Estimating Grazing Pressure from Satellite Time Series Without Reliance on Total Production
Highlights
- Multi-period vegetation index datasets capture seasonal grazing dynamics better than snapshot data.
- Only 38.8% of high intensity areas identified as under high grazing pressure.
- More than 40% of high intensity area exhibiting substantial aboveground biomass.
- Grazing intensity alone poorly explains grazing pressure and pasture degradation risk, but uncertainty is reduced when estimates are integrated with residual biomass.
- The proposed method produces more realistic appraisal of grazing pressure than total-production-based methods.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data Collection and Processing
2.3. Research Method
2.3.1. Overall Workflow
2.3.2. Grazing Pressure Index Estimation
2.3.3. Grazing Intensity Modelling
2.3.4. Residual Biomass Modelling
2.3.5. Spatial Analysis
3. Results
3.1. Modelled Grazing Intensity and Its Spatial Variation
3.2. Residual Biomass Variability
3.3. Grazing Pressure and Its Spatial Variability
4. Discussion
4.1. Variability of Grazing Intensity During Growing Season
4.2. Methodological Framework for Estimating Grazing Pressure
4.3. Overlaps Between Grazing Intensity and Grazing Pressure
4.4. Implications and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piipponen, J.; Jalava, M.; de Leeuw, J.; Rizayeva, A.; Godde, C.; Cramer, G.; Herrero, M.; Kummu, M. Global trends in grassland carrying capacity and relative stocking density of livestock. Global Change Biol. 2022, 28, 3902–3919. [Google Scholar] [CrossRef]
- Li, X.L.; Gao, J.; Brierley, G.; Qiao, Y.M.; Zhang, J.; Yang, Y.W. Rangeland Degradation on the Qinghai-Tibet Plateau: Implications for Rehabilitation. Land. Degrad. Dev. 2013, 24, 72–80. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X. Value of ecosystem services in China. Chin. Sci. Bull. 2000, 45, 870–876. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Sun, J.; Fu, B.; Zhao, W.; Liu, S.; Liu, G.; Zhou, H.; Shao, X.; Chen, Y.; Zhang, Y.; Deng, Y. Optimizing grazing exclusion practices to achieve Goal 15 of the sustainable development goals in the Tibetan Plateau. Sci. Bull. 2021, 66, 1493–1496. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.X.; Luo, T.X.; Li, R.C.; Li, X.; Tian, L.H. Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau. Agric. For. Meteorol. 2016, 218, 114–121. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Pang, X.P.; Wang, Q.; Zhou, Y.P.; Guo, Z.G. Soil disturbance and disturbance intensity: Response of soil nutrient concentrations of alpine meadow to plateau pika bioturbation in the Qinghai-Tibetan Plateau, China. Geoderma 2017, 307, 98–106. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef]
- Li, X.-l.; Perry, G.L.W.; Brierley, G.; Gao, J.; Zhang, J.; Yang, Y.-w. Restoration prospects for Heitutan degraded grassland in the Sanjiangyuan. J. Mt. Sci. 2013, 10, 687–698. [Google Scholar] [CrossRef][Green Version]
- Li, L.; Zhang, Y.; Wu, J.; Li, S.; Zhang, B.; Zu, J.; Zhang, H.; Ding, M.; Paudel, B. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau. Sci. Total Environ. 2019, 678, 21–29. [Google Scholar] [CrossRef]
- Cai, Z.; Song, P.; Wang, J.; Jiang, F.; Liang, C.; Zhang, J.; Gao, H.; Zhang, T. Grazing pressure index considering both wildlife and livestock in Three-River Headwaters, Qinghai-Tibetan Plateau. Ecol. Indic. 2022, 143, 109338. [Google Scholar] [CrossRef]
