A Novel Framework Integrating Spectrum Analysis and AI for Near-Ground-Surface PM2.5 Concentration Estimation
Highlights
- Direct estimation is performed of near-ground-surface PM2.5 concentrations by integrating spectral analysis and machine learning approaches.
- PM2.5 measurement is achieved using a single MAX-DOAS instrument without reliance on meteorological data.
- Horizontal spatial distribution characteristics of PM2.5 within urban areas are identified.
- Synchronous observations from two MAX-DOAS instruments reveal intra-urban PM2.5 pollution transport processes.
Abstract
1. Introduction
2. Materials and Methods
2.1. O4 dSCD Data
2.2. PM2.5 in Situ Measurement
2.3. Auxiliary Data
2.4. Data Processing
2.5. Model Development
2.6. Model Evaluation Metrics
3. Results
3.1. Model Comparison and Temporal Extrapolation of Models
3.2. Impact of Cloud Removal
3.3. Spatial Extrapolation Validation
3.4. Feature Optimization
3.5. Temporal Variation in Horizontal Distribution of PM2.5 in Hefei
3.6. Spatial Distribution of PM2.5 in Hefei
3.7. Transport of PM2.5 During a Pollution Episode in Hefei
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Wavelength Range | Parameters | Data Sources |
|---|---|---|
| 338–370 nm | NO2 | 298 K, I0 correction (SCD of 1017 molecules cm−2) |
| O3 | 223 K, I0 correction (SCD of 1020 molecules cm−2) | |
| O3 | 293 K, I0 correction (SCD of 1020 molecules cm−2) | |
| O4 | 293 K | |
| HCHO | 297 K | |
| SO2 | 294 K | |
| BrO | 223 K | |
| H2O | 296 K, HITEMP |
Appendix B

References
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 10 July 2025).
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, B.-Y.; Pan, S.; Ho, Y.; Guo, Y. Prenatal exposure to PM2.5 and congenital heart diseases in Taiwan. Sci. Total. Environ. 2019, 655, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Health Effects Institute (HEI). State of Global Air 2022. Special Report: The Health Impacts of Air Pollution. 2022. Available online: https://www.stateofglobalair.org/ (accessed on 11 July 2025).
- Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Stanaway, J.D.; Beig, G.; Joshi, T.K.; Aggarwal, A.N. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The global burden of disease study 2017. Lancet Planet. Health 2019, 3, e26–e39. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. New directions: Beyond compliance air quality measurements. Atmos. Environ. 2008, 42, 5166–5168. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Air Quality System (AQS) and Reference/Equivalent Methods for PM2.5 Measurement; U.S. Environmental Protection Agency: Washington, DC, USA, 2016. Available online: https://www.epa.gov/ (accessed on 11 July 2025).
- Schwab, J.J.; Felton, H.D.; Rattigan, O.V.; Demerjian, K.L. New York state urban and rural measurements of continuous PM2.5 mass by FDMS, TEOM, and BAM. J. Air Waste Manag. Assoc. 2006, 56, 372–383. [Google Scholar] [CrossRef]
- Le, T.-C.; Shukla, K.K.; Chen, Y.-T.; Chang, S.-C.; Lin, T.-Y.; Li, Z.; Pui, D.Y.; Tsai, C.-J. On the concentration differences between PM2.5 FEM monitors and FRM samplers. Atmos. Environ. 2020, 222, 117138. [Google Scholar] [CrossRef]
- Chung, A.; Chang, D.P.Y.; Kleeman, M.J.; Perry, K.D.; Cahill, T.A.; Dutcher, D.; McDougall, E.M.; Stroud, K. Comparison of real-time instruments used to monitor airborne particulate matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, G.; Liu, J.; Shen, S.; Yang, Z.; Pan, Y.; Zhao, X.; Yang, S.; Tian, Y.; Zhao, H.; et al. Influence of particle properties and environmental factors on the performance of typical particle monitors and low-cost particle sensors in the market of China. Atmos. Environ. 2022, 268, 118825. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Center. National Air Quality Monitoring Network Data Technical Specification (HJ 663–2021); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2021; Available online: http://www.cnemc.cn/ (accessed on 11 July 2025).
