Estimating Plant Physiological Parameters for Vitis vinifera L. Using In Situ Hyperspectral Measurements and Ensemble Machine Learning
Highlights
- Ensemble stacking regression enhances the accuracy of predicting physiological parameters from in situ hyperspectral measurements.
- First derivative of reflectance (FDR) preprocessing mitigates the performance loss associated with decreasing spectral resolution.
- Multivariate modeling approaches show great potential for estimating plant physiological parameters from hyperspectral data, as well as low-resolution spectral data.
- The results suggest that, with appropriate preprocessing, low-resolution spectral sensors could potentially be used for this task, as they bring acceptable prediction accuracy.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Preprocessing
2.4. Methods
3. Results
3.1. Diurnal Physiology Analysis
3.2. Model Performance at 1 nm Resolution
3.3. Model Performance Across Resampled Resolutions
4. Discussion
4.1. Diurnal Patterns of Grapevine Physiology
4.2. Predictive Modeling at Full Spectral Resolution (1 nm)
4.3. Spectral Resampling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Medrano, H.; Tomás, M.; Martorell, S.; Flexas, J.; Hernández, E.; Rosselló, J.; Pou, A.; Escalona, J.M.; Bota, J. From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop J. 2015, 3, 220–228. [Google Scholar] [CrossRef]
- Jiang, G.M.; Sun, J.Z.; Liu, H.Q.; Qu, C.M.; Wang, K.J.; Guo, R.J.; Bai, K.Z.; Gao, L.M.; Kuang, T.Y. Changes in the rate of photosynthesis accompanying the yield increase in wheat cultivars released in the past 50 years. J. Plant Res. 2003, 116, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Hammer, G.L.; Doherty, A.; von Caemmerer, S.; Farquhar, G.D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 2019, 5, 380–388. [Google Scholar] [CrossRef] [PubMed]
- Simkin, A.J.; López-Calcagno, P.E.; Raines, C.A. Feeding the world: Improving photosynthetic efficiency for sustainable crop production. J. Exp. Bot. 2019, 70, 1119–1140. [Google Scholar] [CrossRef]
- Tarara, J.M.; Peña, J.E.P.; Keller, M.; Schreiner, R.P.; Smithyman, R.P. Net carbon exchange in grapevine canopies responds rapidly to timing and extent of regulated deficit irrigation. Funct. Plant Biol. 2011, 38, 386. [Google Scholar] [CrossRef]
- Romero, P.; Gil-Muñoz, R.; del Amor, F.M.; Valdés, E.; Fernández, J.I.; Martinez-Cutillas, A. Regulated Deficit Irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agric. Water Manag. 2013, 121, 85–101. [Google Scholar] [CrossRef]
- Pérez-Álvarez, E.; Intrigliolo Molina, D.; Vivaldi, G.; García-Esparza, M.; Lizama, V.; Álvarez, I. Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agric. Water Manag. 2021, 248, 106772. [Google Scholar] [CrossRef]
- Drori, E.; Munitz, S.; Pinkus, A.; Stanevsky, M.; Netzer, Y. The Effect of Irrigation-Initiation Timing on the Phenolic Composition and Overall Quality of Cabernet Sauvignon Wines Grown in a Semi-Arid Climate. Foods 2022, 11, 770. [Google Scholar] [CrossRef]
- Kang, C.; Diverres, G.; Karkee, M.; Zhang, Q.; Keller, M. Decision-support system for precision regulated deficit irrigation management for wine grapes. Comput. Electron. Agric. 2023, 208, 107777. [Google Scholar] [CrossRef]
- Hall, A.; Jones, G. Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Aust. J. Grape Wine Res. 2009, 15, 97–119. [Google Scholar] [CrossRef]
- Greer, D.; Weedon, M. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ. 2011, 35, 1050–1064. [Google Scholar] [CrossRef]
- Schultz, H.R. Global Climate Change, Sustainability, and Some Challenges for Grape and Wine Production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Smith, J.P.; Edwards, E.J.; Walker, A.R.; Gouot, J.C.; Barril, C.; Holzapfel, B.P. A whole canopy gas exchange system for the targeted manipulation of grapevine source-sink relations using sub-ambient CO2. BMC Plant Biol. 2019, 19, 535. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef]
