Remote Sensing Monitoring of Phragmites Treatment and Fish Habitat Restoration in Long Point, Lake Erie, Canada
Highlights
- Random forest classification of high-resolution satellite images was used to track herbicide treatment in wetlands over eight years between 2016 and 2024.
- Efforts on Phragmites Best Management Practices and fish habitat restoration was successful in the Great Lakes wetlands.
- Evaluation of the long-term efficacy of herbicide treatment in wetlands using remote sensing is possible.
- Wetland management resulted in a decrease in Phragmites cover; however, declines in non-target plant species caused by the impact on non-target vegetation need to be considered.
Abstract
1. Introduction
2. Study Area and Data
3. Methodology
4. Results
4.1. Results of RF Classification
4.2. LULC and Temporal Changes Across the Entire Study Area
4.3. Phragmites Management Effects and Changes Across Subareas
4.4. Effects of Phragmites Management in NWA-BC
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Validation Label | Classification Class | UA | PA | OA | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | |||||
| BG | 34 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 92 | 91 | 0.85 |
| B | 3 | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79 | 83 | 0.81 | |
| DV | 4 | 1 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 93 | 68 | 0.79 | |
| FV | 2 | 0 | 0 | 29 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 97 | 91 | 0.94 | |
| GH | 0 | 0 | 0 | 1 | 78 | 0 | 5 | 0 | 0 | 2 | 2 | 90 | 89 | 0.89 | |
| OW | 0 | 1 | 0 | 0 | 0 | 174 | 0 | 0 | 1 | 0 | 0 | 97 | 99 | 0.98 | |
| PH | 0 | 0 | 0 | 0 | 1 | 0 | 111 | 0 | 0 | 0 | 4 | 88 | 96 | 0.92 | |
| SAV | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 86 | 100 | 0.93 | |
| SW | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 4 | 37 | 0 | 0 | 97 | 79 | 0.87 | |
| TS | 0 | 0 | 0 | 0 | 7 | 0 | 8 | 0 | 0 | 42 | 6 | 95 | 67 | 0.79 | |
| T | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 108 | 89 | 96 | 0.93 | |
| Validation Label | Classification Class | UA | PA | OA | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | |||||
| BG | 34 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 92 | 92 | 95 | 0.92 |
| B | 1 | 17 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 77 | 94 | 0.85 | |
| DV | 2 | 0 | 16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 94 | 84 | 0.89 | |
| FV | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 94 | 97 | 0.95 | |
| GH | 0 | 0 | 0 | 0 | 84 | 0 | 1 | 0 | 0 | 3 | 0 | 95 | 95 | 0.95 | |
| OW | 0 | 3 | 0 | 0 | 0 | 173 | 0 | 0 | 0 | 0 | 0 | 99 | 98 | 0.99 | |
| PH | 0 | 0 | 0 | 1 | 2 | 0 | 109 | 0 | 0 | 1 | 3 | 93 | 94 | 0.94 | |
| SAV | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 | 1 | 0 | 0 | 90 | 97 | 0.94 | |
| SW | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 43 | 0 | 0 | 98 | 91 | 0.95 | |
| TS | 0 | 0 | 0 | 0 | 2 | 0 | 7 | 0 | 0 | 54 | 0 | 92 | 86 | 0.89 | |
| T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 110 | 97 | 98 | 0.98 | |
| Validation Label | Classification Class | UA | PA | OA | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | |||||
| BG | 25 | 4 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 89 | 78 | 94 | 0.83 |
| B | 1 | 19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 83 | 95 | 0.88 | |
| DV | 1 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 88 | 97 | 0.92 | |
| FV | 0 | 0 | 0 | 31 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 94 | 100 | 0.97 | |
| GH | 0 | 0 | 1 | 1 | 120 | 0 | 2 | 2 | 0 | 4 | 2 | 89 | 91 | 0.9 | |
| OW | 0 | 0 | 0 | 0 | 0 | 125 | 0 | 0 | 1 | 0 | 0 | 100 | 99 | 1 | |
| PH | 0 | 0 | 0 | 0 | 3 | 0 | 119 | 0 | 0 | 2 | 3 | 96 | 94 | 0.95 | |
| SAV | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 23 | 0 | 0 | 0 | 88 | 100 | 0.94 | |
| SW | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 78 | 0 | 0 | 99 | 97 | 0.98 | |
| TS | 1 | 0 | 0 | 0 | 12 | 0 | 3 | 0 | 0 | 57 | 0 | 88 | 78 | 0.83 | |
| T | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 122 | 96 | 98 | 0.97 | |
| Validation Label | Classification Class | UA | PA | OA | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | |||||
