Dual-Polarization Radar Quantitative Precipitation Estimation (QPE): Principles, Operations, and Challenges
Highlights
- Dual-polarization radar significantly improves quantitative precipitation estimation (QPE) accuracy by utilizing polarimetric variables such as differential reflectivity (ZDR) and specific differential phase (KDP), which provide essential microphysical information about precipitation particles.
- Advanced QPE methods—including composite, hydrometeor classification-based, and drop size distribution (DSD) retrieval approaches—effectively mitigate the uncertainties associated with traditional reflectivity–rain rate (R(ZH)) estimators, especially under diverse precipitation types and conditions.
- The integration of dual-polarization radar data into operational QPE systems (e.g., MRMS in the U.S., SWAN in China, and the French radar network) enhances real-time precipitation monitoring and forecasting, supporting improved hydrological prediction and disaster preparedness.
- Despite progress, challenges remain in complex terrain, snow estimation, and the quality control of polarimetric variables, highlighting the need for continued research and development to achieve a higher accuracy and reliability in global precipitation measurement.
Abstract
1. Introduction
2. Dual-Polarization Radar QPE: Principles
2.1. The ZH-R Estimator
2.2. Polarimetric Estimators
2.3. Composite Methods
2.4. Hydrometeor Classification-Based Methods
2.5. DSD Retrieval-Based Methods
3. Dual-Polarization Radar QPE: Operations
3.1. The Radar QPE System in the United States
3.2. The Radar QPE System in China
3.3. Radar QPE Systems in France
- (1)
- Ground-clutter identification: Ground clutters are identified using the pulse-to-pulse fluctuation of reflectivity proposed by [153].
- (2)
- R(ZH) relationship: The Marshall–Palmer R(ZH) relationship is applied to generate the rain rates. This single static R(ZH) relationship may result in the underestimation of convection, as the Marshall–Palmer R(ZH) relationship is designed for stratiform.
- (3)
- Correction for partial beam blocking: Partial beam blocking leads to lowered signals of reflectivity and ultimately to the underestimation of rain rates. The correction factor is calculated with high-resolution terrain and radar technical characteristics and sampling strategy. The rain rates are corrected by multiplying the correction factor.
- (4)
- VPR correction: The VPR correction is applied to eliminate the overestimation of QPE in the bright band [154,155]. The correction factor for each of the tilts is computed using VPR information. The rain rate fields are then calculated using the observation from each tilt with correction factors. Note that the sequence of steps 2–4 differs from the MRMS system, which firstly applies partial blocking correction and VPR correction to the reflectivity field, and then retrieves the rain rates using the corrected reflectivity.
- (5)
- Synchronization: Radars in France complete a volume scan every five minutes. When precipitation systems move very fast, such as with convective lines or frontal systems, the vertical structures of the reflectivity might be significantly altered. An advection method is therefore applied to move the observation of different tilts to the same reference time.
- (6)
- Weighted linear combination: This step combines the retrieved rain rates with observations from different tilts to produce 2D surface rain rates.
- (7)
- Accumulation of 5 min of rainfall: The surface rain rate is advected by 1 min increments, and then the 5 min precipitation accumulation is obtained by accumulating a set of five rain rate fields.
- (8)
- QPE field mosaicking: The QPE fields produced by different radars are mosaicked to generate a QPE product covering the whole country of France. The weighted linear combination method similar to the one applied in step (6) is used for mosaicking.
4. Dual-Polarization Radar QPE: Challenges
4.1. The Quality of Polarimetric Variables
- (1)
- Attenuation issues: ZH and ZDR suffer from severe attenuation issues in heavy precipitation for short-band (C or X) radars. Attenuation correction must be applied. Otherwise, there will be a large underestimation in QPE. Attenuation correction is more accurate and reliable for dual-polarization radars with polarimetric variables, and numerous methods were proposed [6,7,8,9,10]. The parameters in each of these methods should be carefully adjusted when being applied to a specific radar. Disdrometers could be used to evaluate these methods by comparing corrected ZH and ZDR from the radar with those calculated with the disdrometer data.
- (2)
- Miscalibration: ZH and ZDR can suffer from miscalibration. A hot (cold) ZH will result in an overestimation (underestimation) for QPE estimators with ZH. The QPE estimators with ZDR are sensitive to ZDR, and a miscalibrated ZDR could have a negative impact on QPE, instead of a positive one. That is why both QPE systems in the United States and France exclude ZDR from QPE use. During radar maintenance, ZH and ZDR must be properly calibrated, and disdrometers could be used as references to check whether calibration is needed. One could examine whether radar observation has a systematic bias by comparing the ZH and ZDR observed by the radar with those calculated from the disdrometers.
- (3)
- Partial beam blockage: When radar beams are blocked by obstacles such as terrain and buildings, the accuracy of QPE is compromised. A traditional method of mitigating the partial beam blockage is to estimate the degree of beam blockage using DEM (digital elevation model) data. This method has three shortcomings. Firstly, it may not work well if the radar beams are heavily blocked. Second, building information is not included in the DEM data, and thus the blockage due to buildings cannot be properly mitigated. Third, it can cause large errors if anomalous propagation occurs. The mitigation of partial beam blockage becomes more effective for dual-polarization radars using KDP, since KDP is immune to partial beam blockage. Various methods to mitigate partial beam blockage with KDP were proposed [83,158,159]. In order to obtain good partial beam blockage mitigation results, KDP must be properly processed and parameters in these methods must be carefully adjusted.
- (4)
- Radome effect: A wet radar radome produces a negative bias in ZH and a positive bias in ZDR [160,161,162], thus affecting the accuracy of QPE estimators with ZH and ZDR. To minimize the effects of the wet radome, post-processing methods such as self-consistency principles should be adopted [163]. Radar radomes should also be properly maintained, including the use of hydrophobic paint and cleaning.
- (5)
- Identification of non-meteorological echoes: There are a variety of non-meteorological echoes, such as ground and sea clutter, biological scatterings (e.g., insects and birds), smoke plumes, dust, volcanic ash, electromagnetic interferences, and sun spikes. These echoes should be identified and removed for an accurate QPE. Due to differences in the CC values of meteorological and non-meteorological echoes, the identification of non-meteorological echoes for dual-polarization radars has become more robust and accurate. In general, meteorological echoes have higher CC values than non-meteorological echoes, which could be used to design algorithms to identify non-meteorological echoes [133,134]. However, there is no specific bound for the CC values between meteorological echoes and non-meteorological echoes. CC values in meteorological echoes may decrease when there is a mixing of meteorological and non-meteorological echoes, hailing, melting layers, or non-uniform beam fillings. Under such circumstances, it can be difficult to correctly identify non-meteorological echoes. In recent years, advanced methods such as machine learning and deep learning have been applied to identify non-meteorological echoes [164,165,166]. The use of more physically based information in these advanced methods in the future could make the identification of non-meteorological echoes more reliable and robust.