- Vasylenko, O.; Kondratenko, T.; Havryliuk, O.; Andrusyk, Y.; Kutovenko, V.; Dmytrenko, Y.; Grevtseva, N.; Marchyshyna, Y. The study of the productivity potential of grape varieties according to the indicators of functional activity of leaves. Slovak J. Food Sci. 2021, 15, 639–647. [Google Scholar] [CrossRef]
- Jogaiah, S. Vineyard Management Strategies in Scenario of Climate Change—A Review. Grape Insight 2023, 1, 11–22. [Google Scholar] [CrossRef]
- Tosin, R.; Portis, I.; Rodrigues, L.; Gonçalves, I.; Barbosa, C.; Teixeira, J.; Mendes, R.J.; Santos, F.; Santos, C.; Martins, R.; et al. Integrating Spectral Sensing and Systems Biology for Precision Viticulture: Effects of Shade Nets on Grapevine Leaves. Horticulturae 2024, 10, 873. [Google Scholar] [CrossRef]
- Del Zozzo, F.; Magnanini, E.; Poni, S. Physiological efficiency of grapevine canopies having varying geometries: Seasonal and diurnal whole canopy gas exchange assessment under well-watered and water deficit conditions. Environ. Exp. Bot. 2024, 221, 105716. [Google Scholar] [CrossRef]
- Palliotti, A.; Tombesi, S.; Silvestroni, O.; Lanari, V.; Gatti, M.; Poni, S. Changes in vineyard establishment and canopy management urged by earlier climate-related grape ripening: A review. Sci. Hortic. 2014, 178, 43–54. [Google Scholar] [CrossRef]
- Flexas, J.; Bota, J.; Escalona, J.M.; Sampol, B.; Medrano, H. Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations. Funct. Plant Biol. 2002, 29, 461. [Google Scholar] [CrossRef]
- Maroco, J.P.; Rodrigues, M.L.; Lopes, C.; Chaves, M.M. Limitations to leaf photosynthesis in field-grown grapevine under drought — metabolic and modelling approaches. Funct. Plant Biol. 2002, 29, 451. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef]
- Pallotti, L.; Partida, G.; Laroche-Pinel, E.; Lanari, V.; Pedroza, M.; Brillante, L. Late-season source limitation practices to cope with climate change: Delaying ripening and improving colour of Cabernet-Sauvignon grapes and wine in a hot and arid climate. OENO One 2025, 59. [Google Scholar] [CrossRef]
- Kar, S.; Montague, T.; Villanueva-Morales, A.; Hellman, E. Measurement of Gas Exchange on Excised Grapevine Leaves Does Not Differ from In Situ Leaves, and Potentially Shortens Sampling Time. Appl. Sci. 2021, 11, 3644. [Google Scholar] [CrossRef]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Gatti, M.; Porro, D.; Camin, F. Performance and water-use efficiency (single-leaf vs. whole-canopy) of well-watered and half-stressed split-root Lambrusco grapevines grown in Po Valley (Italy). Agric. Ecosyst. Environ. 2009, 129, 97–106. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef]
- Murchie, E.H.; Kefauver, S.; Araus, J.L.; Muller, O.; Rascher, U.; Flood, P.J.; Lawson, T. Measuring the dynamic photosynthome. Ann. Bot. 2018, 122, 207–220. [Google Scholar] [CrossRef]
- Meroni, M.; Rossini, M.; Guanter, L.; Alonso, L.; Rascher, U.; Colombo, R.; Moreno, J. Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications. Remote Sens. Environ. 2009, 113, 2037–2051. [Google Scholar] [CrossRef]
- Peng, Y.; Zeng, A.; Zhu, T.; Fang, S.; Gong, Y.; Tao, Y.; Zhou, Y.; Liu, K. Using remotely sensed spectral reflectance to indicate leaf photosynthetic efficiency derived from active fluorescence measurements. J. Appl. Remote Sens. 2017, 11, 026034. [Google Scholar] [CrossRef]
- Mayo, A.M.; Moshelion, M.; Liran, O. Limitations of Solar-Induced Chlorophyll Fluorescence (SIF) for Estimating Photosynthesis Under Stress. bioRxiv 2022. [Google Scholar] [CrossRef]