| BG | 50 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 98 | 96 | 94 | 0.97 |
| B | 0 | 27 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 96 | 96 | 0.96 | |
| DV | 1 | 0 | 66 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 81 | 99 | 0.89 | |
| FV | 0 | 0 | 3 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 92 | 0.96 | |
| GH | 0 | 0 | 2 | 0 | 76 | 0 | 2 | 0 | 0 | 2 | 0 | 95 | 93 | 0.94 | |
| OW | 0 | 0 | 0 | 0 | 0 | 138 | 0 | 0 | 1 | 0 | 0 | 96 | 99 | 0.98 | |
| PH | 0 | 0 | 2 | 0 | 0 | 0 | 86 | 0 | 0 | 2 | 2 | 90 | 93 | 0.91 | |
| SAV | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 44 | 1 | 0 | 0 | 98 | 96 | 0.97 | |
| SW | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 1 | 61 | 0 | 0 | 97 | 90 | 0.93 | |
| TS | 0 | 0 | 0 | 0 | 3 | 0 | 5 | 0 | 0 | 53 | 1 | 91 | 85 | 0.88 | |
| T | 0 | 0 | 5 | 0 | 1 | 0 | 3 | 0 | 0 | 1 | 85 | 97 | 89 | 0.93 | |
| Validation Label | Classification Class | UA | PA | OA | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | |||||
| BG | 53 | 2 | 3 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 96 | 80 | 94 | 0.88 |
| B | 0 | 21 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 91 | 88 | 0.89 | |
| DV | 1 | 0 | 45 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 94 | 98 | 0.96 | |
| FV | 0 | 0 | 0 | 37 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97 | 100 | 0.99 | |
| GH | 0 | 0 | 0 | 1 | 79 | 0 | 1 | 0 | 0 | 0 | 0 | 96 | 98 | 0.97 | |
| OW | 1 | 0 | 0 | 0 | 0 | 115 | 0 | 0 | 0 | 0 | 0 | 89 | 99 | 0.94 | |
| PH | 0 | 0 | 0 | 0 | 1 | 0 | 54 | 0 | 0 | 2 | 0 | 95 | 95 | 0.95 | |
| SAV | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 1 | 0 | 0 | 97 | 98 | 0.97 | |
| SW | 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 | 82 | 0 | 0 | 99 | 94 | 0.96 | |
| TS | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 50 | 6 | 96 | 85 | 0.9 | |
| T | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 69 | 92 | 99 | 0.95 | |
| Validation Label | Classification Class | UA | PA | OA | F1 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | |||||
| BG | 108 | 5 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 97 | 94 | 96 | 0.96 |
| B | 2 | 62 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91 | 94 | 0.93 | |
| DV | 0 | 0 | 71 | 1 | 4 | 0 | 3 | 0 | 0 | 0 | 0 | 92 | 90 | 0.91 | |
| FV | 0 | 0 | 1 | 231 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 99 | 99 | 0.99 | |
| GH | 1 | 0 | 1 | 1 | 214 | 0 | 1 | 0 | 0 | 4 | 1 | 97 | 96 | 0.96 | |
| OW | 0 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 94 | 100 | 0.97 | |
| PH | 0 | 0 | 0 | 0 | 3 | 0 | 126 | 0 | 0 | 2 | 1 | 91 | 95 | 0.93 | |
| SAV | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 105 | 1 | 1 | 0 | 100 | 95 | 0.98 | |
| SW | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 54 | 0 | 0 | 98 | 98 | 0.98 | |
| TS | 0 | 0 | 0 | 1 | 0 | 0 | 5 | 0 | 0 | 99 | 1 | 92 | 93 | 0.93 | |
| T | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | 173 | 98 | 98 | 0.98 | |
| Class Name | BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | 2018 Subtotal |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| DV | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 |
| FV | 0.00 | 0.01 | 0.00 | 0.21 | 0.02 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.31 |
| GH | 0.00 | 0.00 | 0.01 | 0.10 | 0.64 | 0.00 | 0.24 | 0.03 | 0.00 | 0.13 | 0.34 | 1.50 |
| OW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PH | 0.00 | 0.00 | 0.00 | 0.01 | 0.07 | 0.00 | 0.81 | 0.00 | 0.00 | 0.09 | 0.16 | 1.14 |
| SAV | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.26 | 0.22 | 0.01 | 0.01 | 0.53 |
| SW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.00 | 0.00 | 0.07 |
| TS | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.03 | 0.01 | 0.00 | 0.07 | 0.03 | 0.17 |
| T | 0.00 | 0.00 | 0.01 | 0.01 | 0.09 | 0.00 | 0.22 | 0.01 | 0.00 | 0.10 | 1.92 | 2.36 |
| 2016 subtotal | 0.00 | 0.02 | 0.04 | 0.36 | 0.83 | 0.00 | 1.31 | 0.34 | 0.30 | 0.42 | 2.48 | 6.1 |
| Class Name | BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | 2020 Subtotal |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
