Evaluating the German Ground Motion Service for Operational Dam Monitoring: A Comparison of InSAR Data with In Situ Measurements
Highlights
- A versioned comparison of BBD PSI (2015–2020 vs. 2015–2021) shows fewer PS points in the 2021 dataset but equal or higher agreement with in-situ measurements for long-term trends, with clear geometry effects (ascending > descending; decomposed products more sensitive).
- For long-term deformation, PSI shows stronger agreement with plumb-line measurements than with trigonometric/levelling campaign data (best cases reaching r ≈ 0.8), while accuracy varies with viewing geometry and dam type.
- BBD PSI is suitable for operational support (not a full replacement): it can complement DIN-aligned programs for long-term trend assessment, while limitations remain for vertical component accuracy and update frequency.
- Operational practice should include regular reassessment of PS coverage and site-specific selection of orbit geometry (ascending vs. descending) informed by the dam’s geographic orientation (e.g., wall azimuth, slope aspect) and local topography.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Statistical Analysis
3. Results
3.1. Comparison of PS Point Distribution (2020 vs. 2021)
3.2. Results for Plumb Data
3.3. Results for Trigonometric and Levelling Data
4. Discussion
4.1. BBD PSI Point Quantity
4.2. Analysis of Plumb and Trigonometric Comparisons
4.3. Limitations of BBD Data
4.4. Trade-Off Between Data Quantity and Data Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BBD | BodenbewegungsDienst Deutschland—German Ground Motion Service |
| DInSAR | Differential Interferometric SAR |
| DS | Distributed Scatterer Pixel |
| ECR | Electronic Corner Reflector |
| EGMS | European Ground Motion Service |
| ESA | European Space Agency |
| GMS | Ground Motion Service |
| GNSS | Global Navigation Satellite System |
| LOS | Line-of-Sight |
| MAE | Mean Absolute Error |
| MedAE | Median Absolute Error |
| NRW | North Rhine-Westphalia |
| PS | Persistent Scatterer Pixel |
| PSI | Persistent Scatterer Interferometry |
| RMSE | Root Mean Square Error |
| SAR | Synthetic Aperture Radar |
References
- DIN 19700-10; Dam Structures—Part 10: General Provisions. DIN: Berlin, Germany, 2004.
- Jänichen, J.; Schmullius, C.; Baade, J.; Last, K.; Bettzieche, V.; Dubois, C. Monitoring of radial deformations of a gravity dam using Sentinel-1 persistent scatterer interferometry. Remote Sens. 2022, 14, 1112. [Google Scholar] [CrossRef]
- Bettzieche, V. Satellitenüberwachung der Verformungen von Staumauern und Staudämmen. Wasserwirtschaft 2020, 9, 48–51. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Analysis of permanent scatterers in SAR interferometry. In Proceedings of the IGARSS 2000, IEEE 2000 International Geoscience and Remote Sensing Symposium, Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Proceedings (Cat. No. 00CH37120), Honolulu, HI, USA, 24–28 July 2000; Volume 2, pp. 761–763. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Kalia, A.C.; Frei, M.; Lege, T. BodenBewegungsdienst Deutschland (BBD): Konzept, Umsetzung und Service-Plattform. ZfV-Z. Für Geodäsie Geoinf. Landmanagement 2021, 146, 273–279. [Google Scholar]
- Bundesanstalt für Geowissenschaften und Rohstoffe (BGR). BodenBewegungsdienst Deutschland (BBD). Available online: https://bodenbewegungsdienst.bgr.de/mapapps/resources/apps/bbd/index.html?lang=de (accessed on 5 January 2025).
- Dubois, C.; Ziemer, J.; Jänichen, J.; Stumpf, N.; Liedel, C.; Sabrowski, M.; Schmullius, C. Dam Monitoring with Ground Motion Services–A Case Study of a Gravity Dam with the German Ground Motion Service. In Proceedings of the IGARSS 2024, IEEE 2024 International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 4670–4673. [Google Scholar] [CrossRef]
- EGMS. European Ground Motion Service (EGMS). Available online: https://egms.land.copernicus.eu/ (accessed on 5 January 2025).