- Wang, Y.; Ying, Q.; Hu, J.; Zhang, H. Spatial and temporal variations of six criteria air pollutants in 31 provincial capital cities in China during 2013–2014. Environ. Int. 2014, 73, 413–422. [Google Scholar] [CrossRef]
- Birmili, W.; Wiedensohler, A.; Heintzenberg, J.; Lehmann, K. Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology. J. Geophys. Res. Atmos. 2001, 106, 32005–32018. [Google Scholar] [CrossRef]
- Hansen, A.D.A.; Rosen, H.; Novakov, T. The aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total. Environ. 1984, 36, 191–196. [Google Scholar] [CrossRef]
- Backman, J.; Schmeisser, L.; Virkkula, A.; Ogren, J.A.; Asmi, E.; Starkweather, S.; Sharma, S.; Eleftheriadis, K.; Uttal, T.; Jefferson, A.; et al. On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic. Atmos. Meas. Tech. 2017, 10, 5039–5062. [Google Scholar] [CrossRef]
- Apte, J.S.; Messier, K.P.; Gani, S.; Brauer, M.; Kirchstetter, T.W.; Lunden, M.M.; Marshall, J.D.; Portier, C.J.; Vermeulen, R.C.; Hamburg, S.P. High-resolution air pollution mapping with Google street view cars: Exploiting big data. Environ. Sci. Technol. 2017, 51, 6999–7008. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.T.; Xiang, S.; Li, R.; Zhang, S.; Zhang, K.M.; Si, S.; Wu, X.; Wu, Y. Characterizing spatial variations of city-wide elevated PM10 and PM2.5 concentrations using taxi-based mobile monitoring. Sci. Total. Environ. 2022, 829, 154478. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef]
- King, M.D.; Kaufman, Y.J.; Tanré, D.; Nakajima, T. Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Am. Meteorol. Soc. 1999, 80, 2229–2260. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Ansmann, A.; Wandinger, U.; Riebesell, M.; Weitkamp, C.; Michaelis, W. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. Appl. Opt. 1992, 31, 7113–7131. [Google Scholar] [CrossRef] [PubMed]
- Hönninger, G.; von Friedeburg, C.; Platt, U. Multi axis differential optical absorption spectroscopy (MAX-DOAS). Atmos. Chem. Phys. 2004, 4, 231–254. [Google Scholar] [CrossRef]
- Wagner, T.; Dix, B.; Friedeburg, C.V.; Frieß, U.; Sanghavi, S.; Sinreich, R.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols—Principles and information content. J. Geophys. Res. Atmos. 2004, 109, D22205. [Google Scholar] [CrossRef]
- Irie, H.; Kanaya, Y.; Akimoto, H.; Iwabuchi, H.; Shimizu, A.; Aoki, K. First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements. Atmos. Chem. Phys. 2008, 8, 341–350. [Google Scholar] [CrossRef]
- Irie, H.; Takashima, H.; Kanaya, Y.; Boersma, K.F.; Gast, L.; Wittrock, F.; Brunner, D.; Zhou, Y.; Van Roozendael, M. Eight-component retrievals from ground-based MAX-DOAS observations. Atmospheric Meas. Tech. 2011, 4, 1027–1044. [Google Scholar] [CrossRef]
- Frieß, U.; Monks, P.S.; Remedios, J.J.; Rozanov, A.; Sinreich, R.; Wagner, T.; Platt, U. MAX-DOAS O4 measurements: A new technique to derive information on atmospheric aerosols: 2. Modeling studies. J. Geophys. Res. Atmos. 2006, 111, D14203. [Google Scholar] [CrossRef]
- Xin, J.; Gong, C.; Liu, Z.; Cong, Z.; Gao, W.; Song, T.; Pan, Y.; Sun, Y.; Ji, D.; Wang, L.; et al. The observation-based relationships between PM2.5 and AOD over China. J. Geophys. Res. Atmos. 2016, 121, 10701–10716. [Google Scholar] [CrossRef]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Documentation for the global annual PM2.5 grids from MODIS, MISR and SeaWIFS aerosol optical depth (AOD) with GWR, 1998–2016. In NASA Socioeconomic Data and Applications Center (SEDAC) Data Set; Center for International Earth Science Information Network (CIESIN): New York, NY, USA, 2018; H4B27S72. [Google Scholar] [CrossRef]
