Ocean Colour Estimates of Phytoplankton Diversity in the Mediterranean Sea: Update of the Operational Regional Algorithms Within the Copernicus Marine Service
Highlights
- The retrieval of phytoplankton size classes (PSCs) and functional types (PFTs) in the Mediterranea Sea from Ocean Colour data have been improved by updating the regional algorithms implemented in the EU Copernicus Marine Service.
- The new multi-sensor PSC and PFT time series, spanning over more than 25 years of data, revealed key changes in phytoplankton composition at monthly and basin scales.
- Enhanced satellite-based estimates of phytoplankton diversity in the Mediterranean Sea will contribute to a deeper understanding of global biogeochemical cycles, climate regulation and marine ecosystems health.
- Accurate in situ quantification of community composition remains a key issue for improving satellite estimates of phytoplankton groups. Future research should prioritize integrating different in situ techniques and advancing technologies for a more comprehensive and quantitative characterization of the community, especially in view of new hyperspectral satellite missions (e.g., PACE).
Abstract
1. Introduction
2. Materials and Methods
2.1. In Situ Dataset
2.2. Update of Chla-Pigment Ratios and Phytoplankton In Situ Quantification
2.3. Algorithm Update
2.4. Satellite Dataset—Chla Data for Algorithm Application
2.5. Metrics
3. Results and Discussions
3.1. Regional DPA Update
3.2. Algorithm Update and In Situ Cal/Val
3.3. Satellite PFT and PSC Estimates—Validation Matchup Analysis
3.4. Phytoplankton Variability in the Mediterranean Sea: Satellite PFT and PSC Analysis
- (1)
- The first zone is located in the western basin, between about −5°E and 12°E. In this area, Chla concentrations reach maximum values in all three groups, with a general dominance of NANO, especially between October and April. Overall, the contribution of PICO is also significant in these areas, becoming dominant between −3°E and 12°E in the more oligotrophic months of the year, between May and September, where MICRO is almost absent and NANO becomes the second most important size group. In the Alborán basin, where the Western Alborán Gyres (WAG) exhibits a clear seasonal cycle with the intensification beginning in summer [47], the dominance of MICRO is observed during the winter–spring months, when the spatio-temporal variability of Chla concentration driven by the anticyclonic WAG seems to be particularly pronounced. Crossing the gyre between −5°E and −3°E, higher Chla concentrations are observed for all groups along the gyre edge, while lower concentrations are clear in the centre. On the edge, concentrations remain relatively elevated throughout most of the year, whereas in the centre of the gyre a more pronounced seasonal variability is observed. This is also evident in the Chla map of July in Figure 6. In particular, the gyre’s interior is dominated by PICO and NANO, with very low Chla values of MICRO, while in the gyre edge Chla is characterized by the dominance of MICRO followed by NANO, although all three groups exhibit higher contributions. As a general behaviour, a decrease in the concentration of all groups is observed over time, likely due to a general decrease in Chla concentrations, well-evident particularly inside the gyre. This appears consistent with Abdellaoui et al. [48], who analyzed Sea Surface Temperature (SST) and Chla trends based on 20 years (2001–2020) of satellite data in relation to hydrodynamic processes in the Alborán Sea. They found in the same area a Chla decline probably due to sea surface warming affecting the vertical mixing and the metabolic responses of phytoplankton assemblage.
- (2)
- In the Central-Eastern Mediterranean basin (from approximately 12°E eastward), total Chla mostly consists of PICO and NANO groups, with PICO dominating mainly in the Eastern zone and particularly in the months between May and November, when an important decrease in NANO contributions is evident. Areas with NANO and PICO Chla concentration exceeding the eastern basin-wide average are consistently observed throughout the entire time series, exhibiting a less-pronounced seasonal cycle with peak values during winter and early spring.