- Li, X.; Lyu, X.; Dou, H.; Dang, D.; Li, S.; Li, X.; Li, M.; Xuan, X. Strengthening grazing pressure management to improve grassland ecosystem services. Glob. Ecol. Conserv. 2021, 31, e01782. [Google Scholar] [CrossRef]
- Matthew, C. A note on the reporting of stocking rate, stocking density, and “grazing intensity” in pasture and rangeland research. Grassl. Res. 2024, 3, 303–305. [Google Scholar] [CrossRef]
- Shi, Y.; Brierley, G.; Perry, G.L.W.; Gao, J.; Li, X.; Prishchepov, A.V.; Li, J.; Han, M. An Improved Approach to Estimate Stocking Rate and Carrying Capacity Based on Remotely Sensed Phenology Timings. Remote Sens. 2024, 16, 1991. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, D.; Chen, H. Quantifying the ecological carrying capacity of alpine grasslands on the Qinghai-Tibet Plateau. Ecol. Indic. 2022, 136, 108634. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Wu, J.; He, Y.; Niu, B. Alpine Grassland Aboveground Biomass and Theoretical Livestock Carrying Capacity on the Tibetan Plateau. J. Resour. Ecol. 2022, 13, 129–141. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Liu, W.; Qi, Y.; Wo, X. Livestock-carrying capacity and overgrazing status of alpine grassland in the Three-River Headwaters region, China. J. Geogr. Sci. 2014, 24, 303–312. [Google Scholar] [CrossRef]
- Ma, Q.; Chai, L.; Hou, F.; Chang, S.; Ma, Y.; Tsunekawa, A.; Cheng, Y. Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau. Sustainability 2019, 11, 417. [Google Scholar] [CrossRef]
- Saizen, I.; Maekawa, A.; Yamamura, N. Spatial analysis of time-series changes in livestock distribution by detection of local spatial associations in Mongolia. Appl. Geogr. 2010, 30, 639–649. [Google Scholar] [CrossRef]
- Wang, D.; Peng, Q.; Li, X.; Zhang, W.; Xia, X.; Qin, Z.; Ren, P.; Liang, S.; Yuan, W. A long-term high-resolution dataset of grasslands grazing intensity in China. Sci. Data 2024, 11, 1194. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Hu, Y.; Zhou, W.; Peng, Y.; Ma, T.; Liu, L.; Li, S.; Wang, L.; Mao, X. Evaluation of Reasonable Stocking Rate Based on the Relative Contribution of Climate Change and Grazing Activities to the Productivity of Alpine Grasslands in Qinghai Province. Remote Sens. 2022, 14, 1455. [Google Scholar] [CrossRef]
- Török, P.; Penksza, K.; Tóth, E.; Kelemen, A.; Sonkoly, J.; Tóthmérész, B. Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecol. Evol. 2018, 8, 10326–10335. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.I.; Hou, L.; Yan, R.; Xin, X.; Zainelabdeen, Y.M. The joint effect of grazing intensity and soil factors on aboveground net primary production in Hulunber grasslands meadow steppe. Agriculture 2020, 10, 263. [Google Scholar] [CrossRef]
- Schönbach, P.; Wan, H.; Gierus, M.; Bai, Y.; Müller, K.; Lin, L.; Susenbeth, A.; Taube, F. Grassland responses to grazing: Effects of grazing intensity and management system in an Inner Mongolian steppe ecosystem. Plant Soil. 2011, 340, 103–115. [Google Scholar] [CrossRef]
- Hu, L.-J.; Wang, W.; Cheng, Y.; Guo, Y. Effects of grazing livestock on grassland functioning may depend more on grazing intensity than livestock diversity. Proc. Natl. Acad. Sci. USA 2019, 116, 18762–18763. [Google Scholar] [CrossRef]
- Wang, M.J.; Sun, R.; Liu, Z.; Xin, X.P.; Liu, G.; Zhang, L.; Qiao, C. A study of grazing intensity in the Hulunbuir grasslands using remote sensing. Acta Prataculturae Sin. 2017, 26, 28–36. [Google Scholar] [CrossRef]
- Li, F.; Bai, Y.; Wan, H.; Zheng, J.; Luo, J.; Zhao, D.; Liu, P. Quantifying Grazing Intensity in China Using High Temporal Resolution MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 515–523. [Google Scholar] [CrossRef]