- Milillo, P.; Porcu, M.C.; Londgren, P.; Soccodato, F.; Alzer, J.; Fielding, E.; Bürgmann, R.; Milillo, G.; Perissin, D.; Biondi, F. The ongoing destabilization of the Mosul Dam as observed by synthetic aperture radar interferometry. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6279–6282. [Google Scholar] [CrossRef]
- Ruiz-Armenteros, A.M.; Marchamalo-Sacristán, M.; Bakoň, M.; Lamas-Fernández, F.; Delgado, J.M.; Sánchez-Ballesteros, V.; Papco, J.; González-Rodrigo, B.; Lazecky, M.; Perissin, D.; et al. Monitoring of an Embankment Dam in Southern Spain Based on Sentinel-1 Time-Series InSAR. Procedia Comput. Sci. 2021, 181, 353–359. [Google Scholar] [CrossRef]
- Abo, H.; Osawa, T.; Ge, P.; Takahashi, A.; Yamagishi, K. Deformation Monitoring of Large-Scale Rockfill Dam Applying Persistent Scatterer Interferometry (PSI) Using Sentinel-1 SAR Data. In Proceedings of the 2021 7th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Bali, Indonesia, 1–3 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, Z.; Perissin, D. Cosmo SkyMed AO projects-3D reconstruction and stability monitoring of the Three Gorges Dam. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 3831–3834. [Google Scholar] [CrossRef]
- Lazecký, M.; Perissin, D.; Zhiying, W.; Ling, L.; Yuxiao, Q. Observing dam’s movements with spaceborne SAR interferometry. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer: Cham, Switzerland, 2015; Volume 5, pp. 131–136. [Google Scholar] [CrossRef]
- Even, M.; Westerhaus, M.; Kutterer, H. German and European Ground Motion Service: A Comparison. PFG-J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 253–270. [Google Scholar] [CrossRef]
- Marchamalo-Sacristán, M.; Fernández-Landa, A.; Sancho, C.; Hernández-Cabezudo, A.; Krishnakumar, V.; García-Lanchares, C.; Lamas-Fernández, F. EyeRADAR-Dam: Integration of MT-InSAR with monitoring technologies in a pilot monitoring system for embankment dams. Procedia Comput. Sci. 2024, 239, 2286–2292. [Google Scholar] [CrossRef]
- Ruhrverband. (Möhnetalsperre, Möhnesee, Germany); Sicherheitsbericht 2013, Teil A. Unpublished security report. 2013. [Google Scholar]
- Ruhrverband. (Möhnetalsperre, Möhnesee, Germany); Sicherheitsbericht 2020, Teil B. Unpublished security report. 2020. [Google Scholar]
- Ruhrverband. (Möhnetalsperre, Möhnesee, Germany); Vertiefte Überprüfung 2018, Analyse der Messdaten. Unpublished security report. 2018. [Google Scholar]
- Ruhrverband. (Fürwiggetalsperre, Lüdenscheid, Germany); Sicherheitsbericht 2010, Teil A. Unpublished security report. 2010. [Google Scholar]
- Ruhrverband. (Fürwiggetalsperre, Lüdenscheid, Germany); Sicherheitsbericht 2021, Teil B. Unpublished security report. 2021. [Google Scholar]
- Ruhrverband. (Biggetalsperre, Attendorn, Germany); Sicherheitsbericht 2019, Teil A. Unpublished security report. 2019. [Google Scholar]
- Ruhrverband. (Biggetalsperre, Attendorn, Germany); Sicherheitsbericht 2020, Teil B. Unpublished security report. 2020. [Google Scholar]
- Ruhrverband. (Versetalsperre, Lüdenscheid, Germany); Sicherheitsbericht 2020, Teil A. Unpublished security report. 2020. [Google Scholar]
- Ruhrverband. (Versetalsperre, Lüdenscheid, Germany); Sicherheitsbericht 2020, Teil B. Unpublished security report. 2020. [Google Scholar]