| B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| DV | 0.00 | 0.00 | 0.00 | 0.01 | 0.06 | 0.00 | 0.04 | 0.01 | 0.00 | 0.01 | 0.15 | 0.28 |
| FV | 0.00 | 0.00 | 0.00 | 0.20 | 0.11 | 0.00 | 0.04 | 0.03 | 0.00 | 0.03 | 0.08 | 0.50 |
| GH | 0.00 | 0.00 | 0.00 | 0.02 | 0.57 | 0.00 | 0.08 | 0.00 | 0.00 | 0.01 | 0.15 | 0.84 |
| OW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PH | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.00 | 0.56 | 0.00 | 0.00 | 0.01 | 0.12 | 0.81 |
| SAV | 0.00 | 0.00 | 0.01 | 0.04 | 0.17 | 0.00 | 0.04 | 0.43 | 0.04 | 0.02 | 0.13 | 0.89 |
| SW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.00 | 0.04 |
| TS | 0.00 | 0.00 | 0.00 | 0.01 | 0.07 | 0.00 | 0.04 | 0.00 | 0.00 | 0.04 | 0.03 | 0.19 |
| T | 0.00 | 0.00 | 0.00 | 0.02 | 0.40 | 0.00 | 0.34 | 0.04 | 0.00 | 0.03 | 1.70 | 2.53 |
| 2018 subtotal | 0.00 | 0.00 | 0.02 | 0.31 | 1.50 | 0.00 | 1.14 | 0.53 | 0.07 | 0.17 | 2.36 | 6.1 |
| Class Name | BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | 2022 Subtotal |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
| B | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.03 |
| DV | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.16 | 0.00 | 0.00 | 0.00 | 0.24 | 0.44 |
| FV | 0.00 | 0.00 | 0.04 | 0.26 | 0.04 | 0.00 | 0.05 | 0.09 | 0.00 | 0.02 | 0.17 | 0.68 |
| GH | 0.00 | 0.00 | 0.05 | 0.04 | 0.48 | 0.00 | 0.29 | 0.02 | 0.00 | 0.05 | 0.48 | 1.41 |
| OW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PH | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.09 | 0.00 | 0.00 | 0.02 | 0.04 | 0.18 |
| SAV | 0.00 | 0.00 | 0.06 | 0.15 | 0.02 | 0.00 | 0.01 | 0.67 | 0.00 | 0.00 | 0.12 | 1.04 |
| SW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.04 | 0.00 | 0.00 | 0.11 |
| TS | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.03 | 0.00 | 0.00 | 0.05 | 0.05 | 0.18 |
| T | 0.00 | 0.00 | 0.10 | 0.03 | 0.23 | 0.00 | 0.17 | 0.03 | 0.00 | 0.04 | 1.41 | 2.02 |
| 2020 subtotal | 0.01 | 0.00 | 0.28 | 0.50 | 0.84 | 0.00 | 0.81 | 0.89 | 0.04 | 0.19 | 2.53 | 6.1 |
| Class Name | BG | B | DV | FV | GH | OW | PH | SAV | SW | TS | T | 2024 Subtotal |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BG | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
| B | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.02 |
| DV | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.07 | 0.00 | 0.00 | 0.01 | 0.02 | 0.11 |
| FV | 0.00 | 0.00 | 0.00 | 0.28 | 0.04 | 0.00 | 0.00 | 0.07 | 0.00 | 0.01 | 0.03 | 0.45 |
| GH | 0.00 | 0.00 | 0.06 | 0.08 | 0.59 | 0.00 | 0.03 | 0.03 | 0.00 | 0.04 | 0.31 | 1.14 |
| OW | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| PH | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.02 | 0.09 |
| SAV | 0.00 | 0.00 | 0.01 | 0.13 | 0.03 | 0.00 | 0.00 | 0.74 | 0.05 | 0.00 | 0.04 | 0.99 |
| SW | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.12 | 0.06 | 0.00 | 0.00 | 0.20 |
| TS | 0.00 | 0.00 | 0.02 | 0.04 | 0.06 | 0.00 | 0.02 | 0.02 | 0.00 | 0.05 | 0.08 | 0.28 |
| T | 0.00 | 0.02 | 0.35 | 0.12 | 0.65 | 0.00 | 0.04 | 0.05 | 0.00 | 0.05 | 1.53 | 2.82 |
| 2022 subtotal | 0.01 | 0.03 | 0.44 | 0.68 | 1.41 | 0.00 | 0.18 | 1.04 | 0.11 | 0.18 | 2.02 | 6.1 |
Appendix B





Appendix C





References
- Saltonstall, K. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 2002, 99, 2445–2449. [Google Scholar] [CrossRef]
- Wilcox, K.L.; Petrie, S.A.; Maynard, L.A.; Meyer, S.W. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. J. Great Lakes Res. 2003, 29, 664–680. [Google Scholar] [CrossRef]
- Meyerson, L.A.; Lambert, A.M.; Saltonstall, K. A tale of three lineages: Expansion of common reed (Phragmites australis) in the U.S. Southwest and Gulf Coast. Invasive Plant Sci. Manag. 2010, 3, 515–520. [Google Scholar] [CrossRef]
- Ontario Ministry of Natural Resources and Forestry (OMNRF). Invasive Phragmites—Best Management Practices; OMNRF: Peterborough, ON, Canada, 2011.
- Environment and Climate Change Canada (ECCC). Invasive Phragmites australis Management Within the Big Creek and Long Point National Wildlife Areas and Adjacent Private Land: 2022 Implementation Plan; ECCC: Ottawa, ON, Canada, 2022.
