CGHP: Component-Guided Hierarchical Progressive Point Cloud Unsupervised Segmentation Framework
Highlights
- We propose CGHP, a component-guided hierarchical progressive framework that achieves unsupervised 3D point cloud segmentation without any manual annotations, 2D data, or pre-trained models.
- The framework integrates component-level descriptors with an adjacency-constrained progressive clustering strategy, enabling effective transition from component- to object-level semantics and achieving competitive results on benchmark datasets.
- The results demonstrate that structured priors and hierarchical learning can substantially enhance unsupervised 3D semantic segmentation, effectively narrowing the gap with supervised methods.
- The framework provides a scalable solution for processing massive airborne and terrestrial point clouds, enabling broader applications in smart city development and scene understanding.
Abstract
1. Introduction
- We propose CGHP, a novel component-guided unsupervised point cloud semantic segmentation framework that incorporates component recognition theory and Gestalt laws, establishing a “component-to-object” hierarchical optimization paradigm.
- We introduce an elegant component construction strategy and component descriptors for guiding component-level semantic learning.
- We develop a heuristic adjacent component graph progressive aggregation module to facilitate the transition from component-level to object-level semantics.
- Our CGHP approach achieves substantial improvements over existing unsupervised methods in 3D semantic segmentation, validating its effectiveness.
2. Related Work
2.1. Three-Dimensional Semantic Segmentation
2.2. Unsupervised Segmentation Learning
2.2.1. Two-Dimensional Unsupervised Methods
2.2.2. Three-Dimensional Unsupervised Methods
3. Method
3.1. Problem Formulation
3.2. Preliminaries
- (1)
- E-step: With fixed model parameters , we optimize the distribution of latent variables by clustering the current features using Kmeans to obtain cluster labels for each point. Let i and denote the indices of a point and its corresponding point cloud, respectively.where denotes the k-th cluster centroid, and represents the assigned cluster label of the i-th point in the i’-th point cloud.
- (2)
- M-step: With fixed latent variables, we optimize the model parameters by training with cluster assignments as pseudo-labels:where is the cross-entropy loss function, and represents the non-parametric classifier parameterized by cluster centroids .
3.3. Component-Level Learning
3.3.1. Component Constructor
3.3.2. Component Descriptor
Geometric Properties
Appearance Properties
3.4. Component to Object-Level Learning
3.5. Implementation
3.5.1. Training Phase
3.5.2. Inference Phase
4. Experiment
4.1. Dataset Description and Experimental Setup
4.2. Comparison with Current Methods
4.3. Ablation Studies
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| PFH | Point Feature Histograms |
| GA | Geometry Appearance |
| VCCS | Voxel Cloud Connectivity Segmentation |
| MLP | Multi-Layer Perception |
| EM | Expectation Maximization |
References
- Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Deep learning on 3D point clouds. Remote Sens. 2020, 12, 1729. [Google Scholar] [CrossRef]
- Ponzini, F.; Zaccone, R.; Martelli, M. LiDAR target detection and classification for ship situational awareness: A hybrid learning approach. Appl. Ocean Res. 2025, 158, 104552. [Google Scholar] [CrossRef]
- Zhang, Y.; Bhattarai, N.; Zhao, J.; Liu, H.; Xu, H. An unsupervised clustering method for processing roadside LiDAR data with improved computational efficiency. IEEE Sens. J. 2022, 22, 10684–10691. [Google Scholar] [CrossRef]
- Roriz, R.; Cabral, J.; Gomes, T. Automotive LiDAR technology: A survey. IEEE Trans. Intell. Transp. Syst. 2021, 23, 6282–6297. [Google Scholar] [CrossRef]
- Leong, P.Y.; Ahmad, N.S. LiDAR-based obstacle avoidance with autonomous vehicles: A comprehensive review. IEEE Access 2024, 12, 164248–164261. [Google Scholar] [CrossRef]