- Liu, X.; Liu, L.; Du, S.; Qi, M. Inconsistent Diurnal Patterns of Far-Red Solar-Induced Chlorophyll Fluorescence Retrieved with Different Algorithms from Tower-Based Observations. J. Remote Sens. 2025, 5, 0429. [Google Scholar] [CrossRef]
- De Petris, S.; Sarvia, F.; Parizia, F.; Ghilardi, F.; Farbo, A.; Borgogno-Mondino, E. Assessing mixed-pixels effects in vineyard mapping from Satellite: A proposal for an operational solution. Comput. Electron. Agric. 2024, 222, 109092. [Google Scholar] [CrossRef]
- Tardaguila, J.; Stoll, M.; Gutiérrez, S.; Proffitt, T.; Diago, M.P. Smart applications and digital technologies in viticulture: A review. Smart Agric. Technol. 2021, 1, 100005. [Google Scholar] [CrossRef]
- Pascoal, D.; Silva, N.; Adão, T.; Lopes, R.D.; Peres, E.; Morais, R. A technical survey on practical applications and guidelines for IoT sensors in precision agriculture and viticulture. Sci. Rep. 2024, 14, 29793. [Google Scholar] [CrossRef]
- Khruschev, S.S.; Plyusnina, T.Y.; Antal, T.K.; Pogosyan, S.I.; Riznichenko, G.Y.; Rubin, A.B. Machine learning methods for assessing photosynthetic activity: Environmental monitoring applications. Biophys. Rev. 2022, 14, 821–842. [Google Scholar] [CrossRef]
- Cogato, A.; Wu, L.; Jewan, S.Y.Y.; Meggio, F.; Marinello, F.; Sozzi, M.; Pagay, V. Evaluating the Spectral and Physiological Responses of Grapevines (Vitis vinifera L.) to Heat and Water Stresses under Different Vineyard Cooling and Irrigation Strategies. Agronomy 2021, 11, 1940. [Google Scholar] [CrossRef]
- Fu, P.; Meacham-Hensold, K.; Guan, K.; Bernacchi, C.J. Hyperspectral Leaf Reflectance as Proxy for Photosynthetic Capacities: An Ensemble Approach Based on Multiple Machine Learning Algorithms. Front. Plant Sci. 2019, 10, 730. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Montes, C.M.; Wu, J.; Guan, K.; Fu, P.; Ainsworth, E.A.; Pederson, T.; Moore, C.E.; Brown, K.L.; Raines, C.; et al. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. Remote Sens. Environ. 2019, 231, 111176. [Google Scholar] [CrossRef]
- Fu, P.; Meacham-Hensold, K.; Guan, K.; Wu, J.; Bernacchi, C. Estimating photosynthetic traits from reflectance spectra: A synthesis of spectral indices, numerical inversion, and partial least square regression. Plant Cell Environ. 2020, 43, 1241–1258. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Fu, P.; Wu, J.; Serbin, S.; Montes, C.M.; Ainsworth, E.; Guan, K.; Dracup, E.; Pederson, T.; Driever, S.; et al. Plot-level rapid screening for photosynthetic parameters using proximal hyperspectral imaging. J. Exp. Bot. 2020, 71, 2312–2328. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Wang, Q.; Song, G. Selecting informative bands for partial least squares regressions improves their goodness-of-fits to estimate leaf photosynthetic parameters from hyperspectral data. Photosynth. Res. 2021, 151, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Zarco-Tejada, P.; González-Dugo, V.; Berni, J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Bozzolo, A.; Wilkins, J.L.; Kwasniewski, M.T. Early Detection of Plant Physiological Responses to Different Levels of Water Stress Using Reflectance Spectroscopy. Remote Sens. 2017, 9, 745. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Sagan, V.; Sidike, P.; Maimaitijiang, M.; Miller, A.J.; Kwasniewski, M. Leveraging Very-High Spatial Resolution Hyperspectral and Thermal UAV Imageries for Characterizing Diurnal Indicators of Grapevine Physiology. Remote Sens. 2020, 12, 3216. [Google Scholar] [CrossRef]
- Zhou, J.J.; Zhang, Y.H.; Han, Z.M.; Liu, X.Y.; Jian, Y.F.; Hu, C.G.; Dian, Y.Y. Evaluating the Performance of Hyperspectral Leaf Reflectance to Detect Water Stress and Estimation of Photosynthetic Capacities. Remote Sens. 2021, 13, 2160. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S.F.; Orlandi, G.; Gatti, M.; Poni, S. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery. Front. Plant Sci. 2022, 13, 898722. [Google Scholar] [CrossRef]