- van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C..; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ. Sci. Technol. 2016, 50, 3762–3772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, S.; Zhu, J.; Xue, R.; Jiang, Z.; Gu, C.; Yan, Y.; Zhou, B. Stacking machine learning models empowered high time-height-resolved ozone profiling from the ground to the stratopause based on MAX-DOAS observation. Environ. Sci. Technol. 2024, 58, 7433–7444. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Tian, X.; Xie, P.; Li, A.; Xu, J.; Ren, B.; Huang, X.; Tian, W.; Wang, Z. Prediction of Tropospheric NO2 Profile Using CNN-SVR-Based MAX-DOAS. Acta Opt. Sin. 2022, 42, 2401001. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef]
- Peng, J.; Han, H.; Yi, Y.; Huang, H.; Xie, L. Machine learning and deep learning modeling and simulation for predicting PM2.5 concentrations. Chemosphere 2022, 308, 136353. [Google Scholar] [CrossRef]
- Xiao, Q.; Chang, H.H.; Geng, G.; Liu, Y. An ensemble machine-learning model to predict historical PM2.5 concentrations in China from satellite data. Environ. Sci. Technol. 2018, 52, 13260–13269. [Google Scholar] [CrossRef]
- Li, T.; Shen, H.; Yuan, Q.; Zhang, L. A locally weighted neural network constrained by global training for remote sensing estimation of PM2.5. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4102513. [Google Scholar] [CrossRef]
- Karimian, H.; Li, Q.; Wu, C.; Qi, Y.; Mo, Y.; Chen, G.; Zhang, X.; Sachdeva, S. Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual. Res. 2019, 19, 1400–1410. [Google Scholar] [CrossRef]
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Liu, C.; Wang, S.; Hu, Q.; Liu, H.; Tan, W.; Zhang, W.; Li, B.; Liu, J. A new method to determine the aerosol optical properties from multiple-wavelength O4 absorptions by MAX-DOAS observation. Atmos. Meas. Tech. 2019, 12, 3289–3302. [Google Scholar] [CrossRef]
- Van Roozendael, M.; Hendrick, F.; Friedrich, M.M.; Fayt, C.; Bais, A.; Beirle, S.; Bösch, T.; Comas, M.N.; Friess, U.; Karagkiozidis, D.; et al. Fiducial reference measurements for air quality monitoring using ground-based MAX-DOAS instruments (FRM4DOAS). Remote Sens. 2024, 16, 4523. [Google Scholar] [CrossRef]
- Wu, H.; Xu, X.; Luo, T.; Yang, Y.; Xiong, Z.; Wang, Y. Variation and comparison of cloud cover in MODIS and four reanalysis datasets of ERA-interim, ERA5, MERRA-2 and NCEP. Atmospheric Res. 2023, 281, 106477. [Google Scholar] [CrossRef]
- Liu, C.; Xing, C.; Hu, Q.; Li, Q.; Liu, H.; Hong, Q.; Tan, W.; Ji, X.; Lin, H.; Lu, C.; et al. Ground-based hyperspectral stereoscopic remote sensing network: A promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering 2022, 19, 71–83. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Bentéjac, C.; Csörgő, A.; Martínez-Muñoz, G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021, 54, 1937–1967. [Google Scholar] [CrossRef]
- Takkala, H.R.; Khanduri, V.; Singh, A.; Somepalli, S.N.; Maddieni, R.; Patra, S. Kyphosis disease prediction with help of randomizedsearchcv and adaboosting. In Proceedings of the 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), Bombay, India, 3–5 October 2022; IEEE: New York, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Belitz, K.; Stackelberg, P.E. Evaluation of six methods for correcting bias in estimates from ensemble tree machine learning regression models. Environ. Model. Softw. 2021, 139, 105006. [Google Scholar] [CrossRef]