- Xing, Z.; Ma, G.; Wang, L.; Yang, L.; Guo, X.; Chen, S. Towards visual interaction: Hand segmentation by combining 3D graph deep learning and laser point cloud for intelligent rehabilitation. IEEE Internet Things J. 2025, 12, 21328–21338. [Google Scholar] [CrossRef]
- Xing, Z.; Meng, Z.; Zheng, G.; Ma, G.; Yang, L.; Guo, X.; Tan, L.; Jiang, Y.; Wu, H. Intelligent rehabilitation in an aging population: Empowering human-machine interaction for hand function rehabilitation through 3D deep learning and point cloud. Front. Comput. Neurosci. 2025, 19, 1543643. [Google Scholar] [CrossRef]
- Wu, X.; Lao, Y.; Jiang, L.; Liu, X.; Zhao, H. Point transformer v2: Grouped vector attention and partition-based pooling. Adv. Neural Inf. Process. Syst. 2022, 35, 33330–33342. [Google Scholar]
- Wu, X.; Jiang, L.; Wang, P.S.; Liu, Z.; Liu, X.; Qiao, Y.; Ouyang, W.; He, T.; Zhao, H. Point transformer v3: Simpler faster stronger. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 4840–4851. [Google Scholar]
- Choy, C.; Gwak, J.; Savarese, S. 4d spatio-temporal convnets: Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3075–3084. [Google Scholar]
- Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 5828–5839. [Google Scholar]
- Jiang, L.; Shi, S.; Tian, Z.; Lai, X.; Liu, S.; Fu, C.W.; Jia, J. Guided point contrastive learning for semi-supervised point cloud semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6423–6432. [Google Scholar]
- Deng, S.; Dong, Q.; Liu, B.; Hu, Z. Superpoint-guided semi-supervised semantic segmentation of 3D point clouds. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 9214–9220. [Google Scholar]
- Cheng, M.; Hui, L.; Xie, J.; Yang, J. Sspc-net: Semi-supervised semantic 3d point cloud segmentation network. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 2–9 February 2021; pp. 1140–1147. [Google Scholar]
- Li, J.; Dong, Q. Density-guided semi-supervised 3d semantic segmentation with dual-space hardness sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 3260–3269. [Google Scholar]
- Zhang, Y.; Qu, Y.; Xie, Y.; Li, Z.; Zheng, S.; Li, C. Perturbed self-distillation: Weakly supervised large-scale point cloud semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 15520–15528. [Google Scholar]
- Lei, J.; Deng, C.; Schmeckpeper, K.; Guibas, L.; Daniilidis, K. Efem: Equivariant neural field expectation maximization for 3d object segmentation without scene supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 4902–4912. [Google Scholar]
- Li, W.; Liu, W.; Zhu, J.; Cui, M.; Hua, X.S.; Zhang, L. Box-supervised instance segmentation with level set evolution. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 1–18. [Google Scholar]
- Hu, Q.; Yang, B.; Fang, G.; Guo, Y.; Leonardis, A.; Trigoni, N.; Markham, A. Sqn: Weakly-supervised semantic segmentation of large-scale 3d point clouds. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 600–619. [Google Scholar]
- Liu, Z.; Qi, X.; Fu, C.W. One thing one click: A self-training approach for weakly supervised 3d semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 1726–1736. [Google Scholar]
- Xu, X.; Lee, G.H. Weakly supervised semantic point cloud segmentation: Towards 10x fewer labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 13706–13715. [Google Scholar]
- Chibane, J.; Engelmann, F.; Anh Tran, T.; Pons-Moll, G. Box2mask: Weakly supervised 3d semantic instance segmentation using bounding boxes. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 681–699. [Google Scholar]
- Liu, K.; Zhao, Y.; Nie, Q.; Gao, Z.; Chen, B.M. Weakly supervised 3d scene segmentation with region-level boundary awareness and instance discrimination. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 37–55. [Google Scholar]
- Tao, A.; Duan, Y.; Wei, Y.; Lu, J.; Zhou, J. SegGroup: Seg-level supervision for 3D instance and semantic segmentation. IEEE Trans. Image Process. 2022, 31, 4952–4965. [Google Scholar] [CrossRef]