- (1)
- In the western transect (WMMT), extending from the Gulf of Lion to the Algerian coast (Figure 7, left panel), all three size classes exhibit a pronounced seasonal cycle, with the highest and most persistent concentrations observed in the Gulf of Lion. This area is characterized by elevated productivity, primarily driven by substantial nutrient inputs from the Rhône River, from offshore waters, and seasonal upwelling and mixing processes [53]. In particular, between 39°N and 41°N, the MICRO size class appears to dominate almost every year during March to April/May, although NANO and PICO fractions contribute significantly. During the more oligotrophic months, typically from June to October, the PICO group becomes dominant, followed by NANO. The intermediate latitudinal band shows generally lower concentrations, which increase again near the Algerian Current. Periods of elevated concentrations across the entire transect are observed in specific years, notably 2001, 2006–2010, 2013–2014, and 2018, likely linked to changes in the North Atlantic Oscillation (NAO), which appears to exert a stronger influence than ENSO on Chla variations in the western Mediterranean Sea [52].
- (2)
- In the second transect (CMMT), running across the entire Adriatic Sea and proceeding meridionally through the full extent of central Mediterranean basin (Figure 7, central panel), the composition of the assemblage in terms of size shows quite stable behaviour. In all seasons, the highest Chla values for all three groups can be observed in the northern part of the Adriatic Sea, dominated by NANO and MICRO, where nutrient input from Po River discharge primarily drives phytoplankton biomass and primary production. Extending southward to approximately 39°N, concentrations remain relatively elevated. However, the main contribution comes from NANO and PICO. In contrast to the northern region, at this latitude a clear seasonal pattern emerges, characterized by higher concentrations from late autumn to late spring, alternating with a period of lower Chla values per group during the remaining months, in which PICO becomes dominant. As the transect extends through the entire central Mediterranean, all three groups reach their lowest concentrations and the seasonal cycle becomes more defined, with the period of highest concentrations narrowing to just a few months between winter and spring.
- (3)
- The last transect (EMMT), which crosses the eastern Mediterranean Sea latitudinally (Figure 7, right panel), is characterized by the lowest concentrations of Chla for all groups, with the increase in concentrations for very short periods of the year, mainly between late winter–spring, generally dominated by PICO and NANO. The highest concentrations for all groups are observed in correspondence to the Rhodes gyre (Figure 7, top panel). Here, a cyclic increase in Chla concentrations across all three size classes is observed approximately every 4–5 years, with particularly intense events in 2003, 2006 and 2007.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PSCs | Phytoplankton Size Classes | 
| PFTs | Phytoplankton Functional Types | 
| CMEMS | Copernicus Marine Environment Monitoring Service | 
| PGs | Phytoplankton Groups | 
| OCTAC | Ocean Colour Thematic Assembly Centre | 
| OC | Ocean Colour | 
| MICRO | Micro-phytoplankton | 
| NANO | Nano-phytoplankton | 
| PICO | Pico-phytoplankton | 
| DIATO | Diatoms | 
| DINO | Dinophytes or Dinoflagellates | 
| CRYPTO | Cryptophytes | 
| HAPTO | Haptophytes | 
| GREEN | Green Algae and Prochlorococcus | 
| PROKAR | Prokaryotes | 
| EOVs | Essential Ocean Variables | 
| HPLC | High Performance Liquid Chromatography | 
| Chla | Total-Chlorophyll a, sum of: monovinyl-Chlorophyll a plus its allomers and epimers, divinyl-Chlorophyll a and Chlorophyllide a | 
| DPA | Diagnostic Pigment Analysis | 
| DPs | Diagnostic Pigments | 
| Rrs | Remote Sensing Reflectances | 
| r | Pearson Correlation Coefficient | 
| MBE | Mean Bias Error | 
| RMSE | Root Mean Squared Error | 
| RPD | Mean Relative Percentage Difference | 
| APD | Mean Absolute Percentage Difference | 
| S | Type-2 slope | 
| I | Type-2 intercept | 
| R2 | Determination coefficient | 
| MAE | Mean Absolute Error | 
| EIS | Entry Into Service | 
| SOM | Self-Organizing Map | 
| WAG | Western Alborán Gyre | 
| NAO | North Atlantic Oscillation | 
| ENSO | El Niño Southern Oscillation | 
Appendix A