- (6)
- Noise: When the SNR (signal-to-noise ratio) is low, both ZDR and KDP appear to be very noisy. Subsequently, precipitation fields generated by ZDR-based or KDP-based estimators are noisy, inaccurate, and appear “unnatural” due to their low continuity. To address this issue, both radar hardware and signal processing methods need to be improved.
- (7)
- Degraded radial resolution of the KDP: The “intrinsic” KDP, defined as half of the slope of two adjacent differential phases along the radial, is usually noisy, with fluctuations along the radial, and should therefore be processed carefully. Several methods were proposed to estimate the KDP with mathematical or/and physical constrains [69,70,71,72]. KDP processing is a compromise between accuracy and radial resolution. How to remove the noise and fluctuations of KDP while maintaining its radial resolution is a challenge that needs to be addressed.
4.2. The QPE Quality in Complex Terrain
4.3. Estimation of Surface Rain with Observations Within or Above the Melting Layer
4.4. Polarimetric Radar QPE Methods for Snow
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seliga, T.A.; Bringi, V. Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol. 1976, 15, 69–76. [Google Scholar] [CrossRef]
- Doviak, R.; Bringi, V.; Ryzhkov, A.; Zahrai, A.; Zrnić, D. Considerations for polarimetric upgrades to operational WSR-88D radars. J. Atmos. Ocean. Technol. 2000, 17, 257–278. [Google Scholar] [CrossRef]
- Marshall, J.; Langille, R.; Palmer, W.M.K. Measurement of rainfall by radar. J. Atmos. Sci. 1947, 4, 186–192. [Google Scholar] [CrossRef]
- Marshall, J.; Hitschfeld, W.; Gunn, K. Advances in radar weather. In Advances in Geophysics; Elsevier: Amsterdam, The Netherlands, 1955; Volume 2, pp. 1–56. [Google Scholar]
- Atlas, D. Radar calibration: Some simple approaches. Bull. Am. Meteorol. Soc. 2002, 83, 1313–1316. [Google Scholar] [CrossRef]
- Scarchilli, G.; Gorgucci, V.; Chandrasekar, V.; Dobaie, A. Self-consistency of polarization diversity measurement of rainfall. IEEE Trans. Geosci. Remote Sens. 1996, 34, 22–26. [Google Scholar] [CrossRef]
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V. A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens. 1999, 37, 269–276. [Google Scholar] [CrossRef]
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V. Calibration of radars using polarimetric techniques. IEEE Trans. Geosci. Remote Sens. 1992, 30, 853–858. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Zhang, G.; Ellis, S.M.; Rajopadhyaya, D.; Avery, S.K. Radar reflectivity calibration using differential propagation phase measurement. Radio Sci. 2003, 38, 8049. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Giangrande, S.E.; Melnikov, V.M.; Schuur, T.J. Calibration issues of dual-polarization radar measurements. J. Atmos. Ocean. Technol. 2005, 22, 1138–1155. [Google Scholar] [CrossRef]
- Bringi, V.; Chandrasekar, V.; Balakrishnan, N.; Zrnić, D. An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Ocean. Technol. 1990, 7, 829–840. [Google Scholar] [CrossRef]
- Testud, J.; Le Bouar, E.; Obligis, E.; Ali-Mehenni, M. The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Ocean. Technol. 2000, 17, 332–356. [Google Scholar] [CrossRef]
- Bringi, V.N.; Keenan, T.; Chandrasekar, V. Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1906–1915. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zhang, P.; Hudak, D.; Alford, J.; Knight, M.; Conway, J. Validation of polarimetric methods for attenuation correction at C band. In Proceedings of the 33rd Conference on Radar Meteorology, Cairns, Australia, 6–10 August 2007; American Meteorological Society: Boston, MA, USA, 2007; p. P11B.12. [Google Scholar]
- Rico-Ramirez, M.A. Adaptive attenuation correction techniques for C-band polarimetric weather radars. IEEE Trans. Geosci. Remote Sens. 2012, 50, 5061–5071. [Google Scholar] [CrossRef]
- Gou, Y.; Chen, H.; Zheng, J. An improved self-consistent approach to attenuation correction for C-band polarimetric radar measurements and its impact on quantitative precipitation estimation. Atmos. Res. 2019, 226, 32–48. [Google Scholar] [CrossRef]
- Gorgucci, E.; Baldini, L. Attenuation and differential attenuation correction of C-band radar observations using a fully self-consistent methodology. IEEE Geosci. Remote Sens. Lett. 2007, 4, 326–330. [Google Scholar] [CrossRef]
- Vulpiani, G.; Tabary, P.; Parent du Chatelet, J.; Marzano, F.S. Comparison of advanced radar polarimetric techniques for operational attenuation correction at C band. J. Atmos. Ocean. Technol. 2008, 25, 1118–1135. [Google Scholar] [CrossRef]
- Tabary, P.; Vulpiani, G.; Gourley, J.J.; Illingworth, A.J.; Thompson, R.J.; Bousquet, O. Unusually high differential attenuation at C band: Results from a two-year analysis of the French Trappes polarimetric radar data. J. Appl. Meteorol. Climatol. 2009, 48, 2037–2053. [Google Scholar] [CrossRef]
- Gu, J.-Y.; Ryzhkov, A.; Zhang, P.; Neilley, P.; Knight, M.; Wolf, B.; Lee, D.-I. Polarimetric attenuation correction in heavy rain at C band. J. Appl. Meteorol. Climatol. 2011, 50, 39–58. [Google Scholar] [CrossRef]
- Maki, M.; Keenan, T.D.; Sasaki, Y.; Nakamura, K. Characteristics of the Raindrop Size Distribution in Tropical Continental Squall Lines Observed in Darwin, Australia. J. Appl. Meteorol. 2001, 40, 1393–1412. [Google Scholar] [CrossRef]
- Bringi, V.; Chandrasekar, V.; Hubbert, J.; Gorgucci, E.; Randeu, W.; Schoenhuber, M. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci. 2003, 60, 354–365. [Google Scholar] [CrossRef]
- Chen, B.; Yang, J.; Pu, J. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China. J. Meteorol. Soc. Jpn. Ser. II 2013, 91, 215–227. [Google Scholar] [CrossRef]
- Ma, Y.; Ni, G.; Chandra, C.V.; Tian, F.; Chen, H. Statistical characteristics of raindrop size distribution during rainy seasons in the Beijing urban area and implications for radar rainfall estimation. Hydrol. Earth Syst. Sci. 2019, 23, 4153–4170. [Google Scholar] [CrossRef]
- Rauber, R.M.; Nesbitt, S.W. Radar Meteorology: A First Course; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Cao, Q.; Zhang, G.; Brandes, E.; Schuur, T.; Ryzhkov, A.; Ikeda, K. Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma. J. Appl. Meteorol. Climatol. 2008, 47, 2238–2255. [Google Scholar] [CrossRef]
- Calheiros, R.; Zawadzki, I. Reflectivity-rain rate relationships for radar hydrology in Brazil. J. Appl. Meteorol. Climatol. 1987, 26, 118–132. [Google Scholar] [CrossRef]