- Wei, J.; Lin, G.; Yap, K.H.; Hung, T.Y.; Xie, L. Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4384–4393. [Google Scholar]
- Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- McInnes, L.; Healy, J.; Astels, S. hdbscan: Hierarchical density based clustering. J. Open Source Softw. 2017, 2, 205. [Google Scholar] [CrossRef]
- Comaniciu, D.; Meer, P. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 603–619. [Google Scholar] [CrossRef]
- Reynolds, D. Gaussian mixture models. In Encyclopedia of Biometrics; Springer: Berlin/Heidelberg, Germany, 2009; pp. 659–663. [Google Scholar]
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2012, 2, 86–97. [Google Scholar] [CrossRef]
- Ji, X.; Henriques, J.F.; Vedaldi, A. Invariant information clustering for unsupervised image classification and segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9865–9874. [Google Scholar]
- Cho, J.H.; Mall, U.; Bala, K.; Hariharan, B. Picie: Unsupervised semantic segmentation using invariance and equivariance in clustering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 16794–16804. [Google Scholar]
- Zhang, Z.; Yang, B.; Wang, B.; Li, B. Growsp: Unsupervised semantic segmentation of 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17619–17629. [Google Scholar]
- Chen, Z.; Xu, H.; Chen, W.; Zhou, Z.; Xiao, H.; Sun, B.; Xie, X. PointDC: Unsupervised semantic segmentation of 3D point clouds via cross-modal distillation and super-voxel clustering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 14290–14299. [Google Scholar]
- Armeni, I.; Sax, S.; Zamir, A.R.; Savarese, S. Joint 2d-3d-semantic data for indoor scene understanding. arXiv 2017, arXiv:1702.01105. [Google Scholar]
- Rusu, R.B.; Blodow, N.; Marton, Z.C.; Beetz, M. Aligning point cloud views using persistent feature histograms. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3384–3391. [Google Scholar]
- Biederman, I. Recognition-by-components: A theory of human image understanding. Psychol. Rev. 1987, 94, 115. [Google Scholar] [CrossRef]
- King, D.B.; Wertheimer, M.; Keller, H.; Crochetière, K. The legacy of Max Wertheimer and Gestalt psychology. Soc. Res. 1994, 61, 907–935. [Google Scholar]
- Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9297–9307. [Google Scholar]
- Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. Semantic3d. net: A new large-scale point cloud classification benchmark. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-1/W1, 91–98. [Google Scholar] [CrossRef]
- Hu, Q.; Yang, B.; Khalid, S.; Xiao, W.; Trigoni, N.; Markham, A. Towards semantic segmentation of urban-scale 3D point clouds: A dataset, benchmarks and challenges. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4977–4987. [Google Scholar]
- Lin, L.; Liu, Y.; Hu, Y.; Yan, X.; Xie, K.; Huang, H. Capturing, reconstructing, and simulating: The urbanscene3d dataset. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 93–109. [Google Scholar]
- Tan, W.; Qin, N.; Ma, L.; Li, Y.; Du, J.; Cai, G.; Yang, K.; Li, J. Toronto-3D: A large-scale mobile LiDAR dataset for semantic segmentation of urban roadways. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 202–203. [Google Scholar]
- Varney, N.; Asari, V.K.; Graehling, Q. DALES: A large-scale aerial LiDAR data set for semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 186–187. [Google Scholar]
- Kölle, M.; Laupheimer, D.; Schmohl, S.; Haala, N.; Rottensteiner, F.; Wegner, J.D.; Ledoux, H. The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo. ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Tan, L.; Su, W.; Zhao, L.; Tao, W. Semantic segmentation of 3D point cloud based on spatial eight-quadrant kernel convolution. Remote Sens. 2021, 13, 3140. [Google Scholar] [CrossRef]
- Luo, N.; Yu, H.; Huo, Z.; Liu, J.; Wang, Q.; Xu, Y.; Gao, Y. KVGCN: A KNN searching and VLAD combined graph convolutional network for point cloud segmentation. Remote Sens. 2021, 13, 1003. [Google Scholar] [CrossRef]
