Development of Parameter-Tuned Algorithms for Chlorophyll-a Concentration Estimates in the Southern Ocean
Highlights
- Satellite-derived Chlorophyll-a (Chl) concentration products (MODIS, OC-CCI, and GlobColour) systematically underestimated Chl concentrations in the Southern Ocean (SO), particularly at high concentrations (Chl > 0.2/0.3 mg/m3).
- Developed parameter-tuned OC3M-based algorithms substantially improved Chl retrieval accuracy, with R2 increasing to 0.68–0.91, slopes approaching 1.0 (0.62–0.92), and notable reductions in MAE (1.39–1.42) and RMSE (1.49–1.51).
- A high-precision (high-performance liquid chromatography-derived, HPLC), long-term (1997–2021), and spatially extensive (south of 40°S) in situ Chl dataset was used for the first time to enhance satellite-based Chl retrieval accuracy in the data-sparse and optically complex SO.
- These findings provide a foundation for developing regional algorithms and advancing long-term, large-scale assessments of phytoplankton dynamics.
Abstract
1. Introduction
2. Materials and Methods
2.1. In Situ Data
2.2. Satellite Data
2.3. Match of In Situ and Satellite Data
2.4. Development of Parameter-Tuned Algorithm
3. Results
3.1. Initial Comparison Between Satellite Estimation and In Situ Data
3.2. Design of Parameter-Tuned Algorithms
3.2.1. Refined Dataset
3.2.2. Training and Validation Dataset
3.2.3. Parameter-Tuned Algorithms
3.3. Independent Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A

| Match-Ups | Bias | MAE | RMSE | R2 | Slope | Intercept | |
|---|---|---|---|---|---|---|---|
| Daily | 408 | 0.81 | 1.69 | 1.97 | 0.65 | 0.47 | 0.25 | 
| 8-Day | 1329 | 0.76 | 1.84 | 2.27 | 0.36 | 0.36 | 0.31 | 
| Difference | 921 | 0.05 | 0.15 | 0.30 | 0.29 | 0.11 | 0.06 | 

References
- Weijer, W.; Sloyan, B.M.; Maltrud, M.E.; Jeffery, N.; Hecht, M.W.; Hartin, C.A.; Van Sebille, E.; Wainer, I.; Landrum, L. The Southern Ocean and Its Climate in CCSM4. J. Clim. 2012, 25, 2652–2675. [Google Scholar] [CrossRef]
- Bourgeois, T.; Goris, N.; Schwinger, J.; Tjiputra, J.F. Stratification Constrains Future Heat and Carbon Uptake in the Southern Ocean between 30°S and 55°S. Nat. Commun. 2022, 13, 340. [Google Scholar] [CrossRef]
- Boyd, P.W.; Arrigo, K.R.; Ardyna, M.; Halfter, S.; Huckstadt, L.; Kuhn, A.M.; Lannuzel, D.; Neukermans, G.; Novaglio, C.; Shadwick, E.H.; et al. The Role of Biota in the Southern Ocean Carbon Cycle. Nat. Rev. 2024, 5, 390–408. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Frölicher, T.L.; Sarmiento, J.L.; Paynter, D.J.; Dunne, J.P.; Krasting, J.P.; Winton, M. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 2015, 28, 862–886. [Google Scholar] [CrossRef]
- Williams, R.G.; Meijers, A.J.S.; Roussenov, V.M.; Katavouta, A.; Ceppi, P.; Rosser, J.P.; Salvi, P. Asymmetries in the Southern Ocean Contribution to Global Heat and Carbon Uptake. Nat. Clim. Change 2024, 14, 823–831. [Google Scholar] [CrossRef]
- Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of Global Warming Due to Carbon-Cycle Feedbacks in a Coupled Climate Model. Nature 2000, 408, 184–187. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2391. [Google Scholar]