- Atlas, D.; Rosenfeld, D.; Wolff, D.B. Climatologically tuned reflectivity-rain rate relations and links to area-time integrals. J. Appl. Meteorol. Climatol. 1990, 29, 1120–1135. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Wolff, D.B.; Amitai, E. The window probability matching method for rainfall measurements with radar. J. Appl. Meteorol. Climatol. 1994, 33, 682–693. [Google Scholar] [CrossRef]
- Brandes, E.A. Optimizing rainfall estimates with the aid of radar. J. Appl. Meteorol. Climatol. 1975, 14, 1339–1345. [Google Scholar] [CrossRef]
- Alfieri, L.; Claps, P.; Laio, F. Time-dependent ZR relationships for estimating rainfall fields from radar measurements. Nat. Hazards Earth Syst. Sci. 2010, 10, 149–158. [Google Scholar] [CrossRef]
- Wang, G.; Liu, L.; Ding, Y. Improvement of radar quantitative precipitation estimation based on real-time adjustments to ZR relationships and inverse distance weighting correction schemes. Adv. Atmos. Sci. 2012, 29, 575–584. [Google Scholar] [CrossRef]
- Libertino, A.; Allamano, P.; Claps, P.; Cremonini, R.; Laio, F. Radar estimation of intense rainfall rates through adaptive calibration of the ZR relation. Atmosphere 2015, 6, 1559–1577. [Google Scholar] [CrossRef]
- Steiner, M.; Houze, R.A., Jr.; Yuter, S.E. Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteorol. Climatol. 1995, 34, 1978–2007. [Google Scholar] [CrossRef]
- Biggerstaff, M.I.; Listemaa, S.A. An improved scheme for convective/stratiform echo classification using radar reflectivity. J. Appl. Meteorol. 2000, 39, 2129–2150. [Google Scholar] [CrossRef]
- Anagnostou, E.N. A convective/stratiform precipitation classification algorithm for volume scanning weather radar observations. Meteorol. Appl. 2004, 11, 291–300. [Google Scholar] [CrossRef]
- Xu, X.; Howard, K.; Zhang, J. An automated radar technique for the identification of tropical precipitation. J. Hydrometeorol. 2008, 9, 885–902. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Zhang, P. A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Q. J. R. Meteorol. Soc. 2013, 139, 2233–2240. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, Y.; Li, D.; Zhu, Z.; Yang, M.; Wang, N.; Yang, Y.; Hu, Q. A Real-Time Algorithm to Identify Convective Precipitation Adjacent to or within the Bright Band in the Radar Scan Domain. J. Hydrometeorol. 2021, 22, 1139–1151. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, L.; Chang, P.-L.; Tang, Y.-S. Separation of convective and stratiform precipitation using polarimetric radar data with a support vector machine method. Atmos. Meas. Tech. 2021, 14, 185–197. [Google Scholar] [CrossRef]
- Sánchez-Diezma, R.; Zawadzki, I.; Sempere-Torres, D. Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res. Atmos. 2000, 105, 2225–2236. [Google Scholar] [CrossRef]
- Gourley, J.J.; Calvert, C.M. Automated detection of the bright band using WSR-88D data. Weather Forecast. 2003, 18, 585–599. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Clark, K.A.; Kingsmill, D.E. A polarimetric radar approach to identify rain, melting-layer, and snow regions for applying corrections to vertical profiles of reflectivity. J. Appl. Meteorol. Climatol. 2007, 46, 154–166. [Google Scholar] [CrossRef]
- Zhang, J.; Langston, C.; Howard, K. Brightband identification based on vertical profiles of reflectivity from the WSR-88D. J. Atmos. Ocean. Technol. 2008, 25, 1859–1872. [Google Scholar] [CrossRef]
- Shusse, Y.; Takahashi, N.; Nakagawa, K.; Satoh, S.; Iguchi, T. Polarimetric radar observation of the melting layer in a convective rainfall system during the rainy season over the East China Sea. J. Appl. Meteorol. Climatol. 2011, 50, 354–367. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J.; Zhang, P.; Cao, Q. VPR correction of bright band effects in radar QPEs using polarimetric radar observations. J. Geophys. Res. Atmos. 2013, 118, 3627–3633. [Google Scholar] [CrossRef]
- Hall, W.; Rico-Ramirez, M.A.; Krämer, S. Classification and correction of the bright band using an operational C-band polarimetric radar. J. Hydrol. 2015, 531, 248–258. [Google Scholar] [CrossRef]
- Zhu, Z.; Qi, Y. A real-time bright band vertical profile of reflectivity correction using multitilts of reflectivity data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–12. [Google Scholar] [CrossRef]
- Le Loh, J.; Chang, W.-Y.; Liou, Y.-C.; Lin, P.-F.; Chang, P.-L. Detection and Characterization of Polarimetric Radar Bright Band Signatures in Northern Taiwan. IEEE Trans. Geosci. Remote Sens. 2025, 63, 1–20. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Scipion, D.; Berne, A. Detection and characterization of the melting layer based on polarimetric radar scans. Q. J. R. Meteorol. Soc. 2016, 142, 108–124. [Google Scholar] [CrossRef]
- Kitchen, M.; Brown, R.; Davies, A. Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q. J. R. Meteorol. Soc. 1994, 120, 1231–1254. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y. A real-time algorithm for the correction of brightband effects in radar-derived QPE. J. Hydrometeorol. 2010, 11, 1157–1171. [Google Scholar] [CrossRef]
- Zhu, Z.; Qi, Y.; Li, D. A Real-Time Radar QPE Error Correction for Convective Precipitation Using Long-Term TRMM-PR and GPM-DPR Observations. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–12. [Google Scholar] [CrossRef]
- Seliga, T.; Bringi, V.; Al-Khatib, H. A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J. Appl. Meteorol. Climatol. 1981, 20, 1362–1368. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci. 1984, 19, 49–57. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Bringi, V. Error structure of multiparameter radar and surface measurements of rainfall Part I: Differential reflectivity. J. Atmos. Ocean. Technol. 1988, 5, 783–795. [Google Scholar] [CrossRef]
- Gorgucci, E.; Chandrasekar, V.; Scarchilli, G. Radar and surface measurement of rainfall during CaPE: 26 July 1991 case study. J. Appl. Meteorol. Climatol. 1995, 34, 1570–1577. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Schuur, T.J.; Burgess, D.W.; Heinselman, P.L.; Giangrande, S.E.; Zrnic, D.S. The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Am. Meteorol. Soc. 2005, 86, 809–824. [Google Scholar] [CrossRef]