In Situ Data Collection and Analysis Protocols for the CNR/ENEA Phytoplankton Pigment Dataset
Appendix B
Comparison of Satellite Chla Validation Based on Chla-PSC/PFT Validation Datasets

References
- IOCCG. Phytoplankton Functional Types from Space; Sathyendranath, S., Ed.; Reports of the International Ocean Colour Coordinating Group; IOCCG: Dartmouth, NS, Canada, 2014; Volume 15. [Google Scholar]
- Bracher, A.; Bouman, H.A.; Brewin, R.J.W.; Bricaud, A.; Brotas, V.; Ciotti, A.M.; Clementson, L.; Devred, E.; Di Cicco, A.; Dutkiewicz, S.; et al. Obtaining Phytoplankton Diversity from Ocean Color: A Scientific Roadmap for Future Development. Front. Mar. Sci. 2017, 4, 55. [Google Scholar] [CrossRef]
- Mouw, C.B.; Hardman-Mountford, N.J.; Alvain, S.; Bracher, A.; Brewin, R.J.W.; Bricaud, A.; Ciotti, A.M.; Devred, E.; Fujiwara, A.; Hirata, T.; et al. A Consumer’s Guide to Satellite Remote Sensing of Multiple Phytoplankton Groups in the Global Ocean. Front. Mar. Sci. 2017, 4, 41. [Google Scholar] [CrossRef]
- Volpe, G.; Santoleri, R.; Vellucci, V.; Ribera d’Alcalà, M.; Marullo, S.; D’Ortenzio, F. The Colour of the Mediterranean Sea: Global versus Regional Bio-Optical Algorithms Evaluation and Implication for Satellite Chlorophyll Estimates. Remote Sens. Environ. 2007, 107, 625–638. [Google Scholar] [CrossRef]
- Lacombe, H.; Gascard, J.C.; Gonella, J.; Bethoux, J.P. Response of the Mediterranean to the Water and Energy Fluxes across Its Surface, on Seasonal and Interannual Scales. Oceanol. Acta 1981, 4, 247–255. [Google Scholar]
- Robinson, A.R.; Golnaraghi, M. The Physical and Dynamical Oceanography of the Mediterranean Sea. In Ocean Processes in Climate Dynamics: Global and Mediterranean Examples; Springer: Dordrecht, The Netherlands, 1994; pp. 255–306. [Google Scholar]
- Siokou-Frangou, I.; Christaki, U.; Mazzocchi, M.G.; Montresor, M.; Ribera d’Alcalá, M.; Vaqué, D.; Zingone, A. Plankton in the Open Mediterranean Sea: A Review. Biogeosciences 2010, 7, 1543–1586. [Google Scholar] [CrossRef]
- Navarro, G.; Alvain, S.; Vantrepotte, V.; Huertas, I.E. Identification of Dominant Phytoplankton Functional Types in the Mediterranean Sea Based on a Regionalized Remote Sensing Approach. Remote Sens. Environ. 2014, 152, 557–575. [Google Scholar] [CrossRef]
- Sammartino, M.; Di Cicco, A.; Marullo, S.; Santoleri, R. Spatio-Temporal Variability of Micro-, Nano- and Pico-Phytoplankton in the Mediterranean Sea from Satellite Ocean Colour Data of SeaWiFS. Ocean Sci. 2015, 11, 759–778. [Google Scholar] [CrossRef]
- Alvain, S.; Moulin, C.; Dandonneau, Y.; Bréon, F.M. Remote Sensing of Phytoplankton Groups in Case 1 Waters from Global SeaWiFS Imagery. Deep Sea Res. Part Oceanogr. Res. Pap. 2005, 52, 1989–2004. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Devred, E.; Sathyendranath, S.; Lavender, S.J.; Hardman-Mountford, N.J. Model of Phytoplankton Absorption Based on Three Size Classes. Appl. Opt. 2011, 50, 4535. [Google Scholar] [CrossRef]
- Di Cicco, A.; Sammartino, M.; Marullo, S.; Santoleri, R. Regional Empirical Algorithms for an Improved Identification of Phytoplankton Functional Types and Size Classes in the Mediterranean Sea Using Satellite Data. Front. Mar. Sci. 2017, 4, 126. [Google Scholar] [CrossRef]
- Brewin, R.J.W.; Sathyendranath, S.; Hirata, T.; Lavender, S.J.; Barciela, R.M.; Hardman-Mountford, N.J. A Three-Component Model of Phytoplankton Size Class for the Atlantic Ocean. Ecol. Model. 2010, 221, 1472–1483. [Google Scholar] [CrossRef]
- Hirata, T.; Hardman-Mountford, N.J.; Brewin, R.J.W.; Aiken, J.; Barlow, R.; Suzuki, K.; Isada, T.; Howell, E.; Hashioka, T.; Noguchi-Aita, M.; et al. Synoptic Relationships between Surface Chlorophyll- a and Diagnostic Pigments Specific to Phytoplankton Functional Types. Biogeosciences 2011, 8, 311–327. [Google Scholar] [CrossRef]
- Brando, V.; Santoleri, R.; Colella, S.; Volpe, G.; Di Cicco, A.; Sammartino, M.; González Vilas, L.; Lapucci, C.; Böhm, E.; Zoffoli, M.; et al. Overview of Operational Global and Regional Ocean Colour Essential Ocean Variables Within the Copernicus Marine Service. Remote Sens. 2024, 16, 4588. [Google Scholar] [CrossRef]
- European Union-Copernicus Marine Service. Mediterranean Sea, Bio-Geo-Chemical, L3, Daily Satellite Observations (Near Real Time). 2022. Available online: https://data.marine.copernicus.eu/product/OCEANCOLOUR_MED_BGC_L3_NRT_009_141/description (accessed on 21 October 2025).