- Chen, R.; Wu, J.; Luo, Y.; Xu, G. PointMM: Point cloud semantic segmentation CNN under multi-spatial feature encoding and multi-head attention pooling. Remote Sens. 2024, 16, 1246. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf. Process. Syst. 2017, 30, 5099–5108. [Google Scholar]
- Guo, M.H.; Cai, J.X.; Liu, Z.N.; Mu, T.J.; Martin, R.R.; Hu, S.M. Pct: Point cloud transformer. Comput. Vis. Media 2021, 7, 187–199. [Google Scholar] [CrossRef]
- Zhao, H.; Jiang, L.; Jia, J.; Torr, P.H.; Koltun, V. Point transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 16259–16268. [Google Scholar]
- Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. Randla-net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11108–11117. [Google Scholar]
- Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6411–6420. [Google Scholar]
- Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. Pointcnn: Convolution on x-transformed points. Adv. Neural Inf. Process. Syst. 2018, 31, 828–838. [Google Scholar]
- Zhu, X.; Zhou, H.; Wang, T.; Hong, F.; Ma, Y.; Li, W.; Li, H.; Lin, D. Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9939–9948. [Google Scholar]
- Lei, H.; Akhtar, N.; Mian, A. Octree guided cnn with spherical kernels for 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9631–9640. [Google Scholar]
- Meng, H.Y.; Gao, L.; Lai, Y.K.; Manocha, D. Vv-net: Voxel vae net with group convolutions for point cloud segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8500–8508. [Google Scholar]
- Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660. [Google Scholar]
- Graham, B.; Engelcke, M.; Van Der Maaten, L. 3d semantic segmentation with submanifold sparse convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9224–9232. [Google Scholar]
- Peng, B.; Wu, X.; Jiang, L.; Chen, Y.; Zhao, H.; Tian, Z.; Jia, J. Oa-cnns: Omni-adaptive sparse cnns for 3d semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–22 June 2024; pp. 21305–21315. [Google Scholar]
- Xie, S.; Gu, J.; Guo, D.; Qi, C.R.; Guibas, L.; Litany, O. Pointcontrast: Unsupervised pre-training for 3d point cloud understanding. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; pp. 574–591. [Google Scholar]
- Hou, J.; Graham, B.; Nießner, M.; Xie, S. Exploring data-efficient 3d scene understanding with contrastive scene contexts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15587–15597. [Google Scholar]
- Wu, X.; Wen, X.; Liu, X.; Zhao, H. Masked scene contrast: A scalable framework for unsupervised 3d representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 9415–9424. [Google Scholar]
- Chen, Y.; Liu, J.; Ni, B.; Wang, H.; Yang, J.; Liu, N.; Li, T.; Tian, Q. Shape self-correction for unsupervised point cloud understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 8382–8391. [Google Scholar]
- Huang, S.; Xie, Y.; Zhu, S.C.; Zhu, Y. Spatio-temporal self-supervised representation learning for 3d point clouds. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 6535–6545. [Google Scholar]
- Pang, Y.; Tay, E.H.F.; Yuan, L.; Chen, Z. Masked autoencoders for 3d point cloud self-supervised learning. World Sci. Annu. Rev. Artif. Intell. 2023, 1, 2440001. [Google Scholar]
- Rao, Y.; Lu, J.; Zhou, J. Global-local bidirectional reasoning for unsupervised representation learning of 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 5376–5385. [Google Scholar]
- Thabet, A.; Alwassel, H.; Ghanem, B. Self-supervised learning of local features in 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 938–939. [Google Scholar]
- Wang, H.; Liu, Q.; Yue, X.; Lasenby, J.; Kusner, M.J. Unsupervised point cloud pre-training via occlusion completion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 9782–9792. [Google Scholar]
- Yin, Z.; Wang, P.; Wang, F.; Xu, X.; Zhang, H.; Li, H.; Jin, R. Transfgu: A top-down approach to fine-grained unsupervised semantic segmentation. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 73–89. [Google Scholar]