- Meredith, M.; Sommerkorn, M.; Cassotta, C.; Derksen, C.; Ekaykin, A.; Hollowed, A.; Kofinas, G.; Mackintosh, A.; Melbourne-Thomas, J.; Muelbert, M.M.C.; et al. Polar Regions. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 203–320. [Google Scholar]
- Cael, B.B.; Bisson, K.; Boss, E.; Dutkiewicz, S.; Henson, S. Global Climate-Change Trends Detected in Indicators of Ocean Ecology. Nature 2023, 619, 551–554. [Google Scholar] [CrossRef]
- Deppeler, S.L.; Davidson, A.T. Southern Ocean Phytoplankton in a Changing Climate. Front. Mar. Sci. 2017, 4, 40. [Google Scholar] [CrossRef]
- Li, Z.; Cassar, N. Satellite Estimates of Net Community Production Based on O2/Ar Observations and Comparison to Other Estimates. Glob. Biogeochem. Cycles 2016, 30, 735–752. [Google Scholar] [CrossRef]
- Benway, H.M.; Lorenzoni, L.; White, A.E.; Fiedler, B.; Levine, N.M.; Nicholson, D.P.; DeGrandpre, M.D.; Sosik, H.M.; Church, M.J.; O’Brien, T.D.; et al. Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Front. Mar. Sci. 2019, 6, 393. [Google Scholar] [CrossRef]
- Harvey, H.W. Measurement of Phytoplankton Population. J. Mar. Biol. Assoc. 1934, 19, 761–773. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Platt, T.; Bouman, H.; Ciavatta, S.; Dall’Olmo, G.; Dingle, J.; Groom, S.; Jönsson, B.; Kostadinov, T.S.; et al. Sensing the Ocean Biological Carbon Pump from Space: A Review of Capabilities, Concepts, Research Gaps and Future Developments. Earth-Sci. Rev. 2021, 217, 103604. [Google Scholar] [CrossRef]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.; Chuprin, A.; et al. Satellite Ocean Colour: Current Status and Future Perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef] [PubMed]
- McClain, C.R. A Decade of Satellite Ocean Color Observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Gabarró, C.; Hughes, N.; Wilkinson, J.; Bertino, L.; Bracher, A.; Diehl, T.; Dierking, W.; Gonzalez-Gambau, V.; Lavergne, T.; Madurell, T.; et al. Improving Satellite-Based Monitoring of the Polar Regions: Identification of Research and Capacity Gaps. Front. Remote Sens. 2023, 4, 952091. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Smith, R.C. Bio-optical Properties and Remote Sensing Ocean Color Algorithms for Antarctic Peninsula Waters. J. Geophys. Res. 2000, 105, 26301–26312. [Google Scholar] [CrossRef]
- Bélanger, S.; Ehn, J.K.; Babin, M. Impact of Sea Ice on the Retrieval of Water-Leaving Reflectance, Chlorophyll a Concentration and Inherent Optical Properties from Satellite Ocean Color Data. Remote Sens. Environ. 2007, 111, 51–68. [Google Scholar] [CrossRef]
- Jena, B. The Effect of Phytoplankton Pigment Composition and Packaging on the Retrieval of Chlorophyll-a Concentration from Satellite Observations in the Southern Ocean. Int. J. Remote Sens. 2017, 38, 3763–3784. [Google Scholar] [CrossRef]
- Robinson, C.M.; Huot, Y.; Schuback, N.; Ryan-Keogh, T.J.; Thomalla, S.J.; Antoine, D. High Latitude Southern Ocean Phytoplankton Have Distinctive Bio-Optical Properties. Opt. Express 2021, 29, 21084. [Google Scholar] [CrossRef]