- European Union-Copernicus Marine Service. Mediterranean Sea, Bio-Geo-Chemical, L3, Daily Satellite Observations (1997-Ongoing). 2022. Available online: https://data.marine.copernicus.eu/product/OCEANCOLOUR_MED_BGC_L3_MY_009_143/description (accessed on 21 October 2025).
- Colella, S.; Brando, V.E.; Di Cicco, A.; D’Alimonte, D.; Forneris, V.; Bracaglia, M. Quality Information Document for Ocean Colour Mediterranean and Black Sea Observation Product Release 4.0; Mercator Ocean International: Toulouse, France, 2024. [Google Scholar]
- Werdell, P.J.; Bailey, S.W. An Improved In-Situ Bio-Optical Data Set for Ocean Color Algorithm Development and Satellite Data Product Validation. Remote Sens. Environ. 2005, 98, 122–140. [Google Scholar] [CrossRef]
- Trees, C.C.; Clark, D.K.; Bidigare, R.R.; Ondrusek, M.E.; Mueller, J.L. Accessory Pigments versus Chlorophyll a Concentrations within the Euphotic Zone: A Ubiquitous Relationship. Limnol. Oceanogr. 2000, 45, 1130–1143. [Google Scholar] [CrossRef]
- Aiken, J.; Pradhan, Y.; Barlow, R.; Lavender, S.; Poulton, A.; Holligan, P.; Hardman-Mountford, N. Phytoplankton Pigments and Functional Types in the Atlantic Ocean: A Decadal Assessment, 1995–2005. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 899–917. [Google Scholar] [CrossRef]
- D’Ortenzio, F.; Ribera d’Alcalà, M. On the Trophic Regimes of the Mediterranean Sea: A Satellite Analysis. Biogeosciences 2009, 6, 139–148. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A Review of Ocean Color Remote Sensing Methods and Statistical Techniques for the Detection, Mapping and Analysis of Phytoplankton Blooms in Coastal and Open Oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Schlüter, L.; Møhlenberg, F.; Havskum, H.; Larsen, S. The Use of Phytoplankton Pigments for Identifying and Quantifying Phytoplankton Groups in Coastal Areas: Testing the Influence of Light and Nutrients on Pigment/Chlorophyll a Ratios. Mar. Ecol. Prog. Ser. 2000, 192, 49–63. [Google Scholar] [CrossRef]
- Gieskes, W.W.C.; Kraay, G.W.; Nontji, A.; Setiapermana, D.; Sutomo. Monsoonal Alternation of a Mixed and a Layered Structure in the Phytoplankton of the Euphotic Zone of the Banda Sea (Indonesia): A Mathematical Analysis of Algal Pigment Fingerprints. Neth. J. Sea Res. 1988, 22, 123–137. [Google Scholar] [CrossRef]
- Barlow, R.G.; Mantoura, R.F.C.; Gough, M.A.; Fileman, T.W. Pigment Signatures of the Phytoplankton Composition in the Northeastern Atlantic during the 1990 Spring Bloom. Deep Sea Res. Part II Top. Stud. Oceanogr. 1993, 40, 459–477. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical Distribution of Phytoplankton Communities in Open Ocean: An Assessment Based on Surface Chlorophyll. J. Geophys. Res. Oceans 2006, 111, C08005. [Google Scholar] [CrossRef]
- Claustre, H. The Trophic Status of Various Oceanic Provinces as Revealed by Phytoplankton Pigment Signatures. Limnol. Oceanogr. 1994, 39, 1206–1210. [Google Scholar] [CrossRef]