- Tulbure, M.G.; Johnston, C.A. Environmental conditions promoting non-native Phragmites australis expansion in Great Lakes coastal wetlands. Wetlands 2010, 30, 577–587. [Google Scholar] [CrossRef]
- Weinstein, M.P.; Balletto, J.H. Does the common reed, Phragmites australis, affect essential fish habitat? Estuaries 1999, 22, 793–802. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kowalski, K.P.; Mazur, M.L.; Scarbrough, K.A.; Powel, R.B.; Brooks, C.N.; Huberty, B.; Jenkins, L.K.; Banda, E.C.; Galbraith, D.M.; et al. Mapping invasive Phragmites australis in the coastal Great Lakes with ALOS PALSAR satellite imagery for decision support. J. Great Lakes Res. 2013, 39, 65–77. [Google Scholar] [CrossRef]
- Carlson Mazur, M.L.; Kowalski, K.P.; Galbraith, D. Assessment of suitable habitat for Phragmites australis (common reed) in the Great Lakes coastal zone. Aquat. Invasions 2014, 9, 1–19. [Google Scholar] [CrossRef]
- Rohal, C.B.; Cranney, C.; Hazelton, E.L.; Kettenring, K.M. Invasive Phragmites australis management outcomes and native plant recovery are context dependent. Ecol. Evol. 2019, 9, 13835–13849. [Google Scholar] [CrossRef] [PubMed]
- Hazelton, E.L.; Mozdzer, T.J.; Burdick, D.M.; Kettenring, K.M.; Whigham, D.F. Phragmites australis management in the United States: 40 years of methods and outcomes. AoB Plants 2014, 6, plu001. [Google Scholar] [CrossRef]
- Quirion, B.; Simek, Z.; Blossey, A.D. Management of invasive Phragmites australis in the Adirondacks: A cautionary tale about prospects of eradication. Biol. Invasions 2018, 20, 59–73. [Google Scholar] [CrossRef]
- Robichaud, C.D.; Rooney, R.C. Low concentrations of glyphosate in water and sediment after direct over-water application to control an invasive aquatic plant. Water Res. 2021, 188, 116573. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; LeBaron, A.; Soetemans, J.; Bershatsky, J.; Braun, H.; MacDonald, F. Visual-based monitoring (2016–2020) of direct impacts to wetland fishes from aerial and ground herbicide application to control invasive Phragmites australis. In Canadian Data Report of Fisheries and Aquatic Sciences 1362; Fisheries and Oceans Canada: Burlington, ON, Canada, 2023. Available online: https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/41095790.pdf (accessed on 10 September 2025).
- Bourgeau-Chavez, L.; Endres, S.; Battaglia, M.; Miller, M.E.; Banda, E.; Laubach, Z.; Higman, P.; Chow-Fraser, P.; Marcaccio, J. Development of a bi-national Great Lakes coastal wetland and land use map using three-season PALSAR and Landsat imagery. Remote Sens. 2015, 7, 8655–8682. [Google Scholar] [CrossRef]
- Banks, S.N.; White, L.; Behnamian, A.; Chen, Z.; Montpetit, B.; Brisco, B.; Pasher, J.; Duffe, J. Wetland classification with multi-angle/temporal SAR using random forests. Remote Sens. 2019, 11, 670. [Google Scholar] [CrossRef]
- White, L.; Ryerson, R.A.; Pasher, J.; Duffe, J. State of science assessment of remote sensing of Great Lakes coastal wetlands: Responding to an operational requirement. Remote Sens. 2020, 12, 3024. [Google Scholar] [CrossRef]
- Battaglia, M.J.; Banks, S.; Behnamian, A.; Bourgeau-Chavez, L.; Brisco, B.; Corcoran, J.; Chen, Z.; Huberty, B.; Klassen, J.; Knight, J.; et al. Multi-source EO for dynamic wetland mapping and monitoring in the Great Lakes Basin. Remote Sens. 2021, 13, 599. [Google Scholar] [CrossRef]
- Chen, Z.; White, L.; Banks, S.; Behnamian, A.; Montpetit, B.; Pasher, J.; Duffe, J.; Bernard, D. Characterizing marsh wetlands in the Great Lakes Basin with C-band InSAR observations. Remote Sens. Environ. 2020, 242, 111750. [Google Scholar] [CrossRef]
- Chen, Z.; Banks, S.; Behnamian, A.; White, L.; Montpetit, B.; Pasher, J.; Duffe, J. Characterizing the Great Lakes coastal wetlands with InSAR observations from X-, C-, and L-band sensors. Can. J. Remote Sens. 2021, 46, 765–783. [Google Scholar] [CrossRef]
- Rupasinghe, P.A.; Chow-Fraser, P. Mapping Phragmites cover using WorldView 2/3 and Sentinel-2 images at Lake Erie wetlands, Canada. Biol. Invasions 2021, 23, 1231–1247. [Google Scholar] [CrossRef]
- Laba, M.; Downs, R.; Smith, S.; Welsh, S.; Neider, C.; White, S.; Richmond, M.; Philpot, W.; Baveye, P. Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using QuickBird satellite imagery. Remote Sens. Environ. 2008, 112, 286–300. [Google Scholar] [CrossRef]
- Lantz, N.J.; Wang, J. Object-based classification of WorldView-2 imagery for mapping invasive common reed, Phragmites australis. Can. J. Remote Sens. 2013, 39, 328–340. [Google Scholar] [CrossRef]
