholar] [CrossRef]
- Graversen, R.G.; Langen, P.L.; Mauritsen, T. Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks. Am. Meteorol. Soc. 2014, 27, 4433–4450. [Google Scholar] [CrossRef]
- Pirazzini, R.; Vihma, T.; Granskog, M.A.; Cheng, B. Surface albedo measurements over sea ice in the Baltic Sea during the spring snowmelt period. Ann. Glaciol. 2006, 44, 7–14. [Google Scholar] [CrossRef]
- Marcianesi, F.; Aulicino, G.; Wadhams, P. Arctic sea ice and snow cover albedo variability and trends during the last three decades. Polar Sci. 2021, 27, 100617. [Google Scholar] [CrossRef]
- Dou, T.; Xiao, C. An overview of black carbon deposition and its radiative forcing over the Arctic. Adv. Clim. Change Res. 2016, 7, 115–122. [Google Scholar] [CrossRef]
- Willeit, M.; Ganopolski, A. The importance of snow albedo for ice sheet evolution over the last glacial cycle. EGU Clim. Past 2018, 14, 697–707. [Google Scholar] [CrossRef]
- He, T.; Liang, S.; Yu, Y.; Wang, D.; Gao, F.; Liu, Q. Greenland surface albedo changes in July 1981–2012 from satellite observations. Environ. Res. Lett. 2013, 8, 044043. [Google Scholar] [CrossRef]
- Elmes, A.; Levy, C.; Erb, A.; Hall, D.K.; Scambos, T.A.; DiGirolamo, N.; Schaaf, C. Consequences of the 2019 Greenland Ice Sheet Melt Episode on Albedo. Remote Sens. 2021, 13, 227. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Wang, Z.; Schaaf, C.; Barrett, A. Re-evaluation of MODIS MCD43 Greenland albedo accuracy and trends. Remote Sens. Environ. 2013, 138, 199–214. [Google Scholar] [CrossRef]
- Persson, P.O.G.; Fairall, C.W.; Andreas, E.L.; Guest, P.S.; Perovich, D.K. Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res. Oceans 2002, 107, 8045. [Google Scholar] [CrossRef]
- Light, B.; Smith, M.; Perovich, D.; Webster, M.; Holland, M.; Linhardt, F.; Raphael, I.; Clemens-Sewall, D.; Macfarlane, A.; Anhaus, P.; et al. Arctic sea ice albedo: Spectral composition, spatial heterogeneity, and temporal evolution observed during the MOSAiC drift. Elem. Sci. Anth. 2022, 10, 000103. [Google Scholar] [CrossRef]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on Estimation of Land Surface Radiation and Energy Budgets From Ground Measurement, Remote Sensing and Model Simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; He, T.; Liu, S.; Li, X. Mapping Surface Broadband Albedo from Satellite Observations: A Review of Literatures on Algorithms and Products. Remote Sens. 2015, 7, 990–1020. [Google Scholar] [CrossRef]
- Ryan, J.C.; Hubbard, A.; Irvine-Fynn, T.D.; Doyle, S.H.; Cook, J.M.; Stibal, M.; Box, J.E. How robust are in situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet? Geophys. Res. Lett. 2017, 44, 6218–6225. [Google Scholar] [CrossRef]
- Feng, S.; Cook, J.M.; Anesio, A.M.; Benning, L.G.; Tranter, M. Long time series (1984–2020) of albedo variations on the Greenland ice sheet from harmonized Landsat and Sentinel 2 imagery. J. Glaciol. 2023, 69, 1169–1184. [Google Scholar] [CrossRef]
- Van Tricht, K.; Lhermitte, S.; Lenaerts, J.T.M.; Gorodetskaya, I.V.; L’Ecuyer, T.S.; Noël, B.; van den Broeke, M.R.; Turner, D.D.; van Lipzig, N.P.M. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun. 2016, 7, 10266. [Google Scholar] [CrossRef]
- Gladkova, I.; Shahriar, F.; Grossberg, M.; Frey, R.A.; Menzel, W.P. Impact of the Aqua MODIS Band 6 Restoration on Cloud/Snow Discrimination. J. Atmos. Ocean. Technol. 2013, 30, 2576–2582. [Google Scholar] [CrossRef]
- Urraca, R.; Lanconelli, C.; Cappucci, F.; Gobron, N. Comparison of Long-Term Albedo Products against Spatially Representative Stations over Snow. Remote Sens. 2022, 14, 3745. [Google Scholar] [CrossRef]
- Ding, A.; Liang, S.; Ma, H.; He, T.; Jia, A.; Wang, Q. Improved estimation of daily blue-sky snow shortwave albedo from MODIS data and reanalysis information. Sci. Remote Sens. 2024, 10, 100163. [Google Scholar] [CrossRef]