- Li, F.; Zheng, J.; Wang, H.; Luo, J.; Zhao, Y.; Zhao, R. Mapping grazing intensity using remote sensing in the Xilingol steppe region, Inner Mongolia, China. Remote Sens. Lett. 2016, 7, 328–337. [Google Scholar] [CrossRef]
- Lei, G.; Li, A.; Zhang, Z.; Bian, J.; Hu, G.; Wang, C.; Nan, X.; Wang, J.; Tan, J.; Liao, X. The Quantitative Estimation of Grazing Intensity on the Zoige Plateau Based on the Space-Air-Ground Integrated Monitoring Technology. Remote Sens. 2020, 12, 1399. [Google Scholar] [CrossRef]
- Cao, J.; Li, Y.; Biswas, A.; Holden, N.M.; Adamowski, J.F.; Wang, F.; Hong, S.; Qin, Y. Grassland biomass allocation across continents and grazing practices and its response to climate and altitude. Agr. Forest Meteorol. 2024, 356, 110176. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Lauenroth, W.K. Quantitative effects of grazing on vegetation and soils over a global range of environments: Ecological Archives M063-001. Ecol. Monogr. 1993, 63, 327–366. [Google Scholar] [CrossRef]
- Vallentine, J.F. Grazing Management; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Hamelin, L.; Borzęcka, M.; Kozak, M.; Pudełko, R. A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27. Renew. Sustain. Energy Rev. 2019, 100, 127–142. [Google Scholar] [CrossRef]
- Liu, S.; Zamanian, K.; Schleuss, P.-M.; Zarebanadkouki, M.; Kuzyakov, Y. Degradation of Tibetan grasslands: Consequences for carbon and nutrient cycles. Agric. Ecosyst. Environ. 2018, 252, 93–104. [Google Scholar] [CrossRef]
- Che, M.; Gong, Y.; Xu, M.; Kang, C.; Lv, C.; He, S.; Zheng, J. Effects of elevation and slope aspect on the distribution of the soil organic carbon associated with Al and Fe mineral phases in alpine shrub–meadow soil. Sci. Total Environ. 2021, 753, 141933. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Hou, M.; Liang, T.; Feng, Q.; Meng, X.; Liu, J.; Bao, X.; Gao, H. Spatiotemporal dynamics of grassland aboveground biomass and its driving factors in North China over the past 20 years. Sci. Total Environ. 2022, 826, 154226. [Google Scholar] [CrossRef]
- Bretas, I.L.; Valente, D.S.M.; Silva, F.F.; Chizzotti, M.L.; Paulino, M.F.; D’Áurea, A.P.; Paciullo, D.S.C.; Pedreira, B.C.; Chizzotti, F.H.M. Prediction of aboveground biomass and dry-matter content in Brachiaria pastures by combining meteorological data and satellite imagery. Grass Forage Sci. 2021, 76, 340–352. [Google Scholar] [CrossRef]
- Liu, Y.; Zha, Y.; Gao, J.; Ni, S. Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [Google Scholar] [CrossRef]
- Marsett, R.C.; Qi, J.G.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid Southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Zhu, L. Remote Sensing Based Vegetation Dynamics in Southern Africa: Physiographic Gradients Determine the Relative Importance of Environmental Controls on Savanna Vegetation. Ph.D. Thesis, University of Florida, Ann Arbor, MI, USA, 2014. [Google Scholar]
- Shi, Y.; Gao, J.; Li, X.; Li, J.; dela Torre, D.M.G.; Brierley, G.J. Improved Estimation of Aboveground Biomass of Disturbed Grassland through Including Bare Ground and Grazing Intensity. Remote Sens. 2021, 13, 2105. [Google Scholar] [CrossRef]
- Yu, H.; Wu, Y.; Niu, L.; Chai, Y.; Feng, Q.; Wang, W.; Liang, T. A method to avoid spatial overfitting in estimation of grassland above-ground biomass on the Tibetan Plateau. Ecol. Indic. 2021, 125, 107450. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.R.; Xie, L.J.; Nie, X.M.; Wang, Z.; Du, Z.P.; Yue, T.X. Remote sensing inversion of grassland aboveground biomass based on high accuracy surface modeling. Ecol. Indic. 2021, 121, 107215. [Google Scholar] [CrossRef]