- Wang, Q.; Sonobe, R. Tracing photosynthetic electron transport rate based on hyperspectral reflectance. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1723–1726. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Q.; Zhuang, J. Coupling Light Intensity and Hyperspectral Reflectance Improve Estimations of the Actual Electron Transport Rate of Mango Leaves (Mangifera indica L.). Remote Sens. 2024, 16, 3523. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, J.; Feng, K.; Gong, X.; Liu, J. Application of a hyperspectral imaging system to quantify leaf-scale chlorophyll, nitrogen and chlorophyll fluorescence parameters in grapevine. Plant Physiol. Biochem. 2021, 166, 723–737. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Q.; Song, G.; Jin, J. Validating and Developing Hyperspectral Indices for Tracing Leaf Chlorophyll Fluorescence Parameters under Varying Light Conditions. Remote Sens. 2023, 15, 4890. [Google Scholar] [CrossRef]
- Zhuang, J.; Wang, Q. Estimating Leaf Chlorophyll Fluorescence Parameters Using Partial Least Squares Regression with Fractional-Order Derivative Spectra and Effective Feature Selection. Remote Sens. 2025, 17, 833. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Brandmeier, M.; Heßdörfer, D.; Siebenlist, P.; Meyer-Spelbrink, A.; Kraus, A. Time Series Analysis of Multisensor Data for Precision Viticulture—Assessing Microscale Variations in Plant Development with Respect to Irrigation and Topography. Remote Sens. 2024, 16, 1419. [Google Scholar] [CrossRef]
- Paeth, H.; Schönbein, D.; Keupp, L.; Abel, D.; Bangelesa, F.; Baumann, M.; Büdel, C.; Hartmann, C.; Kneisel, C.; Kobs, K.; et al. Climate change information tailored to the agricultural sector in Central Europe, exemplified on the region of Lower Franconia. Clim. Change 2023, 176. [Google Scholar] [CrossRef]
- Spectral Evolution. PSR+ Spectroradiometer. Available online: https://spectralevolution.com/product/psr-spectroradiometer/ (accessed on 3 January 2025).
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap Pressure in Vascular Plants: Negative hydrostatic pressure can be measured in plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Antoniuk, V.; Manevski, K.; Kørup, K.; Larsen, R.; Sandholt, I.; Zhang, X.; Andersen, M.N. Diurnal and Seasonal Mapping of Water Deficit Index and Evapotranspiration by an Unmanned Aerial System: A Case Study for Winter Wheat in Denmark. Remote Sens. 2021, 13, 2998. [Google Scholar] [CrossRef]
- Kochubey, S.M.; Kazantsev, T.A. Derivative vegetation indices as a new approach in remote sensing of vegetation. Front. Earth Sci. 2012, 6, 188–195. [Google Scholar] [CrossRef]
- Yan, C. A review on spectral data preprocessing techniques for machine learning and quantitative analysis. iScience 2025, 28, 112759. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-spectral resolution data for determining leaf water content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Lei, J.; She, J.; Zhou, X. Estimation of leaf water content from hyperspectral data of different plant species by using three new spectral absorption indices. PLoS ONE 2021, 16, e0249351. [Google Scholar] [CrossRef]
- Antoniuk, V.; Zhang, X.; Andersen, M.N.; Kørup, K.; Manevski, K. Spatiotemporal Winter Wheat Water Status Assessment Improvement Using a Water Deficit Index Derived from an Unmanned Aerial System in the North China Plain. Sensors 2023, 23, 1903. [Google Scholar] [CrossRef]
- FLEX—Earth Online. Available online: https://earth.esa.int/eogateway/missions/flex (accessed on 1 March 2025).