- Seliga, T.; Bringi, V. Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci. 1978, 13, 271–275. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnić, D. Rain rate estimates from differential polarization measurements. J. Atmos. Ocean. Technol. 1987, 4, 588–598. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Bringi, V.; Balakrishnan, N.; Zrnić, D. Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Ocean. Technol. 1990, 7, 621–629. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zrnić, D. Comparison of dual-polarization radar estimators of rain. J. Atmos. Ocean. Technol. 1995, 12, 249–256. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Experiments in Rainfall Estimation with a Polarimetric Radar in a Subtropical Environment. J. Appl. Meteorol. 2002, 41, 674–685. [Google Scholar] [CrossRef]
- Matrosov, S.Y. Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Ocean. Technol. 2010, 27, 122–134. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Ryzhkov, A.V.; Tang, L. C-band polarimetric radar QPE based on specific differential propagation phase for extreme typhoon rainfall. J. Atmos. Ocean. Technol. 2013, 30, 1354–1370. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Zrnić, D. Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci. 1990, 47, 565–583. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Kumjian, M.R.; Ganson, S.M.; Zhang, P. Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteorol. Climatol. 2013, 52, 2871–2886. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Polarimetric rainfall estimation in the presence of anomalous propagation. J. Atmos. Ocean. Technol. 1998, 15, 1320–1330. [Google Scholar] [CrossRef]
- Hubbert, J.; Bringi, V. An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Ocean. Technol. 1995, 12, 643–648. [Google Scholar] [CrossRef]
- Wang, Y.; Chandrasekar, V. Algorithm for estimation of the specific differential phase. J. Atmos. Ocean. Technol. 2009, 26, 2565–2578. [Google Scholar] [CrossRef]
- Giangrande, S.E.; McGraw, R.; Lei, L. An application of linear programming to polarimetric radar differential phase processing. J. Atmos. Ocean. Technol. 2013, 30, 1716–1729. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, G.; Zhao, K.; Giangrande, S.E. A hybrid method to estimate specific differential phase and rainfall with linear programming and physics constraints. IEEE Trans. Geosci. Remote Sens. 2016, 55, 96–111. [Google Scholar] [CrossRef]
- Jameson, A.R. A Comparison of Microwave Techniques for Measuring Rainfall. J. Appl. Meteorol. 1991, 30, 32–54. [Google Scholar] [CrossRef]
- Petersen, W.A.; Carey, L.D.; Rutledge, S.A.; Knievel, J.C.; Doesken, N.J.; Johnson, R.H.; McKee, T.B.; Haar, T.V.; Weaver, J.F. Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bull. Am. Meteorol. Soc. 1999, 80, 191–216. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Giangrande, S.E.; Schuur, T.J. Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteorol. 2005, 44, 502–515. [Google Scholar] [CrossRef]
- Thompson, E.J.; Rutledge, S.A.; Dolan, B.; Thurai, M.; Chandrasekar, V. Dual-polarization radar rainfall estimation over tropical oceans. J. Appl. Meteorol. Climatol. 2018, 57, 755–775. [Google Scholar] [CrossRef]
- Cifelli, R.; Chandrasekar, V.; Lim, S.; Kennedy, P.C.; Wang, Y.; Rutledge, S.A. A new dual-polarization radar rainfall algorithm: Application in Colorado precipitation events. J. Atmos. Ocean. Technol. 2011, 28, 352–364. [Google Scholar] [CrossRef]
- Le Bouar, E.; Testud, J.; Keenan, T.D. Validation of the rain profiling algorithm “ZPHI” from the C-band polarimetric weather radar in Darwin. J. Atmos. Ocean. Technol. 2001, 18, 1819–1837. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Thompson, R. The estimation of moderate rain rates with operational polarisation radar. In Proceedings of the 32nd Conference on Radar Meteorology, Albuquerque, NM, USA, 24–29 October 2005; American Meteorological Society: Boston, MA, USA, 2005; p. P9R.1. [Google Scholar]
- Tabary, P.; Boumahmoud, A.-A.; Andrieu, H.; Thompson, R.J.; Illingworth, A.J.; Le Bouar, E.; Testud, J. Evaluation of two “integrated” polarimetric Quantitative Precipitation Estimation (QPE) algorithms at C-band. J. Hydrol. 2011, 405, 248–260. [Google Scholar] [CrossRef]
- Ryzhkov, A.V.; Zrnic, D.S. Radar Polarimetry for Weather Observations; Springer Atmospheric Sciences; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Atlas, D.; Ulbrich, C.W. Path-and area-integrated rainfall measurement by microwave attenuation in the 1–3 cm band. J. Appl. Meteorol. Climatol. 1977, 16, 1322–1331. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Diederich, M.; Zhang, P.; Simmer, C. Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Ocean. Technol. 2014, 31, 599–619. [Google Scholar] [CrossRef]
- Wang, Y.; Cocks, S.; Tang, L.; Ryzhkov, A.; Zhang, P.; Zhang, J.; Howard, K. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part I: Algorithm description. J. Hydrometeorol. 2019, 20, 985–997. [Google Scholar] [CrossRef]
- Cocks, S.B.; Tang, L.; Zhang, P.; Ryzhkov, A.; Kaney, B.; Elmore, K.L.; Wang, Y.; Zhang, J.; Howard, K. A prototype quantitative precipitation estimation algorithm for operational S-band polarimetric radar utilizing specific attenuation and specific differential phase. Part II: Performance verification and case study analysis. J. Hydrometeorol. 2019, 20, 999–1014. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, P.; Ryzhkov, A.V.; Zhang, J.; Chang, P.-L. Utilization of specific attenuation for tropical rainfall estimation in complex terrain. J. Hydrometeorol. 2014, 15, 2250–2266. [Google Scholar] [CrossRef]
- Diederich, M.; Ryzhkov, A.; Simmer, C.; Zhang, P.; Trömel, S. Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part I: Radar calibration and partial beam blockage estimation. J. Hydrometeorol. 2015, 16, 487–502. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Trömel, S.; Ryzhkov, A.; Simmer, C. Assessing the benefits of specific attenuation for quantitative precipitation estimation with a C-band radar network. J. Hydrometeorol. 2021, 22, 2617–2631. [Google Scholar] [CrossRef]
- Kumjian, M.R.; Prat, O.P.; Reimel, K.J.; van Lier-Walqui, M.; Morrison, H.C. Dual-Polarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sens. 2022, 14, 3706. [Google Scholar] [CrossRef]
- Chandrasekar, V.; Gorgucci, E.; Scarchilli, G. Optimization of multiparameter radar estimates of rainfall. J. Appl. Meteorol. Climatol. 1993, 32, 1288–1293. [Google Scholar] [CrossRef]