- Li, J.; Antoine, D.; Huot, Y. Bio-Optical Variability of Particulate Matter in the Southern Ocean. Front. Mar. Sci. 2024, 11, 1466037. [Google Scholar] [CrossRef]
- Ferreira, A.; Brito, A.C.; Mendes, C.R.B.; Brotas, V.; Costa, R.R.; Guerreiro, C.V.; Sá, C.; Jackson, T. OC4-SO: A New Chlorophyll-a Algorithm for the Western Antarctic Peninsula Using Multi-Sensor Satellite Data. Remote Sens. 2022, 14, 1052. [Google Scholar] [CrossRef]
- Gregg, W.W.; Casey, N.W. Global and Regional Evaluation of the SeaWiFS Chlorophyll Data Set. Remote Sens. Environ. 2004, 93, 463–479. [Google Scholar] [CrossRef]
- Ferreira, A.; Ciotti, Á.M.; Garcia, C.A.E. Bio-Optical Characterization of the Northern Antarctic Peninsula Waters: Absorption Budget and Insights on Particulate Backscattering. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2018, 149, 138–149. [Google Scholar] [CrossRef]
- Szeto, M.; Werdell, P.J.; Moore, T.S.; Campbell, J.W. Are the World’s Oceans Optically Different? J. Geophys. Res. 2011, 116, 2011JC007230. [Google Scholar] [CrossRef]
- Johnson, R.; Strutton, P.G.; Wright, S.W.; McMinn, A.; Meiners, K.M. Three Improved Satellite Chlorophyll Algorithms for the Southern Ocean: Southern Ocean Chlorophyll Algorithms. J. Geophys. Res. Ocean. 2013, 118, 3694–3703. [Google Scholar] [CrossRef]
- Pereira, E.S.; Garcia, C.A.E. Evaluation of Satellite-Derived MODIS Chlorophyll Algorithms in the Northern Antarctic Peninsula. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2018, 149, 124–137. [Google Scholar] [CrossRef]
- Moutier, W.; Thomalla, S.; Bernard, S.; Wind, G.; Ryan-Keogh, T.; Smith, M. Evaluation of Chlorophyll-a and POC MODIS Aqua Products in the Southern Ocean. Remote Sens. 2019, 11, 1793. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean Color Chlorophyll Algorithms for SeaWiFS. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Pinckney, J.; Papa, R.; Zingmark, R. Comparison of High-Performance Liquid Chromatographic, Spectrophotometric, and Fluorometric Methods for Determining Chlorophyll a Concentrations in Estuarine Sediments. J. Microbiol. Methods 1994, 19, 59–66. [Google Scholar] [CrossRef]
- Valente, A.; Sathyendranath, S.; Brotas, V.; Groom, S.; Grant, M.; Jackson, T.; Chuprin, A.; Taberner, M.; Airs, R.; Antoine, D.; et al. A Compilation of Global Bio-Optical in Situ Data for Ocean Colour Satellite Applications—Version Three. Earth Syst. Sci. Data 2022, 14, 5737–5770. [Google Scholar] [CrossRef]
- Walton, D.W.H.; Thomas, J. Cruise Report—Antarctic Circumnavigation Expedition (ACE) 20th December 2016–19th March 2017; Zenodo: Geneva, Switzerland, 2018. [Google Scholar] [CrossRef]
- Hu, C.; Werdell, J.; OReilly, J.; Feng, L.; Lee, Z.; Franz, B.; Bailey, S.; Proctor, C. Chlorophyll a, V1.0; NASA: Greenbelt, MD, USA, 2023. [Google Scholar] [CrossRef]
- Sathyendranath, S.; Jackson, T.; Brockmann, C.; Brotas, V.; Calton, B.; Chuprin, A.; Clements, O.; Cipollini, P.; Danne, O.; Dingle, J.; et al. ESA Ocean Colour Climate Change Initiative (Ocean_Colour_cci): Version 6.0, 4 km Resolution Data. NERC EDS Centre for Environmental Data Analysis, 8 August 2023. [Google Scholar] [CrossRef]