- Ruhrverband. (Sorpetalsperre, Sundern, Germany); Sicherheitsbericht 1993, Teil A. Unpublished security report. 1993. [Google Scholar]
- Ruhrverband. (Sorpetalsperre, Sundern, Germany); Sicherheitsbericht 2020, Teil B. Unpublished security report. 2020. [Google Scholar]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Barra, A.; Frunzio, G.; Novellino, A. Validation of Ground Motion Datasets in Operational PSI Services: Methods and Findings from EGMS. Remote Sens. 2023, 15, 1982. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Pedretti, L.; Bordoni, M.; Vivaldi, V.; Figini, S.; Parnigoni, M.; Grossi, A.; Lanteri, L.; Tararbra, M.; Negro, N.; Meisina, C. InterpolatiON of InSAR Time Series for the dEtection of ground deforMatiOn eVEnts (ONtheMOVE): Application to Slow-Moving Landslides. Landslides 2023, 20, 1797–1815. [Google Scholar] [CrossRef]
- Afzal, Z.; Balz, T.; Asghar, A. Non-Linear PSInSAR Analysis of Deformation Patterns in Islamabad/Rawalpindi Region: Unveiling Tectonics and Earthquake-Driven Changes. Remote Sens. 2024, 16, 1194. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Mazzanti, P. The Role of Satellite InSAR for Landslide Forecasting: Limitations and Openings. Remote Sens. 2021, 13, 3735. [Google Scholar] [CrossRef]
- Vradi, M.; Mikosch, D.; Vanneschi, C. Validating the European Ground Motion Service: An Assessment of Measurement Point Density. ISPRS Arch. 2023, XLVIII-4/W7, 247–254. [Google Scholar] [CrossRef]
- Gido, N.A.A.; Nilfouroushan, F.; Kiamehr, R.; Olsson, P.-A. Localized Subsidence Zones in Gävle City Detected by Sentinel-1 PSI and Leveling Data. Remote Sens. 2020, 12, 2629. [Google Scholar] [CrossRef]
- Nilfouroushan, F.; Gido, N.; Olsson, P.-A.; Gedara, C.P. Contributions from Lantmäteriet to the InSAR-Sweden Project: Validation of InSAR-Sweden with PSI Studies in Uppsala and Gävle. Lantmäterirapport 2023, 1, 1–40. Available online: https://www.lantmateriet.se/globalassets/geodata/gps-och-geodetisk-matning/rapporter/lantmaterirapport_2023-1.pdf (accessed on 30 July 2025).
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, L16302. [Google Scholar] [CrossRef]
- Jänichen, J.; Ziemer, J.; Wolsza, M.; Klöpper, D.; Weltmann, S.; Wicker, C.; Last, K.; Schmullius, C.; Dubois, C. Towards Operational Dam Monitoring with PS-InSAR and Electronic Corner Reflectors. Remote Sens. 2025, 17, 1318. [Google Scholar] [CrossRef]
- Jänichen, J.; Ziemer, J.; Wicker, C.; Klöpper, D.; Last, K.; Wolsza, M.; Schmullius, C.; Dubois, C. Enahncing Dam Monitoring: Utilizing the CR-Index for Electronic Corner Reflector (ECR) Site Selection and PSI Analysis. In Proceedings of the IGARSS 2024—2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024. [Google Scholar]
- Ziemer, J.; Jänichen, J.; Wicker, C.; Klöpper, D.; Last, K.; Kalia, A.; Lege, T.; Schmullius, C.; Dubois, C. Assessing the Feasibility of Persistent Scatterer Data for Operational Dam Monitoring in Germany: A Case Study. Remote Sens. 2025, 17, 1202. [Google Scholar] [CrossRef]
- GAF AG. BBD–Bodenbewegungsdienst Deutschland, Produktpräsentation auf der ESA Fringe Konferenz 2023; ESA FRINGE 2023: Frascati, Italy, 2023; Available online: https://fringe2023.esa.int/iframe-agenda/files/presentation-293.pdf (accessed on 30 July 2025).