- Matrosov, S.Y.; Cifelli, R.; Kennedy, P.C.; Nesbitt, S.W.; Rutledge, S.A.; Bringi, V.; Martner, B.E. A comparative study of rainfall retrievals based on specific differential phase shifts at X-and S-band radar frequencies. J. Atmos. Ocean. Technol. 2006, 23, 952–963. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V. The quantitative precipitation estimation system for Dallas–Fort Worth (DFW) urban remote sensing network. J. Hydrol. 2015, 531, 259–271. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, K.; Zhang, G.; Huang, H.; Liu, S.; Wen, L.; Yang, Z.; Yang, Z.; Xu, L.; Zhu, W. Improving Polarimetric C-Band Radar Rainfall Estimation with Two-Dimensional Video Disdrometer Observations in Eastern China. J. Hydrometeorol. 2017, 18, 1375–1391. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, Y.; Zhu, Z.; Li, D.; Zeng, Q.; Lan, H. Application of radar quantitative precipitation estimation using S-band and X-band polarimetric radars in Shenzhen. Acta Meteorol. Sin. 2021, 79, 786–803. (In Chinese) [Google Scholar]
- Aydin, K.; Seliga, T.; Balaji, V. Remote sensing of hail with a dual linear polarization radar. J. Appl. Meteorol. Climatol. 1986, 25, 1475–1484. [Google Scholar] [CrossRef]
- Giangrande, S.E.; Ryzhkov, A.V. Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteorol. Climatol. 2008, 47, 2445–2462. [Google Scholar] [CrossRef]
- Besic, N.; Figueras i Ventura, J.; Grazioli, J.; Gabella, M.; Germann, U.; Berne, A. Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semi-supervised approach. Atmos. Meas. Tech. 2016, 9, 4425–4445. [Google Scholar] [CrossRef]
- Besic, N.; Gehring, J.; Praz, C.; Figueras i Ventura, J.; Grazioli, J.; Gabella, M.; Germann, U.; Berne, A. Unraveling hydrometeor mixtures in polarimetric radar measurements. Atmos. Meas. Tech. 2018, 11, 4847–4866. [Google Scholar] [CrossRef]
- Xia, Q.; Zhang, W.; Chen, H.; Lee, W.-C.; Han, L.; Ma, Y.; Liu, X. Quantification of precipitation using polarimetric radar measurements during several typhoon events in Southern China. Remote Sens. 2020, 12, 2058. [Google Scholar] [CrossRef]
- Liu, H.; Chandrasekar, V. Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Ocean. Technol. 2000, 17, 140–164. [Google Scholar] [CrossRef]
- Lim, S.; Chandrasekar, V.; Bringi, V.N. Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 792–801. [Google Scholar] [CrossRef]
- Park, H.S.; Ryzhkov, A.; Zrnić, D.; Kim, K.-E. The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Weather Forecast. 2009, 24, 730–748. [Google Scholar] [CrossRef]
- Bechini, R.; Chandrasekar, V. A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Ocean. Technol. 2015, 32, 22–47. [Google Scholar] [CrossRef]
- Wang, H.; Ran, Y.; Deng, Y.; Wang, X. Study on deep-learning-based identification of hydrometeors observed by dual polarization Doppler weather radars. EURASIP J. Wirel. Commun. Netw. 2017, 2017, 173. [Google Scholar] [CrossRef]
- Roberto, N.; Baldini, L.; Adirosi, E.; Facheris, L.; Cuccoli, F.; Lupidi, A.; Garzelli, A. A support vector machine hydrometeor classification algorithm for dual-polarization radar. Atmosphere 2017, 8, 134. [Google Scholar] [CrossRef]
- Lu, Y.; Kumar, J. Convolutional Neural Networks for Hydrometeor Classification using Dual Polarization Doppler Radars. In Proceedings of the 2019 International Conference on Data Mining Workshops (ICDMW), Beijing, China, 8–11 November 2019; pp. 288–295. [Google Scholar]
- Marshall, J.S.; Palmer, W.M.K. The distribution of raindrops with size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Gorgucci, E.; Chandrasekar, V.; Bringi, V.; Scarchilli, G. Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci. 2002, 59, 2373–2384. [Google Scholar] [CrossRef]
- Gorgucci, E.; Scarchilli, G.; Chandrasekar, V.; Bringi, V. Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci. 2000, 57, 3406–3413. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Blackman, T.M. The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteorol. 2002, 41, 286–297. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. An evaluation of a drop distribution–based polarimetric radar rainfall estimator. J. Appl. Meteorol. 2003, 42, 652–660. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Ocean. Technol. 2004, 21, 584–598. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, G.; Brandes, E.A.; Schuur, T.J. Polarimetric radar rain estimation through retrieval of drop size distribution using a Bayesian approach. J. Appl. Meteorol. Climatol. 2010, 49, 973–990. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, G.; Xue, M. A variational approach for retrieving raindrop size distribution from polarimetric radar measurements in the presence of attenuation. J. Appl. Meteorol. Climatol. 2013, 52, 169–185. [Google Scholar] [CrossRef]
- Yoshikawa, E.; Chandrasekar, V.; Ushio, T. Raindrop size distribution (DSD) retrieval for X-band dual-polarization radar. J. Atmos. Ocean. Technol. 2014, 31, 387–403. [Google Scholar] [CrossRef]
- Yoshikawa, E.; Chandrasekar, V.; Ushio, T.; Matsuda, T. A Bayesian approach for integrated raindrop size distribution (DSD) retrieval on an X-band dual-polarization radar network. J. Atmos. Ocean. Technol. 2016, 33, 377–389. [Google Scholar] [CrossRef]
- Raupach, T.H.; Berne, A. Retrieval of the raindrop size distribution from polarimetric radar data using double-moment normalisation. Atmos. Meas. Tech. Discuss. 2016, 10, 2573–2594. [Google Scholar] [CrossRef]
- Lee, G.W.; Zawadzki, I.; Szyrmer, W.; Sempere-Torres, D.; Uijlenhoet, R. A general approach to double-moment normalization of drop size distributions. J. Appl. Meteorol. 2004, 43, 264–281. [Google Scholar] [CrossRef]
- Wolfensberger, D.; Gabella, M.; Boscacci, M.; Germann, U.; Berne, A. RainForest: A random forest algorithm for quantitative precipitation estimation over Swizerland. Atmos. Meas. Tech. Discuss. 2020, 14, 3169–3193. [Google Scholar] [CrossRef]
- Shin, K.; Song, J.J.; Bang, W.; Lee, G. Quantitative precipitation estimates using machine learning approaches with operational dual-polarization radar data. Remote Sens. 2021, 13, 694. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Tan, H.; Cifelli, R. Rainfall estimation from ground radar and TRMM precipitation radar using hybrid deep neural networks. Geophys. Res. Lett. 2019, 46, 10669–10678. [Google Scholar] [CrossRef]
- Huangfu, J.; Hu, Z.; Zheng, J.; Wang, L.; Zhu, Y. Study on quantitative precipitation estimation by polarimetric radar using deep learning. Adv. Atmos. Sci. 2024, 41, 1147–1160. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Han, L. Polarimetric radar quantitative precipitation estimation using deep convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–11. [Google Scholar] [CrossRef]