- Zhang, J.; Fang, S.; Liu, H. Estimation of alpine grassland above-ground biomass and its response to climate on the Qinghai-Tibet Plateau during 2001 to 2019. Glob. Ecol. Conserv. 2022, 35, e02065. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Sharma, P.; Leigh, L.; Chang, J.; Maimaitijiang, M.; Caffé, M. Above-Ground Biomass Estimation in Oats Using UAV Remote Sensing and Machine Learning. Sensors 2022, 22, 601. [Google Scholar] [CrossRef] [PubMed]
- Morais, T.G.; Teixeira, R.F.M.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Y.; Hou, F.; Millner, J.P.; Wang, Z.; Chang, S. Grazing activity increases decomposition of yak dung and litter in an alpine meadow on the Qinghai-Tibet plateau. Plant Soil. 2019, 444, 239–250. [Google Scholar] [CrossRef]
- Wei, D.; Zhao, H.; Zhang, J.; Qi, Y.; Wang, X. Human activities alter response of alpine grasslands on Tibetan Plateau to climate change. J. Environ. Manag. 2020, 262, 110335. [Google Scholar] [CrossRef]
- Wang, P.; Wang, Z.; Zhang, X.; Feng, Q.; Jiu, C.; Chen, Q. GIS-based classification of seasonal pasture in Qinghai province. Pratacult. Sci. 2010, 27, 119–128. [Google Scholar]
- Smart, A.J.; Derner, J.D.; Hendrickson, J.R.; Gillen, R.L.; Dunn, B.H.; Mousel, E.M.; Johnson, P.S.; Gates, R.N.; Sedivec, K.K.; Harmoney, K.R.; et al. Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands. Rangel. Ecol. Manag. 2010, 63, 397–406. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, J.; Zhang, X.; Niu, B.; He, Y. Comparison of methods for evaluating the forage-livestock balance of alpine grasslands on the northern Tibetan Plateau. J. Resour. Ecol. 2020, 11, 272–282. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, J.; Brierley, G.; Li, X.; Perry, G.L.W.; Xu, T. Improving the accuracy of models to map alpine grassland above-ground biomass using Google earth engine. Grass Forage Sci. 2023, 78, 237–253. [Google Scholar] [CrossRef]
- Zhang, W.; Du, T.; Wang, J. Deep learning over multi-field categorical data. In Proceedings of the European Conference on Information Retrieval, Padua, Italy, 20–23 March 2016; pp. 45–57. [Google Scholar]
- Wei, P.; Xu, L.; Pan, X.; Hu, Q.; Li, Q.; Zhang, X.; Shao, C.; Wang, C.; Wang, X. Spatio-temporal variations in vegetation types based on a climatic grassland classification system during the past 30 years in Inner Mongolia, China. CATENA 2020, 185, 104298. [Google Scholar] [CrossRef]
- Wang, J.; Li, W.; Cao, W.; Wang, S. Effects of different intensities of long-term grazing on plant diversity, biomass and carbon stock in alpine shrubland on the Qinghai-Tibetan Plateau. PeerJ 2022, 10, e12771. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—A pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Brierley, G.; Li, X.; Fryirs, K.; Gao, J.; Shi, Y.; Perry, G.L.W.; Cullum, C. Development of place-based catenal models for grassland ecosystems of the Upper Yellow River, Western China. Catena 2022, 213, 106193. [Google Scholar] [CrossRef]
- Brierley, G.; Li, X.-l.; Fryirs, K.; Gao, J.; Shi, Y.; Perry, G.L.W.; Cullum, C. Degradation and recovery of alpine meadow catenas in the source zone of the Yellow River, Western China. J. Mt. Sci. 2022, 19, 2487–2505. [Google Scholar] [CrossRef]