- Cuervas-Mons, J.; Domínguez-Cuesta, M.J.; Jiménez-Sánchez, M. Potential and Limitations of the New European Ground Motion Service in Landslides at a Local Scale. Appl. Sci. 2024, 14, 7796. [Google Scholar] [CrossRef]
- Cigna, F.; Ramírez, R.E.; Tapete, D. Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sens. 2021, 13, 4800. [Google Scholar] [CrossRef]
- Zhang, J.; Duan, W.; Fu, X.; Yun, Y.; Lv, X. The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring. Remote Sens. 2025, 17, 1374. [Google Scholar] [CrossRef]
- Scoular, J.; Ghail, R.; Mason, P.; Lawrence, J. Are measured InSAR displacements a function of the chosen processing method? Q. J. Eng. Geol. Hydrogeol. 2022, 56, e122022-049. [Google Scholar] [CrossRef]
- Sánchez-Fernández, J.; Fernández-Landa, A.; Hernández Cabezudo, Á.; Molina Sánchez, R. Interferometric Synthetic Aperture Radar Phase Linking with Level 2 Coregistered Single Look Complexes: Enhancing Infrastructure Monitoring Accuracy at Algeciras Port. Remote Sens. 2024, 16, 3966. [Google Scholar] [CrossRef]
- Cakir, Z.; Aslan, A.; Gungor, O.; Gunay, A. Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry in Vegetated Areas. Remote Sens. 2020, 12, 1305. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. Persistent Scatterer Interferometry: Potential, Limits and Initial C- and X-band Comparison. Photogramm. Eng. Remote Sens. 2010, 76, 1061–1069. [Google Scholar] [CrossRef]
- Barone, A.; Fedi, M.; Pepe, A.; Mastro, P.; Tizzani, P.; Castaldo, R. Inferring 3-D displacement time series through InSAR measurements and potential field theory in volcanic areas. Sci. Rep. 2025, 15, 4719. [Google Scholar] [CrossRef]
- Bettzieche, V. Mathematisch-Statistische Analyse von Messwerten der Talsperrenüberwachung. Wasserwirtschaft 2004, 94, 30–34. [Google Scholar] [CrossRef]
- Shang, J.; Wang, M.; Wang, X.; Yang, M.; Wu, Y.; Du, W. Three-Dimensional Surface Deformation Field Monitoring and Influencing Factors Analysis in Mountainous Areas Based on SBAS-InSAR Technology (Tianjin, China). Sci. Rep. 2025, 15, 25702. [Google Scholar] [CrossRef]
- Lin, Y.; Chang, Z.; Wang, X.; Chen, Z. Combining InSAR and GPS to Determine Transient Movement and Thickness of a Seasonally Active Low-Gradient Translational Landslide. Geophys. Res. Lett. 2018, 45, 1453–1462. [Google Scholar] [CrossRef]
- Sadeghi, Z.; Wright, T.J.; Hooper, A.J.; Jordan, C.; Novellino, A.; Bateson, L.; Biggs, J. Benchmarking and Inter-Comparison of Sentinel-1 InSAR Velocities and Time Series. Remote Sens. Environ. 2021, 256, 112306. [Google Scholar] [CrossRef]