- Yo, T.S.; Su, S.H.; Chu, J.L.; Chang, C.W.; Kuo, H.C. A deep learning approach to radar-based QPE. Earth Space Sci. 2021, 8, e2020EA001340. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Kaney, B.; Qi, Y.; Tang, L.; Grams, H.; Wang, Y.; Cocks, S.; Martinaitis, S. Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 621–638. [Google Scholar] [CrossRef]
- Smith, T.M.; Lakshmanan, V.; Stumpf, G.J.; Ortega, K.L.; Hondl, K.; Cooper, K.; Calhoun, K.M.; Kingfield, D.M.; Manross, K.L.; Toomey, R. Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 1617–1630. [Google Scholar] [CrossRef]
- Zhang, J.; Howard, K.; Langston, C.; Vasiloff, S.; Kaney, B.; Arthur, A.; Van Cooten, S.; Kelleher, K.; Kitzmiller, D.; Ding, F.; et al. National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans. Bull. Am. Meteorol. Soc. 2011, 92, 1321–1338. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Fritz, A.; Smith, T.; Hondl, K.; Stumpf, G. An automated technique to quality control radar reflectivity data. J. Appl. Meteorol. Climatol. 2007, 46, 288–305. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Zhang, J.; Howard, K. A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteorol. Climatol. 2010, 49, 453–462. [Google Scholar] [CrossRef]
- Greene, D.R.; Clark, R.A. Vertically Integrated Liquid Water—A New Analysis Tool. Mon. Weather Rev. 1972, 100, 548–552. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Qi, Y.; Langston, C.; Howard, K.W. Non-standard blockage mitigation for national radar QPE products. In Proceedings of the 36th Conference on Radar Meteorology, Breckenridge, CO, USA, 16–20 September 2013. [Google Scholar]
- Tang, L.; Zhang, J.; Langston, C.; Krause, J.; Howard, K.; Lakshmanan, V. A physically based precipitation–nonprecipitation radar echo classifier using polarimetric and environmental data in a real-time national system. Weather Forecast. 2014, 29, 1106–1119. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Simpson, M.; Arthur, A.; Grams, H.; Wang, Y.; Langston, C. Updates on the radar data quality control in the MRMS quantitative precipitation estimation system. J. Atmos. Ocean. Technol. 2020, 37, 1521–1537. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, J. A physically based two-dimensional seamless reflectivity mosaic for radar QPE in the MRMS system. J. Hydrometeorol. 2017, 18, 1327–1340. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Howard, K.; Langston, C.; Kaney, B. Radar quality index (RQI)—A combined measure of beam blockage and VPR effects in a national network. IAHS Publ. 2011, 351, 388–393. [Google Scholar]
- Zhang, J.; Tang, L.; Cocks, S.; Zhang, P.; Ryzhkov, A.; Howard, K.; Langston, C.; Kaney, B. A dual-polarization radar synthetic QPE for operations. J. Hydrometeorol. 2020, 21, 2507–2521. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, H.; Lu, Y.; Chen, H.; Wu, C.; Zhao, G.; Zhu, Y.; Tan, Z.-M.; Zhang, Y.; Fu, P. Operational Phased Array Radar Network for Natural Hazard Monitoring and Warnings in Urban Environments over the Greater Bay Area, China. Bull. Am. Meteorol. Soc. 2024, 105, E2152–E2174. [Google Scholar] [CrossRef]
- He, L.; Min, J.; Yang, G.; Cao, Y. Contrasting the Effects of X-Band Phased Array Radar and S-Band Doppler Radar Data Assimilation on Rainstorm Forecasting in the Pearl River Delta. Remote Sens. 2024, 16, 2655. [Google Scholar] [CrossRef]
- Yu, Z.; Xian-Tong, L.; Bing-Hong, C.; Jia-Bao, F.; Lin, C.; Cong-Cong, T. Application of X-band Polarimetric Phased-array Radars in Quantitative Precipitation Estimation. J. Trop. Meteorol. 2023, 29, 142–152. [Google Scholar] [CrossRef]
- Zhao, G.; Huang, H.; Yu, Y.; Zhao, K.; Yang, Z.; Chen, G.; Zhang, Y. Study on the quantitative precipitation estimation of X-band dual-polarization phased array radar from specific differential phase. Remote Sens. 2023, 15, 359. [Google Scholar] [CrossRef]
- Zhang, Z.; Qi, Y.; Lan, H.; Zhu, Z.; Zeng, Q.; Luo, M.; Liu, A.; Zong, R. Introduction to a radar mosaicking system for quantitative precipitation estimation based on the S-band and X-band phase-array polarimetric radars in Shenzhen. Acta Meteorol. Sin. 2023, 81, 506–519. (In Chinese) [Google Scholar]
- Wu, T.; Wan, Y.; Wo, W.; Leng, L. Design and Application of Radar Reflectivity Quality Control Algorithm in SWAN. Meteorol. Sci. Technol. 2013, 41, 809–817. (In Chinese) [Google Scholar]
- Xiao, Y.; Liu, L.; Yang, H. Technique for generating hybrid reflectivity field based on 3-D mosaicked reflectivity of weather radar network. Acta Meteorol. Sin. 2008, 66, 470–473. (In Chinese) [Google Scholar]
- Smith, P.; Joss, J. Use of a fixed exponent in ‘‘adjustable’’ Z-R relationships. In Proceedings of the 28th Conference on Radar Meteorology, Austin, TX, USA, 7–12 September 1997; American Meteorological Society: Boston, MA, USA, 1997; p. 255. [Google Scholar]
- Wang, Y.; Feng, Y.; Cai, J.; Hu, S. An approach for radar quantitative precipitation estimate based on categorical Z-I relations. J. Trop. Meteorol. 2011, 27, 601–608. (In Chinese) [Google Scholar]
- Gou, Y.; Ma, Y.; Chen, H.; Yin, J. Utilization of a C-band polarimetric radar for severe rainfall event analysis in complex terrain over eastern China. Remote Sens. 2018, 11, 22. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, K.; Zhang, G.; Lin, Q.; Wen, L.; Chen, G.; Yang, Z.; Wang, M.; Hu, D. Quantitative precipitation estimation with operational polarimetric radar measurements in Southern China: A differential phase–based variational approach. J. Atmos. Ocean. Technol. 2018, 35, 1253–1271. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, H.; Wang, M.; Lee, W.-C.; Chen, G.; Wen, L.; Wen, J.; Zhang, G.; Xue, M.; Yang, Z.; et al. Recent Progress in Dual-Polarization Radar Research and Applications in China. Adv. Atmos. Sci. 2019, 36, 961–974. [Google Scholar] [CrossRef]
- Tabary, P. The new French operational radar rainfall product. Part I: Methodology. Weather Forecast. 2007, 22, 393–408. [Google Scholar] [CrossRef]
- Faure, D.; Gaussiat, N.; Dupuy, P.; Delrieu, G.; Yu, N.; Sarter, F. Quality analysis of the 2016 quantitative precipitation estimates in the French Alps. In Proceedings of the 38th Conference on Radar Meteorology, Chicago, IL, USA, 28 August–1 September 2017. [Google Scholar]