- Garnesson, P.; Mangin, A.; Fanton d’Andon, O.; Demaria, J.; Bretagnon, M. The CMEMS GlobColour Chlorophyll a Product Based on Satellite Observation: Multi-Sensor Merging and Flagging Strategies. Ocean Sci. 2019, 15, 819–830. [Google Scholar] [CrossRef]
- Scott, J.P.; Werdell, P.J. Comparing Level-2 and Level-3 Satellite Ocean Color Retrieval Validation Methodologies. Opt. Express 2019, 27, 30140. [Google Scholar] [CrossRef]
- Haëntjens, N.; Boss, E.; Talley, L.D. Revisiting Ocean Color Algorithms for Chlorophyll a and Particulate Organic Carbon in the Southern Ocean Using Biogeochemical Floats. J. Geophys. Res. Oceans 2017, 122, 6583–6593. [Google Scholar] [CrossRef]
- Pittman, N.A.; Strutton, P.G.; Johnson, R.; Matear, R.J. An Assessment and Improvement of Satellite Ocean Color Algorithms for the Tropical Pacific Ocean. J. Geophys. Res. Oceans 2019, 124, 9020–9039. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A Multi-Sensor Approach for the on-Orbit Validation of Ocean Color Satellite Data Products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Seegers, B.N.; Stumpf, R.P.; Schaeffer, B.A.; Loftin, K.A.; Werdell, P.J. Performance Metrics for the Assessment of Satellite Data Products: An Ocean Color Case Study. Opt. Express 2018, 26, 7404. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Ricker, W.E. Linear Regressions in Fishery Research. J. Fish. Board. Can. 1973, 30, 409–434. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll Algorithms for Ocean Color Sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef]
- Belo Couto, A.; Brotas, V.; Mélin, F.; Groom, S.; Sathyendranath, S. Inter-Comparison of OC-CCI Chlorophyll- a Estimates with Precursor Data Sets. Int. J. Remote Sens. 2016, 37, 4337–4355. [Google Scholar] [CrossRef]
- Pardo, S.; Tilstone, G.H.; Dall’Olmo, G.; Jordan, T.M.; Brewin, R.J.W.; Casal, T. Global Assessment of Merged Multi-Sensor Ocean Colour Chlorophyll a Products. SSRN 2024, preprint. [Google Scholar]
- Maritorena, S.; Siegel, D.A.; Peterson, A.R. Optimization of a Semianalytical Ocean Color Model for Global-Scale Applications. Appl. Opt. 2002, 41, 2705. [Google Scholar] [CrossRef] [PubMed]
- Keiner, L.E. Estimating Oceanic Chlorophyll Concentrations with Neural Networks. Int. J. Remote Sens. 1999, 20, 189–194. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Bai, Y.; Wang, D.; Li, T.; Gong, F. Restoration of Missing Ocean Color Data in High-Latitude Oceans Using Neural Network Model. Big Earth Data 2025, 9, 336–355. [Google Scholar] [CrossRef]








| Data Source * | Date | Chl Range (mg/m3) | Number of Observations | 
|---|---|---|---|
| AMT | 15 October 1997–27 October 2018 | 0.033–4.460 | 66 | 
| AWI | 20 April 2008–13 May 2018 | 0.083–5.554 | 504 | 
| CC | 21 May 2007–29 May 2007 | 0.171–1.527 | 21 | 
| IMOS | 15 September 2014–22 March 2017 | 0.095–1.303 | 49 | 
| MAREDAT | 1 November 1997–20 February 2006 | 0.005–9.870 | 229 | 
| NOMAD | 14 October 1997–6 March 2007 | 0.031–6.303 | 130 | 
| PALMER | 15 December 1997–8 February 2016 | 0.010–22.689 | 1350 | 
| SeaBASS | 13 October 1997–12 January 2017 | 0.005–7.532 | 1201 | 
| TARA | 29 November 2010–27 January 2011 | 0.099–1.422 | 6 | 