- Elmer, K.; Kalacska, M.; Arroyo-Mora, J.P. Mapping the extent of invasive Phragmites australis subsp. australis from airborne hyperspectral imagery. Front. Environ. Sci. 2021, 9, 757871. [Google Scholar] [CrossRef]
- Brooks, C.; Weinstein, C.; Poley, A.; Grimm, A.; Marion, N.; Bourgeau-Chavez, L.; Hansen, D.; Kowalski, K. Using uncrewed aerial vehicles for identifying the extent of invasive Phragmites australis in treatment areas enrolled in an adaptive management program. Remote Sens. 2021, 13, 1895. [Google Scholar] [CrossRef]
- Anderson, C.J.; Heins, D.; Pelletier, K.C.; Knight, J.F. Improving machine learning classifications of Phragmites australis using object-based image analysis. Remote Sens. 2023, 15, 989. [Google Scholar] [CrossRef]
- Hrynyk, M.; Behnamian, A.; Banks, S.; Chen, Z.; Harmer, T.; Kirby, P.; White, L.; Pasher, J.; Duffe, J. Seasonal Phragmites australis classification in Long Point National Wildlife Area wetlands using a remotely piloted aircraft system and random forest machine learning. Drone Syst. Appl. 2024, 12, 1–13. [Google Scholar] [CrossRef]
- Rupasinghe, P.A.; Chow-Fraser, P. Identification of most spectrally distinguishable phenological stage of invasive Phragmites australis in Lake Erie wetlands (Canada) for accurate mapping using multispectral satellite imagery. Wetl. Ecol. Manag. 2019, 27, 513–558. [Google Scholar] [CrossRef]
- Jung, R.W.-D. Characterizing past and modelling future spread of Phragmites australis ssp. australis at Long Point Peninsula, Ontario, Canada. Wetlands 2017, 37, 961–973. [Google Scholar] [CrossRef]
- Reshitnyk, L.; Costa, M.; Robinson, C.; Dearden, P. Evaluation of WorldView-2 and acoustic remote sensing for mapping benthic habitats in temperate coastal Pacific waters. Remote Sens. Environ. 2014, 153, 7–23. [Google Scholar] [CrossRef]
- de Grandpré, A.; Kinnard, C.; Bertolo, A. Open-source analysis of submerged aquatic vegetation cover in complex waters using high-resolution satellite remote sensing: An adaptable framework. Remote Sens. 2022, 14, 267. [Google Scholar] [CrossRef]
- Hill, V.J.; Zimmerman, R.C.; Bissett, P.; Kohler, D.; Schaeffer, B.; Coffer, M.; Li, J.; Islam, K.A. Impact of atmospheric correction on classification and quantification of seagrass density from WorldView-2 imagery. Remote Sens. 2023, 15, 4715. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Rango, A.; Havstad, K.M.; Paris, J.F.; Beck, R.F.; McNeely, R.; Gonzalez, A.L. Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico. Remote Sens. Environ. 2004, 93, 198–210. [Google Scholar] [CrossRef]
- Chubey, M.S.; Franklin, S.E.; Wulder, M.A. Object-based analysis of Ikonos-2 imagery for extraction of forest inventory parameters. Photogramm. Eng. Remote Sens. 2006, 72, 383–394. [Google Scholar] [CrossRef]
- Chen, Z.; Pasher, J.; Duffe, J.; Behnamian, A. Mapping Arctic coastal ecosystems with high-resolution optical satellite imagery using a hybrid classification approach. Can. J. Remote Sens. 2017, 43, 513–527. [Google Scholar] [CrossRef]
- Ontario Ministry of Natural Resources and Forestry (OMNRF). Invasive Phragmites Control at Long Point Region and Rondeau Provincial Park: Implementation Plan; Tech Rep.; OMNRF: Peterborough, ON, Canada, 2017.
- Bond, N.R.; Lake, P.S. Characterizing fish-habitat associations in streams as the first step in ecological restoration. Austral Ecol. 2003, 28, 611–621. [Google Scholar] [CrossRef]
- Churchill, R.T.; Schummer, M.L.; Petrie, S.A.; Henry, H.A. Long-term changes in distribution and abundance of submerged aquatic vegetation and dreissenid mussels in Long Point Bay, Lake Erie. J. Great Lakes Res. 2016, 42, 1060–1069. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC). Great Lakes Fact Sheet: Great Lakes Coastal Wetlands—Science and Conservation; Tech Rep.; Environment Canada: Ottawa, ON, Canada, 2002. Available online: http://publications.gc.ca/collections/Collection/En40-222-11-2002E.pdf (accessed on 10 July 2024).
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- van der Walt, S.; Schonberger, J.L.; Nunez-Iglesias, J.; Boulogne, F.; Warner, J.D.; Yager, N.; Gouillart, E.; Yu, T. scikit-image: Image processing in Python. PeerJ 2014, 2, e453. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Martin, L.J.; Blossey, B. The runaway weed: Costs and failures of Phragmites australis management in the USA. Estuaries Coasts 2013, 36, 626–632. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada (ECCC). Historical Hydrometric Data; ECCC: Ottawa, ON, Canada, 2024. Available online: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (accessed on 20 December 2024).