- Slocum, T.A.; McMaster, R.B.; Kessler, F.C.; Howard, H.H. Thematic Cartography and Geovisualization; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Sui, D.Z. A Review of “Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools” Michael J. de Smith, Michael F. Goodchild, and Paul A. Longley. Leicester, UK: Troubador Publishing, 2007. xxii and 491 pp., maps, diagrams, notes, appendices, and index. $69.95 paper (ISBN 978-1-906221-980). Ann. Assoc. Am. Geogr. 2009, 99, 440–442. [Google Scholar]
- Scott, L.M.; Janikas, M.V. Spatial statistics in ArcGIS. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 27–41. [Google Scholar]
- Turner, M.G. Landscape ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Engle, D.M. Restoring heterogeneity on rangelands: Ecosystem management based on evolutionary grazing patterns: We propose a paradigm that enhances heterogeneity instead of homogeneity to promote biological diversity and wildlife habitat on rangelands grazed by livestock. BioScience 2001, 51, 625–632. [Google Scholar]
- Adler, P.; Raff, D.; Lauenroth, W. The effect of grazing on the spatial heterogeneity of vegetation. Oecologia 2001, 128, 465–479. [Google Scholar] [CrossRef]
- Fetzel, T.; Havlik, P.; Herrero, M.; Erb, K.-H. Seasonality constraints to livestock grazing intensity. Glob. Change Biol. 2017, 23, 1636–1647. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Evans, J.; Geerken, R. Discrimination between climate and human-induced dryland degradation. J. Arid Environ. 2004, 57, 535–554. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Eldridge, D.J.; Poore, A.G.; Ruiz-Colmenero, M.; Letnic, M.; Soliveres, S. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing. Ecol. Appl. 2016, 26, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Scurlock, J.M.O.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Change Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef]
- Sala, O.E.; Austin, A.T. Methods of estimating aboveground Net Primary Productivity. In Methods in Ecosystem Science; Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 31–43. [Google Scholar]
- Lauenroth, W.K.; Hunt, H.W.; Swift, D.M.; Singh, J.S. Estimating aboveground net primary production in grasslands: A simulation approach. Ecol. Model. 1986, 33, 297–314. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, Y.; Wang, X.; Xu, T.; Zhang, Q.; Liu, H.; Zhao, N.; Xu, S. Seasonal Herbage–Livestock Balance and Grassland Pressure Index Analysis in the Yellow River Source Park, Tibet Plateau, China. Ecol. Evol. 2024, 14, e70586. [Google Scholar] [CrossRef]
- Li, W.; Hooper, D.U.; Wu, L.; Bakker, J.D.; Gianuca, A.T.; Wu, X.B.; Taube, F.; Wang, C.; Bai, Y. Grazing regime alters plant community structure via patch-scale diversity in semiarid grasslands. Ecosphere 2021, 12, e03547. [Google Scholar] [CrossRef]
- Wen, L.; Dong, S.K.; Li, Y.Y.; Sherman, R.; Shi, J.J.; Liu, D.M.; Wang, Y.L.; Ma, Y.S.; Zhu, L. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai–Tibet Plateau (QTP), China. Environ. Monit. Assess. 2013, 185, 8051–8064. [Google Scholar] [CrossRef]
- Li, Y.; Li, F.Y.; Shi, C.; Wang, H.; Wu, L.; Wang, Y.; Minggagud, H. Precipitation and grazing intensity jointly shape plant compensatory growth and productivity in a semi-arid steppe ecosystem. Agric. Ecosyst. Environ. 2025, 393, 109834. [Google Scholar] [CrossRef]
- McNaughton, S.J. Compensatory plant growth as a response to herbivory. Oikos 1983, 40, 329–336. [Google Scholar] [CrossRef]
- Milchunas, D.; Lauenroth, W. Three-dimensional distribution of plant biomass in relation to grazing and topography in the shortgrass steppe. Oikos 1989, 55, 82–86. [Google Scholar] [CrossRef]