- Tabary, P.; Desplats, J.; Do Khac, K.; Eideliman, F.; Gueguen, C.; Heinrich, J. The new French operational radar rainfall product. Part II: Validation. Weather Forecast. 2007, 22, 409–427. [Google Scholar] [CrossRef]
- Sugier, J.; du Chatelet, J.P.; Roquain, P.; Smith, A. Detection and removal of clutter and anaprop in radar data using a statistical scheme based on echo fluctuation. Proc. ERAD (2002) 2002, 17–24. [Google Scholar]
- Andrieu, H.; Creutin, J.D. Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part I: Formulation. J. Appl. Meteorol. Climatol. 1995, 34, 225–239. [Google Scholar] [CrossRef]
- Andrieu, H.; Creutin, J.D. Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part II: Formulation. J. Appl. Meteorol. Climatol. 1995, 34, 240–259. [Google Scholar] [CrossRef]
- Figueras i Ventura, J.; Boumahmoud, A.-A.; Fradon, B.; Dupuy, P.; Tabary, P. Long-term monitoring of French polarimetric radar data quality and evaluation of several polarimetric quantitative precipitation estimators in ideal conditions for operational implementation at C-band. Q. J. R. Meteorol. Soc. 2012, 138, 2212–2228. [Google Scholar] [CrossRef]
- Figueras i Ventura, J.; Tabary, P. The new French operational polarimetric radar rainfall rate product. J. Appl. Meteorol. Climatol. 2013, 52, 1817–1835. [Google Scholar] [CrossRef]
- Lang, T.J.; Nesbitt, S.W.; Carey, L.D. On the correction of partial beam blockage in polarimetric radar data. J. Atmos. Ocean. Technol. 2009, 26, 943–957. [Google Scholar] [CrossRef]
- Zhang, P.; Zrnić, D.; Ryzhkov, A. Partial beam blockage correction using polarimetric radar measurements. J. Atmos. Ocean. Technol. 2013, 30, 861–872. [Google Scholar] [CrossRef]
- Kurri, M.; Huuskonen, A. Measurements of the transmission loss of a radome at different rain intensities. J. Atmos. Ocean. Technol. 2008, 25, 1590–1599. [Google Scholar] [CrossRef]
- Frech, M. The effect of a wet radome on dualpol data quality. In Proceedings of the 34th Conference on Radar Meteorology, Williamsburg, VA, USA, 5–9 October 2009; American Meteorological Society: Boston, MA, USA, 2009. [Google Scholar]
- Frasier, S.J.; Kabeche, F.; i Ventura, J.F.; Al-Sakka, H.; Tabary, P.; Beck, J.; Bousquet, O. In-place estimation of wet radome attenuation at X band. J. Atmos. Ocean. Technol. 2013, 30, 917–928. [Google Scholar] [CrossRef]
- Gorgucci, E.; Bechini, R.; Baldini, L.; Cremonini, R.; Chandrasekar, V. The influence of antenna radome on weather radar calibration and its real-time assessment. J. Atmos. Ocean. Technol. 2013, 30, 676–689. [Google Scholar] [CrossRef]
- Islam, T.; Rico-Ramirez, M.A.; Han, D.; Srivastava, P.K. Artificial intelligence techniques for clutter identification with polarimetric radar signatures. Atmos. Res. 2012, 109, 95–113. [Google Scholar] [CrossRef]
- Lakshmanan, V.; Karstens, C.; Krause, J.; Tang, L. Quality control of weather radar data using polarimetric variables. J. Atmos. Ocean. Technol. 2014, 31, 1234–1249. [Google Scholar] [CrossRef]
- Husnoo, N.; Darlington, T.; Torres, S.; Warde, D. A Neural Network Quality-Control Scheme for Improved Quantitative Precipitation Estimation Accuracy on the UK Weather Radar Network. J. Atmos. Ocean. Technol. 2021, 38, 1157–1172. [Google Scholar] [CrossRef]
- Frei, C.; Schär, C. A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol. A J. R. Meteorol. Soc. 1998, 18, 873–900. [Google Scholar] [CrossRef]
- Porcacchia, L.; Kirstetter, P.; Gourley, J.; Maggioni, V.; Cheong, B.; Anagnostou, M. Toward a polarimetric radar classification scheme for coalescence-dominant precipitation: Application to complex terrain. J. Hydrometeorol. 2017, 18, 3199–3215. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Chang, P.-L.; Langston, C.; Kaney, B.; Tang, L. Operational C-band dual-polarization radar QPE for the subtropical complex terrain of Taiwan. Adv. Meteorol. 2016, 2016, 1–15. [Google Scholar] [CrossRef]
- Crochet, P. Enhancing radar estimates of precipitation over complex terrain using information derived from an orographic precipitation model. J. Hydrol. 2009, 377, 417–433. [Google Scholar] [CrossRef]
- Zwiebel, J.; Van Baelen, J.; Anquetin, S.; Pointin, Y.; Boudevillain, B. Impacts of orography and rain intensity on rainfall structure. The case of the HyMeX IOP7a event. Q. J. R. Meteorol. Soc. 2016, 142, 310–319. [Google Scholar] [CrossRef]
- Han, Y.; Guo, J.; Yun, Y.; Li, J.; Guo, X.; Lv, Y.; Wang, D.; Li, L.; Zhang, Y. Regional variability of summertime raindrop size distribution from a network of disdrometers in Beijing. Atmos. Res. 2021, 257, 105591. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Li, D.; Qi, Y. Spatial Variability of Raindrop Size Distribution at Beijing City Scale and Its Implications for Polarimetric Radar QPE. Remote Sens. 2023, 15, 3964. [Google Scholar] [CrossRef]
- Germann, U.; Boscacci, M.; Clementi, L.; Gabella, M.; Hering, A.; Sartori, M.; Sideris, I.V.; Calpini, B. Weather radar in complex orography. Remote Sens. 2022, 14, 503. [Google Scholar] [CrossRef]
- van den Heuvel, F.; Foresti, L.; Gabella, M.; Germann, U.; Berne, A. Learning about the vertical structure of radar reflectivity using hydrometeor classes and neural networks in the Swiss Alps. Atmos. Meas. Tech. 2020, 13, 2481–2500. [Google Scholar] [CrossRef]
- Ryzhkov, A.; Zhang, P.; Bukovčić, P.; Zhang, J.; Cocks, S. Polarimetric radar quantitative precipitation estimation. Remote Sens. 2022, 14, 1695. [Google Scholar] [CrossRef]
- Hanft, W.; Zhang, J.; Simpson, M. Dual-Pol VPR Corrections for Improved Operational Radar QPE in MRMS. J. Hydrometeorol. 2023, 24, 353–371. [Google Scholar] [CrossRef]
- Hu, J.; Ryzhkov, A. Climatology of the vertical profiles of polarimetric radar variables and retrieved microphysical parameters in continental/tropical MCSs and landfalling hurricanes. J. Geophys. Res. Atmos. 2022, 127, e2021JD035498. [Google Scholar] [CrossRef]
- Jorgensen, D.P.; Willis, P.T. A ZR relationship for hurricanes. J. Appl. Meteorol. Climatol. 1982, 21, 356–366. [Google Scholar] [CrossRef]
- Willis, P.T. Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci. 1984, 41, 1648–1661. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A. Measurements of raindrop size distributions over the Pacific warm pool and implications for Z–R relations. J. Appl. Meteorol. Climatol. 1997, 36, 847–867. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Kubota, T. GPM/DPR Level-2 Algorithm Theoretical Basis Document; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2010.