- Smith, I.M.; Fiorino, G.E.; Grabas, G.P.; Wilcox, D.A. Wetland vegetation response to record-high Lake Ontario water levels. J. Great Lakes Res. 2021, 47, 160–167. [Google Scholar] [CrossRef]









| LULC Type | Class ID | Description |
|---|---|---|
| Bare Ground | 1 | Exposed soil, sand, rocks, dirt trails, and roads. |
| Built-up | 2 | Residential and commercial buildings, paved roads, and wharfs. |
| Dead Vegetation | 3 | Exterminated or naturally dead vegetation of all types. |
| Floating Vegetation | 4 | Pond-lily (Nuphar variegata) and white-water lily (Nymphaea odorata). |
| Grass/Herbaceous | 5 | Grass and sedge on the land and in the marsh, swamp loosestrife (Decodon verticillatus), marsh fern (Thelypteris palustris), and other short vegetation species. |
| Open Water | 6 | Clear, vegetation-free water area. |
| Phragmites | 7 | Dominated by invasive Phragmites, may contain some native Phragmites, sedge (Cyperaceae), wild rice (Zizania palustris), and Typha. |
| SAV | 8 | Canada waterweed (Elodea canadensis), sago pondweed (Stuckenia pectinata), American eelgrass (Vallisneria americana), muskgrass (Chara), Eurasian milfoil (Myriophyllum spicatum), naiad (Najas spp.), slender pondweed (Potamogeton pusillus), Richardson’s pondweed (Potamogeton richardsonii), elodea (Elodea canadensis), coontail (Ceratophyllum demersum), and water-stargrass (Heteranthera dubia). |
| Shallow Water | 9 | Water depths under two meters, sometimes containing sparse vegetation. |
| Tree/Shrub | 10 | Dominated by trees including paper birch (Betula papyrifera), eastern cottonwood (Populus deltoides), eastern white pine (Pinus strobus), eastern red cedar (Juniperus virginiana), northern red oak (Quercus rubra), basswood (Tilia americana), and some shrub and understory layer. |
| Typha | 11 | Dominated by cattail, may contain some sedge, wild rice, and Phragmites. |
| Year | Sensor | Spatial and Spectral Resolutions | Acquisition Dates | Coverage of Long Point |
|---|---|---|---|---|
| 2016 | WV-2, WV-3 | 1.6 m, 8 multispectral bands 0.3 m, Panchromatic band | 2016-06-11, 2016-07-02, 2016-07-12 | Eastern section Central section Western section |
| 2018 | WV-3 | 1.2 m, 8 multispectral bands 0.3 m Panchromatic band | 2018-07-04, 2018-08-09 | Western section Central and Eastern section |
| 2020 | WV-3 | 1.2 m, 8 multispectral bands 0.3 m Panchromatic band | 2020-07-08, 2020-07-15, | Western and Central section Eastern section |
| 2022 | WV-3 | 1.2 m, 8 multispectral bands 0.3 m Panchromatic band | 2022-07-25, | Whole section |
| PlanetScop | 3 m, 8 multispectral bands | 2022-07-19 | Western and Central section | |
| 2024 | WV-3PlanetScope | 1.2 m, 8 multispectral bands | 2024-08-25 2024-08-30 | Western and Central section Eastern section |
| 0.3 m Panchromatic band 3 m, 8 multispectral bands | 2024-08-25 | Eastern section |
| Subarea Name | Area (km2) |
|---|---|
| Subarea 1—NWA-BC | 6.1 |
| Subarea 2—Old Cut | 3.62 |
| Subarea 3—NWA-TH | 4.26 |
| Subarea 4—LPCL | 24.85 |
| Subarea 5—NWA-LP | 28.35 |
| Year | NWA-BC | NWA-TH | NWA-LP | |||
|---|---|---|---|---|---|---|
| ASA (km2) | GSA (km2) | ASA (km2) | GSA (km2) | ASA (km2) | GSA (km2) | |
| 2019 | 0 | 0.02 | 0 | 0 | 0 | 0.01 |
| 2020 | 0.42 | 0.19 | 0.53 | 0.07 | 0 | 0 |
| 2021 | 0.73 | 0.28 | 0.50 | 0.09 | 0.65 | 0.74 |
| 2022 | 0 | 0 | 0 | 0 | 0.84 | 1.75 |
| 2023 | 0 | 0.56 | 0 | 0.10 | 0 | 0.78 |
| Parameters Name |
|---|
| Coastal Blue |
| Blue |
| Green |
| Yellow |
| Red |
| RedEdge |