| ACE | 23 December 2016–16 March 2017 | 0.016–3.733 | 221 | 
| SOLACE | 7 December 2020–13 January 2021 | 0.092–1.099 | 59 | 
| Product | Projection | Temporal Resolution | Spatial Resolution | Date | 
|---|---|---|---|---|
| Aqua-MODIS | L3b | 8 days | 4 km | 28 July 2002–16 January 2021 | 
| OC-CCI | 29 August 1997–17 January 2021 | |||
| GlobColour-AVW | 29 August 1997–16 January 2021 | 
| Aqua-MODIS | OC-CCI | GlobColour-AVW | |
|---|---|---|---|
| Match-ups | 1111 | 1329 | 937 | 
| Bias | 0.57 | 0.76 | 0.64 | 
| MAE | 2.15 | 1.84 | 1.96 | 
| RMSE | 2.65 | 2.27 | 2.40 | 
| R2 | 0.18 | 0.36 | 0.27 | 
| Slope | 0.18 | 0.36 | 0.21 | 
| Intercept | 0.26 | 0.31 | 0.26 | 
| Aqua-MODIS | OC-CCI | GlobColour-AVW | |
|---|---|---|---|
| Match-ups (All) | 1111 | 1329 | 937 | 
| Mean | −0.24 | −0.12 | −0.20 | 
| Standard Deviation | 0.35 | 0.33 | 0.33 | 
| Match-ups (Filtered) | 810 | 1005 | 692 | 
| Aqua-MODIS | OC-CCI | GlobColour-AVW | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OC3M | New | Dynamic | OC3M | New | Dynamic | OC3M | New | Dynamic | |
| Bias | 0.68 | 1.00 | 0.32 | 0.57 | 1.00 | 0.43 | 0.72 | 1.00 | 0.28 | 
| MAE | 1.59 | 1.39 | 0.20 | 1.81 | 1.37 | 0.44 | 1.52 | 1.37 | 0.15 | 
| MRSE | 1.78 | 1.50 | 0.28 | 2.01 | 1.47 | 0.54 | 1.67 | 1.48 | 0.19 | 
| R2 | 0.70 | 0.69 | 0.01 | 0.78 | 0.79 | 0.01 | 0.77 | 0.67 | 0.10 | 
| Slope | 0.45 | 0.67 | 0.22 | 0.79 | 0.72 | 0.07 | 0.49 | 0.77 | 0.28 | 
| Intercept | 0.10 | 0.17 | 0.07 | −0.09 | 0.18 | 0.27 | 0.11 | 0.11 | 0.00 | 
| Aqua-MODIS | OC-CCI | GlobColour-AVW | |||||||
|---|---|---|---|---|---|---|---|---|---|
| OC3M | New | Dynamic | OC3M | New | Dynamic | OC3M | New | Dynamic | |
| Bias | 0.68 | 1.02 | 0.30 | 0.57 | 0.99 | 0.42 | 0.70 | 0.97 | 0.27 | 
| MAE | 1.58 | 1.42 | 0.16 | 1.84 | 1.39 | 0.45 | 1.56 | 1.38 | 0.18 | 
| MRSE | 1.77 | 1.51 | 0.26 | 2.07 | 1.49 | 0.58 | 1.73 | 1.50 | 0.23 | 
| R2 | 0.69 | 0.68 | 0.01 | 0.81 | 0.84 | 0.03 | 0.81 | 0.91 | 0.10 | 
| Slope | 0.42 | 0.62 | 0.20 | 1.02 | 0.92 | 0.10 | 0.35 | 0.76 | 0.41 | 
| Intercept | 0.12 | 0.21 | 0.09 | −0.26 | 0.03 | 0.29 | 0.19 | 0.10 | 0.09 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, M.; Pang, X.; Antoine, D. Development of Parameter-Tuned Algorithms for Chlorophyll-a Concentration Estimates in the Southern Ocean. Remote Sens. 2025, 17, 3595. https://doi.org/10.3390/rs17213595
Cha M, Pang X, Antoine D. Development of Parameter-Tuned Algorithms for Chlorophyll-a Concentration Estimates in the Southern Ocean. Remote Sensing. 2025; 17(21):3595. https://doi.org/10.3390/rs17213595
Chicago/Turabian StyleCha, Mingxing, Xiaoping Pang, and David Antoine. 2025. "Development of Parameter-Tuned Algorithms for Chlorophyll-a Concentration Estimates in the Southern Ocean" Remote Sensing 17, no. 21: 3595. https://doi.org/10.3390/rs17213595
APA StyleCha, M., Pang, X., & Antoine, D. (2025). Development of Parameter-Tuned Algorithms for Chlorophyll-a Concentration Estimates in the Southern Ocean. Remote Sensing, 17(21), 3595. https://doi.org/10.3390/rs17213595
 
         
                                                

 
       