- Zhang, Z.; Girdhar, R.; Joulin, A.; Misra, I. Self-supervised pretraining of 3d features on any point-cloud. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10252–10263. [Google Scholar]
- Caron, M.; Bojanowski, P.; Joulin, A.; Douze, M. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 132–149. [Google Scholar]
- Song, Z.; Yang, B. Ogc: Unsupervised 3d object segmentation from rigid dynamics of point clouds. Adv. Neural Inf. Process. Syst. 2022, 35, 30798–30812. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 1977, 39, 1–22. [Google Scholar] [CrossRef]
- Caron, M.; Misra, I.; Mairal, J.; Goyal, P.; Bojanowski, P.; Joulin, A. Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural Inf. Process. Syst. 2020, 33, 9912–9924. [Google Scholar]
- Papon, J.; Abramov, A.; Schoeler, M.; Worgotter, F. Voxel cloud connectivity segmentation-supervoxels for point clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2027–2034. [Google Scholar]
- Landrieu, L.; Obozinski, G. Cut pursuit: Fast algorithms to learn piecewise constant functions on general weighted graphs. SIAM J. Imaging Sci. 2017, 10, 1724–1766. [Google Scholar] [CrossRef]
- Adams, R.; Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 641–647. [Google Scholar] [CrossRef]
- Yeshwanth, C.; Liu, Y.C.; Nießner, M.; Dai, A. Scannet++: A high-fidelity dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 12–22. [Google Scholar]
- Liu, J.; Yu, Z.; Breckon, T.P.; Shum, H.P. U3ds3: Unsupervised 3d semantic scene segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2024; pp. 3759–3768. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]







| Method | oAcc(%) | mAcc(%) | mIoU(%) |
|---|---|---|---|
| Randcluster | 33.62 | 19.28 | 10.50 |
| van Kmeans [26] | 23.96 | 15.97 | 7.90 |
| van Kmeans-M [26] | 34.12 | 23.79 | 12.71 |
| van Kmeans-M-GA [26] | 63.73 | 33.17 | 22.13 |
| MSC [64] | 41.90 | 29.97 | 19.55 |
| MSC-M [64] | 62.28 | 44.49 | 28.80 |
| MSC-M-GA [64] | 69.16 | 42.23 | 32.15 |
| GrowSP [34] | 78.40 | 57.20 | 44.40 |
| CGHP(Ours) | 79.68 | 59.84 | 48.69 |
| Method | oAcc(%) | mAcc(%) | mIoU(%) |
|---|---|---|---|
| Randcluster | 17.08 | 4.35 | 1.39 |
| van Kmeans [26] | 7.45 | 5.59 | 1.28 |
| van Kmeans-M [26] | 18.09 | 8.21 | 1.97 |
| van Kmeans-M-GA [26] | 34.85 | 12.22 | 4.25 |
| MSC [64] | 10.38 | 9.35 | 2.53 |
| MSC-M [64] | 27.71 | 15.02 | 4.82 |
| MSC-M-GA [64] | 43.90 | 13.32 | 5.32 |
| GrowSP [34] | 61.24 | 16.16 | 8.43 |
| CGHP(Ours) | 56.21 | 17.51 | 9.19 |
| oAcc(%) | mAcc(%) | mIoU(%) | |
|---|---|---|---|
| (1) Remove Component Descriptor | 72.90 | 50.83 | 40.46 |
| (2) Remove Component Growth | 75.53 | 55.10 | 42.24 |
| (3) Component Cluster Num-100 | 79.91 | 55.64 | 43.35 |
| (4) Component Cluster Num-300 | 79.68 | 59.84 | 48.69 |
| (5) Component Cluster Num-500 | 79.62 | 56.88 | 46.17 |
| (6) Growth Ratio-10 | 75.32 | 56.73 | 44.85 |
| (7) Growth Ratio-15 | 79.68 | 59.84 | 48.69 |
| (8) Growth Ratio-20 | 77.10 | 59.03 | 46.30 |
| (9) Growth Ratio-25 | 76.67 | 58.62 | 45.24 |
| (10) Growth Ratio-30 | 78.30 | 55.31 | 43.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Zhao, H.; Gong, W.; Bi, S. CGHP: Component-Guided Hierarchical Progressive Point Cloud Unsupervised Segmentation Framework. Remote Sens. 2025, 17, 3589. https://doi.org/10.3390/rs17213589
Shi S, Zhao H, Gong W, Bi S. CGHP: Component-Guided Hierarchical Progressive Point Cloud Unsupervised Segmentation Framework. Remote Sensing. 2025; 17(21):3589. https://doi.org/10.3390/rs17213589
Chicago/Turabian StyleShi, Shuo, Haifeng Zhao, Wei Gong, and Sifu Bi. 2025. "CGHP: Component-Guided Hierarchical Progressive Point Cloud Unsupervised Segmentation Framework" Remote Sensing 17, no. 21: 3589. https://doi.org/10.3390/rs17213589
APA StyleShi, S., Zhao, H., Gong, W., & Bi, S. (2025). CGHP: Component-Guided Hierarchical Progressive Point Cloud Unsupervised Segmentation Framework. Remote Sensing, 17(21), 3589. https://doi.org/10.3390/rs17213589