- Fabris, M.; Battaglia, M.; Chen, X.; Menin, A.; Monego, M.; Floris, M. An Integrated InSAR and GNSS Approach to Monitor Land Subsidence in the Po River Delta (Italy). Remote Sens. 2022, 14, 5578. [Google Scholar] [CrossRef]
- Dörr, M.; Schenk, A.; Hinz, S. Fully Integrated Temporary Persistent Scatterer Interferometry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4412815. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Ding, X.; Zhu, J.; Zhang, L. Incorporating Temporarily Coherent Targets into Persistent Scatterer Interferometry for Improved Monitoring of Urban Subsidence. ISPRS J. Photogramm. Remote Sens. 2012, 68, 102–112. [Google Scholar] [CrossRef]
- Yang, C.H.; Soergel, U. Adaptive 4D PSI-based Change Detection for High-Quality Scatterer Time Series. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, IV-3, 453–460. [Google Scholar] [CrossRef]
- Ziemer, J.; Jänichen, J.; Stein, G.; Liedel, N.; Wicker, C.; Last, K.; Denzler, J.; Schmullius, C.; Shadaydeh, M.; Dubois, C. Identifying Deformation Drivers in Dam Segments Using Combined X- and C-Band PS Time Series. Remote Sens. 2025, 17, 2629. [Google Scholar] [CrossRef]











| Orbit | Stack-ID | Number Scenes (2015–2020) | Number Scenes (2015–2021) | Incidence Angle Range (°) | Look Angle (°) |
|---|---|---|---|---|---|
| Ascending | 015_05 | 282 | 341 | 39.4 | 84 |
| 015_06 | 282 | 341 | 39.4 | 84 | |
| 088_03 | 292 | 351 | 45.5 | 84 | |
| Descending | 066_08 | 298 | 355 | 45.7 | 276 |
| 139_07 | 292 | 349 | 37.8 | 276 | |
| 139_08 | 282 | 339 | 37.8 | 276 |
| Dam | Dam Type | Plumb: Interval—No. Points | Trigonometry: Interval—No. Points |
|---|---|---|---|
| Möhne | Gravity Dam | daily—1 | semi-annual—27 |
| Lister | – | semi-annual—16 | |
| Fürwigge | daily—2 | semi-annual—15 | |
| Sorpe | Embankment Dam | – | annual—10 |
| Bigge | – | annual—13 | |
| Verse | – | annual—5 |
| Dam | Period | Vertical/ East–West | Ascending 015_05 | Ascending 015_06 | Ascending 088_03 | Descending 066_08 | Descending 139_07 | Descending 139_08 |
|---|---|---|---|---|---|---|---|---|
| Möhne | 2015–2020 | 11 | 29 | 30 | – | 7 | 11 | – |
| 2015–2021 | 1 | 27 | 27 | – | 3 | 3 | – | |
| Lister | 2015–2020 | 2 | – | 4 | – | – | – | 6 |
| 2015–2021 | 1 | – | 3 | – | – | – | 5 | |
| Fürwigge | 2015–2020 | 1 | – | 0 | 1 | – | – | 6 |
| 2015–2021 | 0 | – | 0 | 0 | – | – | 4 | |
| Sorpe | 2015–2020 | 9 | – | 34 | – | – | 23 | 10 |
| 2015–2021 | 5 | – | 25 | – | – | 9 | 5 | |
| Bigge | 2015–2020 | 1 | – | 1 | – | – | – | 8 |