- Cescatti, A.; Marcolla, B.; Vannan, S.K.S.; Pan, J.Y.; Romain, M.O.; Yang, X.; Ciais, P.; Cook, R.B.; Law, B.E.; Matteucci, G.; et al. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 2012, 121, 323–334. [Google Scholar] [CrossRef]
- Wright, P.; Bergin, M.; Dibb, J.; Lefer, B.; Domine, F.; Carman, T.; Carmagnola, C.; Dumont, M.; Courville, M.; Schaaf, C.; et al. Comparing MODIS daily snow albedo to spectral albedo field measurements in Central Greenland. Remote Sens. Environ. 2014, 140, 118–129. [Google Scholar] [CrossRef]
- Moustafa, S.E.; Rennermalm, A.K.; Román, M.O.; Wang, Z.; Schaaf, C.B.; Smith, L.C.; Koenig, L.S.; Erb, A. Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens. Environ. 2017, 198, 115–125. [Google Scholar] [CrossRef]
- Wang, Z.; Schaaf, C.B.; Chopping, M.J.; Strahler, A.H.; Wang, J.; Román, M.O.; Rocha, A.V.; Woodcock, C.E.; Shuai, Y. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 2012, 117, 264–280. [Google Scholar] [CrossRef]
- Riihelä, A.; Laine, V.; Manninen, T.; Palo, T.; Vihma, T. Validation of the Climate-SAF surface broadband albedo product: Comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean. Remote Sens. Environ. 2010, 114, 2779–2790. [Google Scholar] [CrossRef]
- Di Biagio, C.; di Sarra, A.; Muscari, G.; de Zafra, R.L.; Fiocco, G.; Fiorucci, I.; Fuà, D. Evolution of temperature, O3, CO, and N2O profiles during the exceptional 2009 Arctic major stratospheric warming as observed by lidar and millimeter-wave spectroscopy at Thule (76.5° N, 68.8° W), Greenland. J. Geophys. Res. 2010, 115, D24315. [Google Scholar] [CrossRef]
- Muscari, G.; di Biagio, C.; di Sarra, A.; Cacciani, M.; Ascanius, S.E.; Bertagnolio, P.P.; Cesaroni, C.; de Zafra, R.L.; Eriksen, P.; Fiocco, G.; et al. Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY. Ann. Geophys. Spec. Issue Geophys. Monit. Earth’s Polar Reg. 2014, 57, SS0323. [Google Scholar] [CrossRef]
- Fiorucci, I.; Muscari, G.; Froidevaux, L.; Santee, M.L. Ground-based stratospheric O3 and HNO3 measurements at Thule, Greenland: An intercomparison with Aura MLS observations. Atmos. Meas. Tech. 2013, 6, 2441–2453. [Google Scholar] [CrossRef]
- Becagli, S.; Caiazzo, L.; Di Iorio, T.; di Sarra, A.; Meloni, D.; Muscari, G.; Pace, G.; Severi, M.; Traversi, R. New insights on metals in the Arctic aerosol in a climate changing world. Sci. Total Environ. 2020, 741, 140511. [Google Scholar] [CrossRef]
- Calì Quaglia, F.; Meloni, D.; Muscari, G.; Di Iorio, T.; Ciardini, V.; Pace, G.; Becagli, S.; Di Bernardino, A.; Cacciani, M.; Hannigan, J.W.; et al. On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. Remote Sens. 2022, 14, 313. [Google Scholar] [CrossRef]
- Meloni, D.; Calì Quaglia, F.; Ciardini, V.; Di Bernardino, A.; Di Iorio, T.; Iaccarino, A.; Muscari, G.; Pace, G.; Scarchilli, C.; di Sarra, A. Shortwave and longwave components of the surface radiation budget measured at the Thule High Arctic Atmospheric Observatory, Northern Greenland. Earth Syst. Sci. Data 2024, 16, 543–558. [Google Scholar] [CrossRef]
- Pace, G.; di Sarra, A.; Calì Quaglia, F.; Ciardini, V.; Di Iorio, T.; Iaccarino, A.; Meloni, D.; Muscari, G.; Scarchilli, C. Verification of parameterizations for clear sky downwelling longwave irradiance in the Arctic. Atmos. Meas. Tech. 2024, 17, 1617–1628. [Google Scholar] [CrossRef]
- Scarchilli, C.; Ciardini, V.; Grigioni, P.; Iaccarino, A.; De Silvestri, L.; Proposito, M.; Dolci, S.; Camporeale, G.; Schioppo, R.; Antonelli, A.; et al. Characterization of snowfall estimated by in situ and ground-based remote-sensing observations at Terra Nova Bay, Victoria Land, Antarctica. J. Glaciol. 2022, 68, 467–483. [Google Scholar] [CrossRef]