- Zhu, Z.; Qi, Y.; Cao, Q.; Li, D.; Zhang, Z.; Cao, J.; Xue, M. Particle Size Distribution Characteristics Within Different Regions of Mature Squall-Line Based on the Analysis of Global Precipitation Measurement Dual-Frequency Precipitation Radar Retrieval. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5. [Google Scholar] [CrossRef]
- Zhu, Z.; Qi, Y.; Li, D. Improving CINRAD Radar QPE Through GPM-DPR Reflectivity Bias Correction. Water Resour. Res. 2023, 59, e2022WR033719. [Google Scholar] [CrossRef]
- Cocks, S.B.; Martinaitis, S.M.; Kaney, B.; Zhang, J.; Howard, K. MRMS QPE performance during the 2013/14 cool season. J. Hydrometeorol. 2016, 17, 791–810. [Google Scholar] [CrossRef]
- Hassan, D.; Taylor, P.A.; Isaac, G.A. Snowfall rate estimation using C-band polarimetric radars. Meteorol. Appl. 2017, 24, 142–156. [Google Scholar] [CrossRef]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D.; Zhang, G. Polarimetric radar relations for quantification of snow based on disdrometer data. J. Appl. Meteorol. Climatol. 2018, 57, 103–120. [Google Scholar] [CrossRef]
- Bukovčić, P.; Ryzhkov, A.; Zrnić, D. Polarimetric relations for snow estimation—Radar verification. J. Appl. Meteorol. Climatol. 2020, 59, 991–1009. [Google Scholar] [CrossRef]
- Hanft, W.; Zhang, J.; Bukovčić, P.; Ryzhkov, A.V.; Cocks, S.B.; Martinaitis, S.M.; Howard, K.W. Dual-Polarization Radar Snow QPE in MRMS. In Proceedings of the 100th American Meteorological Society Annual Meeting, Boston, MA, USA, 12–16 January 2020. [Google Scholar]
- Palmer, R.D.; Schvartzman, D. Emerging Trends in Radar: Phased Arrays for Weather Observations. IEEE Aerosp. Electron. Syst. Mag. 2025, 40, 60–64. [Google Scholar] [CrossRef]
- Palmer, R.D.; Yeary, M.B.; Schvartzman, D.; Salazar-Cerreno, J.L.; Fulton, C.; McCord, M.; Cheong, B.; Bodine, D.; Kirstetter, P.; Sigmarsson, H.H. Horus—A fully digital polarimetric phased array radar for next-generation weather observations. IEEE Trans. Radar Syst. 2023, 1, 96–117. [Google Scholar] [CrossRef]
- Palmer, R.D.; Fulton, C.J.; Salazar, J.; Sigmarsson, H.; Yeary, M. The ”Horus” Radar—An All-Digital Polarimetric Phased Array Radar for Multi-Mission Surveillance. In Proceedings of the 99th Annual AMS Meeting 2019, Phoenix, AZ, USA, 6–10 January 2019; p. 8A.6. [Google Scholar]




| QPE Method | Advantages | Disadvantages |
|---|---|---|
| R(ZH) | Stable for weak polarimetric signals | Highly sensitive to DSD variability |
| Applicable in melting layer/ice-phase precipitation | Vulnerable to calibration bias and attenuation | |
| Reduces DSD dependence | Requires precise ZDR calibration | |
| Better heavy rain accuracy vs. R(ZH) | Unstable with ZDR noise in light rain | |
| DSD-insensitive | noise in light rain | |
| Immune to calibration/attenuation/blockage | Degraded radial resolution | |
| Robust in hail | Inapplicable above melting layer | |
| Theoretical optimal accuracy | Requires precise ZDR calibration | |
| Superior for convective precipitation | ||
| Robust to DSD variations | estimation | |
| No radial smoothing required | errors | |
| Least sensitive to the DSD variability | Lack operational validation | |
| Minimal DSD sensitivity | α-parameter sensitivity | |
| High radial resolution | ||
| All-precipitation reliability | ||
| Composite methods | Balances light/heavy rain performance | Threshold tuning required |
| Hydrometeor classification-based methods | Joint utilization of polarimetric variables | Highly sensitive to classification accuracy |
| Discontinuity in precipitation map | ||
| DSD retrieval methods | Highest theoretical accuracy | Intensive computation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhao, Z.; Qi, Y.; Xiong, M. Dual-Polarization Radar Quantitative Precipitation Estimation (QPE): Principles, Operations, and Challenges. Remote Sens. 2025, 17, 3619. https://doi.org/10.3390/rs17213619
Zhang Z, Zhao Z, Qi Y, Xiong M. Dual-Polarization Radar Quantitative Precipitation Estimation (QPE): Principles, Operations, and Challenges. Remote Sensing. 2025; 17(21):3619. https://doi.org/10.3390/rs17213619
Chicago/Turabian StyleZhang, Zhe, Zhanfeng Zhao, Youcun Qi, and Muqi Xiong. 2025. "Dual-Polarization Radar Quantitative Precipitation Estimation (QPE): Principles, Operations, and Challenges" Remote Sensing 17, no. 21: 3619. https://doi.org/10.3390/rs17213619
APA StyleZhang, Z., Zhao, Z., Qi, Y., & Xiong, M. (2025). Dual-Polarization Radar Quantitative Precipitation Estimation (QPE): Principles, Operations, and Challenges. Remote Sensing, 17(21), 3619. https://doi.org/10.3390/rs17213619