| 2015–2021 | 1 | – | 1 | – | – | – | 3 | |
| Verse | 2015–2020 | 4 | – | 7 | 7 | – | – | 4 |
| 2015–2021 | 0 | – | 1 | 1 | – | – | 2 |
| Dam | Stack | Pearson (r) | p | RMSE [mm] | MAE [mm] |
|---|---|---|---|---|---|
| Möhne | Asc. 015_05 2020 | 0.22 | 0.024 | 5.44 | 4.28 |
| Asc. 015_05 2021 | 0.34 | 0.022 | 3.97 | 3.29 | |
| Asc. 015_06 2020 | 0.24 | 0.062 | 4.77 | 4.42 | |
| Asc. 015_06 2021 | 0.38 | 0.064 | 3.44 | 2.86 | |
| Desc. 066_08 2020 | 0.43 | 0.013 | 13.33 | 11.22 | |
| Desc. 066_08 2021 | 0.52 | 0.012 | 11.06 | 9.96 | |
| Desc. 139_07 2020 | 0.52 | 0.011 | 8.99 | 8.73 | |
| Desc. 139_07 2021 | 0.66 | 0.01 | 7.68 | 6.70 | |
| East–West 2020 | 0.44 | 0.012 | 6.79 | 6.12 | |
| East–West 2021 | 0.75 | 0.01 | 3.45 | 2.34 | |
| Vertical 2020 | 0.14 | 0.012 | 7.21 | 7.33 | |
| Vertical 2021 | 0.18 | 0.01 | 5.98 | 5.20 | |
| Fürwigge | Asc. 015_06 2020 | –0.102 | 0.32 | 7.76 | 7.13 |
| Asc. 015_06 2021 | –0.041 | 0.45 | 6.23 | 5.18 | |
| Desc. 139_08 2020 | 0.03 | 0.083 | 7.87 | 6.43 | |
| Desc. 139_08 2021 | 0.12 | 0.032 | 5.62 | 4.88 |
| Dam | Stack | Pearson (r) | p | RMSE [mm] | MAE [mm] |
|---|---|---|---|---|---|
| Möhne | Asc. 015_05 2020 | 0.48 | 0.02 | 4.22 | 3.29 |
| Asc. 015_05 2021 | 0.61 | 0.02 | 3.20 | 2.32 | |
| Asc. 015_06 2020 | 0.49 | 0.03 | 3.98 | 3.22 | |
| Asc. 015_06 2021 | 0.63 | 0.02 | 3.42 | 2.57 | |
| Desc. 066_08 2020 | 0.39 | 0.02 | 4.22 | 9.01 | |
| Desc. 066_08 2021 | 0.54 | 0.01 | 3.07 | 7.74 | |
| Desc. 139_07 2020 | 0.46 | 0.01 | 4.32 | 9.04 | |
| Desc. 139_07 2021 | 0.65 | 0.01 | 2.97 | 8.61 | |
| East–West 2020 | 0.27 | 0.02 | 9.01 | 7 | |
| East–West 2021 | 0.75 | 0.01 | 7.45 | 6.34 | |
| Vertical 2020 | 0.12 | 0.02 | 6.44 | 5.76 | |
| Vertical 2021 | 0.18 | 0.02 | 5.98 | 5.20 | |
| Fürwigge | Asc. 015_06 2020 | –0.121 | 0.45 | 8.22 | 7.34 |
| Asc. 015_06 2021 | –0.041 | 0.45 | 6.23 | 5.18 | |
| Desc. 139_08 2020 | 0.11 | 0.009 | 4.67 | 4.10 | |
| Desc. 139_08 2021 | 0.27 | 0.01 | 3.46 | 2.83 | |
| East–West 2020 | 0.23 | 0.03 | 4.55 | 4.076 | |
| Vertical 2020 | 0.04 | 0.03 | 7.32 | 5.02 |
| Dam | Value | RMSE 2020 (mm) | RMSE 2021 (mm) | Pearson (r) 2020 | Pearson (r) 2021 |
|---|---|---|---|---|---|
| Möhne | Asc. 015_05 | 1.46 | 1.69 | 0.74 | 0.79 |
| Asc. 015_06 | 1.48 | 1.67 | 0.75 | 0.78 | |
| Desc. 066_08 | 1.57 | 2.69 | 0.76 | 0.87 | |
| Desc. 139_07 | 1.56 | 1.7 | 0.72 | 0.87 | |
| East–West | 2.43 | 0.94 | 0.72 | 0.89 | |
| Vertical | 2.93 | 2.22 | 0.14 | 0.20 | |
| Fürwigge | Asc. 015_06 | 4.33 | 4.16 | 0.4 | 0.41 |
| Asc. 088_03 | 4.43 | 4.02 | 0.43 | 0.41 | |