- Yao, Y.; Ren, H. Estimation of grassland aboveground biomass in northern China based on topography-climate-remote sensing data. Ecol. Indic. 2024, 165, 112230. [Google Scholar] [CrossRef]
- Teng, Y.; Zhan, J.; Agyemang, F.B.; Sun, Y. The effects of degradation on alpine grassland resilience: A study based on meta-analysis data. Glob. Ecol. Conserv. 2020, 24, e01336. [Google Scholar] [CrossRef]
- Vogel, A.; Scherer-Lorenzen, M.; Weigelt, A. Grassland resistance and resilience after drought depends on management intensity and species richness. PLoS ONE 2012, 7, e36992. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Wang, J.; Zhao, Y.; Cai, T.; Yang, J.; Zhang, G.; Wu, X.; Otgonbayar, M.; Xiao, X.; Xin, X.; et al. A 10-m annual grazing intensity dataset in 2015–2021 for the largest temperate meadow steppe in China. Sci. Data 2024, 11, 181. [Google Scholar] [CrossRef]
- Pringle, H.J.; Landsberg, J. Predicting the distribution of livestock grazing pressure in rangelands. Austral. Ecol. 2004, 29, 31–39. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Gao, Q.; Zhang, Y.; Liu, S.; Ganjurjav, H.; Hu, G.; Wang, X.; Yan, Y.; Wu, H.; et al. Rotational grazing promotes grassland aboveground plant biomass and its temporal stability under changing weather conditions on the Qinghai-Tibetan plateau. Land Degrad. Dev. 2020, 31, 2662–2671. [Google Scholar] [CrossRef]
- Yu, H.Q. The Impact of Different Rotational Grazing Systems on the Physicochemical Properties of Desert Grassland Soils and Carbon Balance. Master’s Thesis, Ningxia University, Yinchuan, China, 2014. [Google Scholar]
- Briske, D.D.; Derner, J.; Brown, J.; Fuhlendorf, S.D.; Teague, W.; Havstad, K.; Gillen, R.L.; Ash, A.J.; Willms, W. Rotational grazing on rangelands: Reconciliation of perception and experimental evidence. Rangel. Ecol. Manag. 2008, 61, 3–17. [Google Scholar] [CrossRef]
- Teague, W.; Dowhower, S.; Baker, S.; Haile, N.; DeLaune, P.; Conover, D. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric. Ecosyst. Environ. 2011, 141, 310–322. [Google Scholar] [CrossRef]
- Jia, W.; Liu, M.; Wang, D.; He, H.; Shi, P.; Li, Y.; Wang, Y. Uncertainty in simulating regional gross primary productivity from satellite-based models over northern China grassland. Ecol. Indic. 2018, 88, 134–143. [Google Scholar] [CrossRef]
- Jia, W.X.; Liu, M.; Yang, Y.H.; He, H.L.; Zhu, X.D.; Yang, F.; Yin, C.; Xiang, W.N. Estimation and uncertainty analyses of grassland biomass in Northern China: Comparison of multiple remote sensing data sources and modeling approaches. Ecol. Indic. 2016, 60, 1031–1040. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Gao, J.; Brierley, G.; Li, X.; He, J.-S. Estimating Grazing Pressure from Satellite Time Series Without Reliance on Total Production. Remote Sens. 2025, 17, 3781. https://doi.org/10.3390/rs17223781
Shi Y, Gao J, Brierley G, Li X, He J-S. Estimating Grazing Pressure from Satellite Time Series Without Reliance on Total Production. Remote Sensing. 2025; 17(22):3781. https://doi.org/10.3390/rs17223781
Chicago/Turabian StyleShi, Yan, Jay Gao, Gary Brierley, Xilai Li, and Jin-Sheng He. 2025. "Estimating Grazing Pressure from Satellite Time Series Without Reliance on Total Production" Remote Sensing 17, no. 22: 3781. https://doi.org/10.3390/rs17223781
APA StyleShi, Y., Gao, J., Brierley, G., Li, X., & He, J.-S. (2025). Estimating Grazing Pressure from Satellite Time Series Without Reliance on Total Production. Remote Sensing, 17(22), 3781. https://doi.org/10.3390/rs17223781