- Shao, H.; Li, H.; Jin, S.; Fan, R.; Wang, W.; Liu, B.; Ma, Y.; Wei, R.; Gong, W. Exploring the Conversion Model from Aerosol Extinction Coefficient to PM1, PM2.5 and PM10 Concentrations. Remote Sens. 2023, 15, 2742. [Google Scholar] [CrossRef]
- Wang, S.; Cuevas, C.A.; Frieß, U.; Saiz-Lopez, A. MAX-DOAS retrieval of aerosol extinction properties in Madrid, Spain. Atmos. Meas. Tech. 2016, 9, 5089–5101. [Google Scholar] [CrossRef]
- Lee, H.; Irie, H.; Gu, M.; Kim, J.; Hwang, J. Remote sensing of tropospheric aerosol using UV MAX-DOAS during hazy conditions in winter: Utilization of O4 absorption bands at wavelength intervals of 338–368 and 367–393 nm. Atmos. Environ. 2011, 45, 5760–5769. [Google Scholar] [CrossRef]
- Li, C.; Huang, Y.; Guo, H.; Wu, G.; Wang, Y.; Li, W.; Cui, L. The Concentrations and Removal Effects of PM10 and PM2.5 on a Wetland in Beijing. Sustainability 2019, 11, 1312. [Google Scholar] [CrossRef]











| MAX-DOAS Site Name | Latitude and Longitude | Observation Time | Elevation Angle Sequence | Observation Azimuth Direction |
|---|---|---|---|---|
| BJ-CAM | 116.32E, 39.95N | 15 April 2018–26 May 2023 | 1°, 2°, 3°, 4°, 5°, 6°, 8°, 10°, 15°, 30°, 90° | 130° |
| LZU | 103.85E, 36.04N | 20 October 2018–10 October 2022 | 287° | |
| AHU | 117.18E, 31.77N | 22 October 2020–17 April 2023 | 107° | |
| HFC | 117.26E, 31.76N | 19 January 2021–25 July 2022 | 180°, 270° | |
| HF-HD | 117.31E, 31.88N | 28 January 2021–14 May 2022 | 0°, 90°, 180°, 270° |
| Model | Parameters | Data Sources |
|---|---|---|
| Random Forest | n_estimators | 100 |
| max_depth | 15 | |
| min_samples_split | 2 | |
| min_samples_leaf | 1 | |
| max_features | sqrt | |
| n_jobs | 1 | |
| XGBoost | n_estimators | 200 |
| max_depth | 6 | |
| learning_rate | 0.05 | |
| subsample | 0.8 | |
| colsample_bytree | 0.8 | |
| gamma | 0.1 | |
| LightGBM | n_estimators | 200 |
| max_depth | 10 | |
| learning_rate | 0.05 | |
| subsample | 0.8 | |
| num_leaves | 31 | |
| colsample_bytree | 0.8 | |
| min_child_samples | 20 | |
| BP | hidden_layer_sizes | (64, 32, 16) |
| activation | relu | |
| solver | adam | |
| alpha | 1 × 10−4 | |
| learning_rate_init | 0.001 | |
| max_iter | 1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, H.; Li, Q.; Xia, S.; Zhang, Z.; Hu, Q.; Tan, W.; Guo, T. A Novel Framework Integrating Spectrum Analysis and AI for Near-Ground-Surface PM2.5 Concentration Estimation. Remote Sens. 2025, 17, 3780. https://doi.org/10.3390/rs17223780
Qin H, Li Q, Xia S, Zhang Z, Hu Q, Tan W, Guo T. A Novel Framework Integrating Spectrum Analysis and AI for Near-Ground-Surface PM2.5 Concentration Estimation. Remote Sensing. 2025; 17(22):3780. https://doi.org/10.3390/rs17223780
Chicago/Turabian StyleQin, Hanwen, Qihua Li, Shun Xia, Zhiguo Zhang, Qihou Hu, Wei Tan, and Taoming Guo. 2025. "A Novel Framework Integrating Spectrum Analysis and AI for Near-Ground-Surface PM2.5 Concentration Estimation" Remote Sensing 17, no. 22: 3780. https://doi.org/10.3390/rs17223780
APA StyleQin, H., Li, Q., Xia, S., Zhang, Z., Hu, Q., Tan, W., & Guo, T. (2025). A Novel Framework Integrating Spectrum Analysis and AI for Near-Ground-Surface PM2.5 Concentration Estimation. Remote Sensing, 17(22), 3780. https://doi.org/10.3390/rs17223780