| Desc. 139_08 | 3.92 | 3.76 | 0.32 | 0.33 | |
| East–West | 6.26 | 7.22 | 0.32 | 0.38 | |
| Vertical | 7.12 | 7.76 | 0.17 | 0.1 | |
| Lister | Asc. 015_06 | 2.03 | 2.56 | 0.84 | 0.87 |
| Desc. 139_08 | 2.55 | 2.45 | 0.91 | 0.88 | |
| East–West | 2.76 | 2.29 | 0.81 | 0.84 | |
| Vertical | 3.82 | 3.51 | 0.21 | 0.20 | |
| Bigge | Asc. 015_06 | 0.99 | 0.82 | 0.54 | 0.63 |
| Desc. 139_08 | 1.2 | 1.02 | 0.51 | 0.54 | |
| East–West | 1.42 | 1.34 | 0.47 | 0.62 | |
| Vertical | 1.45 | 1.44 | 0.56 | 0.62 | |
| Sorpe | Asc. 015_06 | 4.89 | 5.76 | 0.85 | 0.88 |
| Desc. 139_07 | 8.22 | 8.12 | 0.79 | 0.72 | |
| Desc. 139_08 | 7.41 | 6.98 | 0.73 | 0.76 | |
| East–West | 2.28 | 2.08 | 0.60 | 0.61 | |
| Vertical | 1.99 | 1.86 | 0.45 | 0.54 | |
| Verse | Asc. 015_06 | 2.33 | 2.29 | 0.32 | 0.36 |
| Asc. 088_03 | 2.96 | 3.22 | 0.21 | 0.29 | |
| Desc. 139_08 | 2.34 | 2.29 | 0.14 | 0.23 | |
| East–West | 2.67 | 2.51 | 0.21 | 0.26 | |
| Vertical | 1.98 | 2.01 | 0.15 | 0.2 |
| Dam Type | North–South | East–West | Oblique | Total |
|---|---|---|---|---|
| Gravity Dam | 4 | 6 | 16 | 26 |
| 15.38% | 23.08% | 61.54% | 100% | |
| Embankment Dam | 8 | 6 | 19 | 33 |
| 24.24% | 18.18% | 57.58% | 100% | |
| Both Types | 12 | 12 | 35 | 59 |
| 20.34% | 20.34% | 59.32% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jänichen, J.; Ziemer, J.; Wicker, C.; Last, K.; Schmullius, C.; Kalia, A.C.; Lege, T.; Dubois, C. Evaluating the German Ground Motion Service for Operational Dam Monitoring: A Comparison of InSAR Data with In Situ Measurements. Remote Sens. 2025, 17, 3649. https://doi.org/10.3390/rs17213649
Jänichen J, Ziemer J, Wicker C, Last K, Schmullius C, Kalia AC, Lege T, Dubois C. Evaluating the German Ground Motion Service for Operational Dam Monitoring: A Comparison of InSAR Data with In Situ Measurements. Remote Sensing. 2025; 17(21):3649. https://doi.org/10.3390/rs17213649
Chicago/Turabian StyleJänichen, Jannik, Jonas Ziemer, Carolin Wicker, Katja Last, Christiane Schmullius, Andre Cahyadi Kalia, Thomas Lege, and Clémence Dubois. 2025. "Evaluating the German Ground Motion Service for Operational Dam Monitoring: A Comparison of InSAR Data with In Situ Measurements" Remote Sensing 17, no. 21: 3649. https://doi.org/10.3390/rs17213649
APA StyleJänichen, J., Ziemer, J., Wicker, C., Last, K., Schmullius, C., Kalia, A. C., Lege, T., & Dubois, C. (2025). Evaluating the German Ground Motion Service for Operational Dam Monitoring: A Comparison of InSAR Data with In Situ Measurements. Remote Sensing, 17(21), 3649. https://doi.org/10.3390/rs17213649