| NIR1 |
| NIR2 |
| NDVI |
| NDWI |
| GLCM-Derived Texture Feature: Homogeneity |
| GLCM-Derived Texture Feature: Contrast |
| GLCM-Derived Texture Feature: Dissimilarity |
| GLCM-Derived Texture Feature: Mean |
| GLCM-Derived Texture Feature: Standard Deviation |
| GLCM-Derived Texture Feature: Entropy |
| GLCM-Derived Texture Feature: Angular Second Moment |
| GLCM-Derived Texture Feature: Correlation |
| Class | 2016 | 2018 | 2020 | 2022 | 2024 |
|---|---|---|---|---|---|
| Bare Ground | 112 | 113 | 91 | 135 | 109 |
| Built-up | 85 | 89 | 63 | 70 | 72 |
| Dead Vegetation | 58 | 84 | 110 | 83 | 79 |
| Floating Vegetation | 141 | 126 | 153 | 155 | 240 |
| Grass/ Herbaceous | 226 | 240 | 195 | 156 | 224 |
| Open Water | 10 | 12 | 7 | 8 | 10 |
| Phragmites | 245 | 248 | 196 | 136 | 133 |
| SAV | 77 | 59 | 73 | 77 | 104 |
| Shallow Water | 72 | 87 | 77 | 70 | 51 |
| Tree/Shrub | 94 | 94 | 103 | 91 | 100 |
| Typha | 213 | 210 | 179 | 159 | 173 |
| Class | 2016 | 2018 | 2020 | 2022 | 2024 | |
|---|---|---|---|---|---|---|
| Bare Ground | Area (km2) | 4.69 | 4.49 | 4.4 | 4.87 | 4.02 |
| Percent (%) | 3.83 | 3.67 | 3.55 | 3.98 | 3.29 | |
| Built-up | Area (km2) | 1.05 | 0.57 | 0.4 | 0.66 | 0.79 |
| Percent (%) | 0.86 | 0.47 | 0.33 | 0.54 | 0.65 | |
| Dead Vegetation | Area (km2) | 1.75 | 2.46 | 9.79 | 3.8 | 1.28 |
| Percent (%) | 1.43 | 2.01 | 8 | 3.1 | 1.04 | |
| Floating Vegetation | Area (km2) | 2.58 | 1.89 | 3.35 | 8.58 | 5.03 |
| Percent (%) | 2.11 | 1.55 | 2.73 | 7.01 | 4.11 | |
| Grass/Herbaceous | Area (km2) | 14.23 | 15.11 | 11.52 | 11.12 | 15.41 |
| Percent (%) | 11.64 | 12.35 | 9.41 | 9.09 | 12.59 | |
| Open Water | Area (km2) | 26.2 | 31.42 | 24.48 | 27.52 | 27.73 |
| Percent (%) | 21.42 | 25.69 | 20.01 | 22.49 | 22.66 | |
| Phragmites | Area (km2) | 8.65 | 7.55 | 7.95 | 3.98 | 6.26 |
| Percent (%) | 7.07 | 6.18 | 6.5 | 3.25 | 5.12 | |
| SAV | Area (km2) | 8.25 | 10.44 | 20.2 | 17.32 | 15.87 |
| Percent (%) | 6.75 | 8.54 | 16.51 | 14.16 | 12.97 | |
| Shallow Water | Area (km2) | 24.17 | 17.68 | 21.26 | 23.49 | 22.01 |
| Percent (%) | 19.76 | 14.45 | 17.38 | 19.2 | 17.99 | |
| Tree/Shrub | Area (km2) | 8.9 | 9.26 | 7.5 | 8.38 | 8.73 |
| Percent (%) | 7.27 | 7.57 | 6.13 | 6.85 | 7.13 | |
| Typha | Area (km2) | 21.86 | 21.45 | 11.55 | 12.62 | 15.2 |
| Percent (%) | 17.87 | 17.53 | 9.44 | 10.31 | 12.43 |
| Period | Area (km2) | Percentage of Total Area (%) |
|---|---|---|
| 2016–2018 | 3.69 | 3.02 |
| 2018–2020 | 4.38 | 3.58 |
| 2020–2022 | 2.49 | 2.04 |
| 2022–2024 | 5.58 | 4.56 |
| Reference (2016) | 2018 | 2020 | 2022 | 2024 | |
|---|---|---|---|---|---|
| Combined water area (km2) | 50.37 | 46.28 | 41.84 | 45.14 | 45.54 |
| Percentage (compared to 2016) | 100 | 91.87 | 83.07 | 89.62 | 90.41 |
| Area changed into SAV (km2) | 0 | 3.2 | 7.77 | 4.32 | 3.84 |
| Percentage changed into SAV | 0 | 6.35 | 15.43 | 8.57 | 7.62 |
| Year | NWA-BC | Old Cut | NWA-TH | LPCL | NWA-LP | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | |
| 2016 | 1.31 | 21.45 | 0.59 | 16.42 | 0.72 | 16.97 | 1.43 | 5.77 | 3.35 | 11.82 |
| 2018 | 1.14 | 18.67 | 0.11 | 3.04 | 0.77 | 18.12 | 0.61 | 2.44 | 3.77 | 13.29 |
| 2020 | 0.81 | 13.29 | 0.03 | 0.73 | 0.95 | 22.41 | 1.35 | 5.42 | 3.93 | 13.85 |
| 2022 | 0.18 | 2.95 | 0.01 | 0.39 | 0.03 | 0.71 | 0.68 | 2.72 | 2.67 | 9.43 |
| 2024 | 0.09 | 1.41 | 0.03 | 0.89 | 0.73 | 17.15 | 2.89 | 11.64 | 1.86 | 6.57 |
| Year | NWA-BC | Old Cut | NWA-TH | LPCL | NWA-LP | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | |
| 2016–2018 | 0.33 | 5.48 | 0.07 | 2.01 | 0.16 | 3.83 | 0.39 | 1.56 | 2.02 | 7.13 |
| 2018–2020 | 0.25 | 4.13 | 0.03 | 0.7 | 0.37 | 8.59 | 1.17 | 4.71 | 2.01 | 7.08 |
| 2020–2022 | 0.09 | 1.41 | 0.01 | 0.37 | 0.02 | 0.48 | 0.45 | 1.83 | 1.64 | 5.77 |
| 2022–2024 | 0.06 | 1.06 | 0.03 | 0.88 | 0.72 | 16.94 | 2.65 | 10.66 | 1.51 | 5.33 |
| Year | NWA-BC | Old Cut | NWA-TH | LPCL | NWA-LP | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | |
| 2016 | 1 | 16.43 | 0.68 | 18.72 | 1.14 | 26.69 | 11.71 | 47.11 | 4.89 | 17.26 |
| 2018 | 0.91 | 14.9 | 1 | 27.71 | 1.19 | 27.88 | 11.6 | 45.72 | 4.56 | 16.08 |
| 2020 | 1.44 | 23.56 | 2.29 | 63.33 | 1.43 | 33.58 | 14.34 | 57.72 | 5.48 | 19.33 |
| 2022 | 1.8 | 29.98 | 2.79 | 77.04 | 2.38 | 55.9 | 18.76 | 75.5 | 6.88 | 24.27 |
| 2024 | 1.64 | 26.86 | 2.34 | 64.77 | 1.91 | 44.86 | 14.54 | 58.5 | 6.25 | 22.05 |
| Year | NWA-BC | Old Cut | NWA-TH | LPCL | NWA-LP | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | Area (km2) | Percent (%) | |
| 2016–2018 | 0.11 | 1.83 | 0.41 | 11.32 | 0.09 | 2.11 | 1.64 | 6.59 | 0.35 | 1.24 |
| 2018–2020 | 0.66 | 10.75 | 1.35 | 37.2 | 0.28 | 6.56 | 3.8 | 15.31 | 1.28 | 4.51 |
| 2020–2022 | 0.55 | 8.96 | 0.71 | 19.71 | 1 | 23.53 | 4.9 | 19.73 | 1.76 | 6.22 |
| 2022–2024 | 0.17 | 2.83 | 0.09 | 2.62 | 0.1 | 2.39 | 0.32 | 1.28 | 0.73 | 2.58 |
| Year | NWA-BC | NWA-TH | NWA-LP | ||||||
|---|---|---|---|---|---|---|---|---|---|
| Dead Vegetation | Grass/ Herbaceous | Typha | Dead Vegetation | Grass/ Herbaceous | Typha | Dead Vegetation | Grass/ Herbaceous | Typha | |
| 2016 | 0.68 | 13.66 | 40.56 | 0.4 | 6.69 | 44.98 | 0.8 | 29.42 | 12.44 |
| 2018 | 0.34 | 24.58 | 38.67 | 0.37 | 8.12 | 44.43 | 1.91 | 21.08 | 16.25 |
| 2020 | 4.6 | 13.78 | 41.42 | 20.41 | 3.26 | 19.86 | 7.68 | 23.97 | 7.37 |
| 2022 | 7.18 | 23.08 | 33.1 | 23.56 | 6.18 | 12.11 | 4.59 | 20.52 | 10.39 |
| 2024 | 1.76 | 18.65 | 46.14 | 2.8 | 10.04 | 22.36 | 2.69 | 29.95 | 10.83 |
| Year | Old Cut | LPCL | ||||
|---|---|---|---|---|---|---|
| Dead Vegetation | Grass/Herbaceous | Typha | Dead Vegetation | Grass/Herbaceous | Typha | |
| 2016 | 4.56 | 5.12 | 48.65 | 3.17 | 3.9 | 36.33 |
| 2018 | 7.97 | 21.38 | 37.26 | 3.58 | 10.47 | 33.91 |
| 2020 | 16.2 | 0.89 | 17.57 | 19.54 | 2.76 | 12.79 |
| 2022 | 1.26 | 3.05 | 16.57 | 2.57 | 3.71 | 13.03 |
| 2024 | 0.63 | 9.26 | 20.08 | 0.43 | 5.03 | 21.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; He, Y.; Roffey, M.; Braun, H.; Sutton, M.; Duffe, J.; Pasher, J. Remote Sensing Monitoring of Phragmites Treatment and Fish Habitat Restoration in Long Point, Lake Erie, Canada. Remote Sens. 2025, 17, 3638. https://doi.org/10.3390/rs17213638
Chen Z, He Y, Roffey M, Braun H, Sutton M, Duffe J, Pasher J. Remote Sensing Monitoring of Phragmites Treatment and Fish Habitat Restoration in Long Point, Lake Erie, Canada. Remote Sensing. 2025; 17(21):3638. https://doi.org/10.3390/rs17213638
Chicago/Turabian StyleChen, Zhaohua, Yongjun He, Matthew Roffey, Heather Braun, Madeline Sutton, Jason Duffe, and Jon Pasher. 2025. "Remote Sensing Monitoring of Phragmites Treatment and Fish Habitat Restoration in Long Point, Lake Erie, Canada" Remote Sensing 17, no. 21: 3638. https://doi.org/10.3390/rs17213638
APA StyleChen, Z., He, Y., Roffey, M., Braun, H., Sutton, M., Duffe, J., & Pasher, J. (2025). Remote Sensing Monitoring of Phragmites Treatment and Fish Habitat Restoration in Long Point, Lake Erie, Canada. Remote Sensing, 17(21), 3638. https://doi.org/10.3390/rs17213638