| A (μmol m−2s−1) | ETR (μmol m−2s−1) | (MPa) | (MPa) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
| SVR | 0.4781 | 2.8786 | 0.4785 | 31.8939 | 0.5389 | 0.1263 | 0.6488 | 1.7469 | 0.6715 | 0.683 |
| ANN | 0.5076 | 2.7958 | 0.5089 | 30.9509 | 0.4879 | 0.1331 | 0.6649 | 1.7065 | 0.6658 | 0.6889 |
| LASSO | 0.5171 | 2.7687 | 0.4972 | 31.317 | 0.372 | 0.1474 | 0.6488 | 1.7471 | 0.5979 | 0.7556 |
| RIDGE | 0.5309 | 2.7289 | 0.5521 | 29.5579 | 0.4843 | 0.1336 | 0.6425 | 1.7625 | 0.6271 | 0.7276 |
| ELASTICNET | 0.5131 | 2.7801 | 0.5251 | 30.4377 | 0.3701 | 0.1476 | 0.6459 | 1.7542 | 0.6646 | 0.6901 |
| PLSR | 0.4574 | 2.9349 | 0.4853 | 31.6875 | 0.4327 | 0.1401 | 0.5769 | 1.9174 | 0.6146 | 0.7397 |
| RFS | 0.1834 | 3.6007 | 0.2131 | 39.178 | 0.1959 | 0.1668 | 0.3551 | 2.3673 | 0.4358 | 0.895 |
| SR-PT | 0.4912 | 2.842 | 0.5646 | 29.1436 | 0.6242 | 0.114 | 0.6595 | 1.7202 | 0.7876 | 0.5491 |
| SR-NP | 0.4738 | 2.8903 | 0.5143 | 30.7792 | 0.6687 | 0.1071 | 0.6601 | 1.7186 | 0.6744 | 0.6799 |
| A (μmol m−2s−1) | ETR (μmol m−2s−1) | (MPa) | (MPa) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
| SVR | 0.4774 | 2.8805 | 0.7101 | 23.7809 | 0.8147 | 0.0801 | 0.692 | 1.6361 | 0.7355 | 0.6128 |
| ANN | 0.1133 | 3.7519 | 0.2461 | 38.3498 | 0.8022 | 0.0827 | 0.626 | 1.8027 | 0.4777 | 0.8612 |
| LASSO | 0.533 | 2.7227 | 0.6725 | 25.2773 | 0.8199 | 0.079 | 0.7302 | 1.5311 | 0.7191 | 0.6315 |
| RIDGE | 0.4684 | 2.9051 | 0.7088 | 23.8336 | 0.8136 | 0.0803 | 0.688 | 1.6466 | 0.7365 | 0.6116 |
| ELASTICNET | 0.6767 | 2.2654 | 0.749 | 22.1254 | 0.7968 | 0.0839 | 0.6672 | 1.7006 | 0.7414 | 0.6059 |
| PLSR | 0.6329 | 2.414 | 0.7329 | 22.8255 | 0.8144 | 0.0801 | 0.7143 | 1.5757 | 0.7698 | 0.5717 |
| RFS | 0.786 | 1.8433 | 0.6801 | 24.9821 | 0.6074 | 0.1166 | 0.6171 | 1.8242 | 0.8362 | 0.4823 |
| SR-PT | 0.8451 | 1.5683 | 0.8159 | 18.9491 | 0.9219 | 0.052 | 0.7025 | 1.6079 | 0.7956 | 0.5387 |
| SR-NP | 0.725 | 2.0894 | 0.7384 | 22.5889 | 0.9068 | 0.0568 | 0.6666 | 1.7021 | 0.7911 | 0.5446 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutz, M.; Lüdicke, E.; Heßdörfer, D.; Ullmann, T.; Brandmeier, M. Estimating Plant Physiological Parameters for Vitis vinifera L. Using In Situ Hyperspectral Measurements and Ensemble Machine Learning. Remote Sens. 2025, 17, 3918. https://doi.org/10.3390/rs17233918
Lutz M, Lüdicke E, Heßdörfer D, Ullmann T, Brandmeier M. Estimating Plant Physiological Parameters for Vitis vinifera L. Using In Situ Hyperspectral Measurements and Ensemble Machine Learning. Remote Sensing. 2025; 17(23):3918. https://doi.org/10.3390/rs17233918
Chicago/Turabian StyleLutz, Marco, Emilie Lüdicke, Daniel Heßdörfer, Tobias Ullmann, and Melanie Brandmeier. 2025. "Estimating Plant Physiological Parameters for Vitis vinifera L. Using In Situ Hyperspectral Measurements and Ensemble Machine Learning" Remote Sensing 17, no. 23: 3918. https://doi.org/10.3390/rs17233918
APA StyleLutz, M., Lüdicke, E., Heßdörfer, D., Ullmann, T., & Brandmeier, M. (2025). Estimating Plant Physiological Parameters for Vitis vinifera L. Using In Situ Hyperspectral Measurements and Ensemble Machine Learning. Remote Sensing, 17(23), 3918. https://doi.org/10.3390/rs17233918