- Fehlmann, M.; Rohrer, M.; von Lerber, A.; Stoffel, M. Automated precipitation monitoring with the Thies disdrometer: Biases and ways for improvement. Atmos. Meas. Tech. 2020, 13, 4683–4698. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muller, J.-P.; MODIS Science Team Members. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0; NASA: Greenbelt, MD, USA, 1999. [Google Scholar]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An Algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Schaaf, C.L.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo and Nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Shao, C.; Shuai, Y.; Tuerhanjiang, L.; Ma, X.; Hu, W.; Zhang, Q.; Xu, A.; Liu, T.; Tian, Y.; Wang, C.; et al. Cross-Comparison of Global Surface Albedo Operational Products-MODIS, GLASS, and CGLS. Remote Sens. 2021, 13, 4869. [Google Scholar] [CrossRef]
- Qu, Y.; Liang, S.; Liu, Q.; Li, X.; Feng, Y.; Liu, S. Estimating Arctic sea-ice shortwave albedo from MODIS data. Remote Sens. Environ. 2016, 186, 32–46. [Google Scholar] [CrossRef]
- Wang, X.; Zender, C.S. MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ. 2010, 114, 841–851. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. MODIS/Terra+Aqua BRDF/Albedo Quality Daily L3 Global—500 m V061 [Data Set]; NASA Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [Google Scholar] [CrossRef]
- Schaaf, C.B.; Wang, Z.; Strahler, A.H. Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ. 2011, 115, 1296–1297. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. Proc. SPIE 2014, 9088, 90880H. [Google Scholar] [CrossRef]
- Stroeve, J.; Box, J.E.; Gao, F.; Liang, S.; Nolin, A.; Schaaf, C. Accuracy assessment of the MODIS 16-day albedo product for snow: Comparisons with Greenland in situ measurements. Remote Sens. Environ. 2005, 94, 46–60. [Google Scholar] [CrossRef]











| Surface Condition | 0.5 km × 0.5 km | 1 km × 1 km | 2 km × 2 km |
|---|---|---|---|
| Snow-covered | −0.06/0.13 | −0.05/0.09 | −0.08/0.10 |
| Mixed | -/- | −0.06/0.12 | −0.07/0.13 |
| Snow-free | 0.01/0.08 | 0.01/0.07 | 0.01/0.06 |
| Months | Bias | RMSD | ||
|---|---|---|---|---|
| March (199) | 0.70 | 0.74 | −0.04 | 0.09 |
| April (241) | 0.66 | 0.69 | −0.03 | 0.07 |
| May (215) | 0.50 | 0.57 | −0.07 | 0.11 |
| June (202) | 0.25 | 0.23 | 0.02 | 0.11 |
| July (247) | 0.17 | 0.16 | 0.01 | 0.02 |
| August (256) | 0.18 | 0.17 | 0.01 | 0.04 |
| September (243) | 0.37 | 0.41 | −0.04 | 0.14 |
| October (57) | 0.53 | 0.56 | −0.03 | 0.18 |
| Mean Bias | RMSD | |||
|---|---|---|---|---|
| Snow-covered | 0.68 | 0.58 | −0.10 | 0.12 |
| Snow-free | 0.17 | 0.17 | −0.002 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tosco, M.; Calì Quaglia, F.; Ciardini, V.; Di Iorio, T.; Iaccarino, A.; Meloni, D.; Muscari, G.; Pace, G.; Scarchilli, C.; di Sarra, A.G. Comparison of Broadband Surface Albedo from MODIS and Ground-Based Measurements at the Thule High Arctic Atmospheric Observatory in Pituffik, Greenland, During 2016–2024. Remote Sens. 2025, 17, 3952. https://doi.org/10.3390/rs17243952
Tosco M, Calì Quaglia F, Ciardini V, Di Iorio T, Iaccarino A, Meloni D, Muscari G, Pace G, Scarchilli C, di Sarra AG. Comparison of Broadband Surface Albedo from MODIS and Ground-Based Measurements at the Thule High Arctic Atmospheric Observatory in Pituffik, Greenland, During 2016–2024. Remote Sensing. 2025; 17(24):3952. https://doi.org/10.3390/rs17243952
Chicago/Turabian StyleTosco, Monica, Filippo Calì Quaglia, Virginia Ciardini, Tatiana Di Iorio, Antonio Iaccarino, Daniela Meloni, Giovanni Muscari, Giandomenico Pace, Claudio Scarchilli, and Alcide Giorgio di Sarra. 2025. "Comparison of Broadband Surface Albedo from MODIS and Ground-Based Measurements at the Thule High Arctic Atmospheric Observatory in Pituffik, Greenland, During 2016–2024" Remote Sensing 17, no. 24: 3952. https://doi.org/10.3390/rs17243952
APA StyleTosco, M., Calì Quaglia, F., Ciardini, V., Di Iorio, T., Iaccarino, A., Meloni, D., Muscari, G., Pace, G., Scarchilli, C., & di Sarra, A. G. (2025). Comparison of Broadband Surface Albedo from MODIS and Ground-Based Measurements at the Thule High Arctic Atmospheric Observatory in Pituffik, Greenland, During 2016–2024. Remote Sensing, 17(24), 3952. https://doi.org/10.3390/rs17243952