- Vidussi, F.; Claustre, H.; Manca, B.B.; Luchetta, A.; Marty, J. Phytoplankton Pigment Distribution in Relation to Upper Thermocline Circulation in the Eastern Mediterranean Sea during Winter. J. Geophys. Res. Oceans 2001, 106, 19939–19956. [Google Scholar] [CrossRef]
- Sieburth, J.M.N.; Smetacek, V.; Lenz, J. Pelagic Ecosystem Structure: Heterotrophic Compartments of the Plankton and Their Relationship to Plankton Size Fractions 1. Limnol. Oceanogr. 1978, 23, 1256–1263. [Google Scholar] [CrossRef]
- Blondel, J. Guilds or Functional Groups: Does It Matter? Oikos 2003, 100, 223–231. [Google Scholar] [CrossRef]
- Falkowski, P.G.; Laws, E.A.; Barber, R.T.; Murray, J.W. Phytoplankton and Their Role in Primary, New, and Export Production. In Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change; Springer: Berlin/Heidelberg, Germany, 2003; pp. 99–121. [Google Scholar]
- Litchman, E.; Klausmeier, C.A.; Schofield, O.M.; Falkowski, P.G. The Role of Functional Traits and Trade--offs in Structuring Phytoplankton Communities: Scaling from Cellular to Ecosystem Level. Ecol. Lett. 2007, 10, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Chisholm, S.W. Phytoplankton Size. In Primary Productivity and Biogeochemical Cycles in the Sea; Plenum Press: New York, NY, USA, 1992. [Google Scholar]
- The MathWorks Inc. MATLAB, Version 9.13.0 release R2022b. (13 May 2022). Available online: https://it.mathworks.com/ (accessed on 21 October 2025).
- Volpe, G.; Colella, S.; Brando, V.E.; Forneris, V.; La Padula, F.; Di Cicco, A.; Sammartino, M.; Bracaglia, M.; Artuso, F.; Santoleri, R. Mediterranean Ocean Colour Level 3 Operational Multi-Sensor Processing. Ocean Sci. 2019, 15, 127–146. [Google Scholar] [CrossRef]
- Berthon, J.-F.; Zibordi, G. Bio-Optical Relationships for the Northern Adriatic Sea. Int. J. Remote Sens. 2004, 25, 1527–1532. [Google Scholar] [CrossRef]
- D’Alimonte, D.; Melin, F.; Zibordi, G.; Berthon, J.-F. Use of the Novelty Detection Technique to Identify the Range of Applicability of Empirical Ocean Color Algorithms. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2833–2843. [Google Scholar] [CrossRef]
- Mélin, F.; Sclep, G. Band Shifting for Ocean Color Multi-Spectral Reflectance Data. Opt. Express 2015, 23, 2262. [Google Scholar] [CrossRef]
- Gittings, J.A.; Livanou, E.; Sun, X.; Brewin, R.J.W.; Psarra, S.; Mandalakis, M.; Peltekis, A.; Di Cicco, A.; Brando, V.E.; Raitsos, D.E. Remotely Sensing Phytoplankton Size Structure in the Mediterranean Sea: Insights from In Situ Data and Temperature-Corrected Abundance-Based Models. Remote Sens. 2025, 17, 2362. [Google Scholar] [CrossRef]
- El Hourany, R.; Abboud-Abi Saab, M.; Faour, G.; Mejia, C.; Crépon, M.; Thiria, S. Phytoplankton Diversity in the Mediterranean Sea From Satellite Data Using Self-Organizing Maps. J. Geophys. Res. Oceans 2019, 124, 5827–5843. [Google Scholar] [CrossRef]
- Li, M.; Organelli, E.; Serva, F.; Bellacicco, M.; Landolfi, A.; Pisano, A.; Marullo, S.; Shen, F.; Mignot, A.; Van Gennip, S.; et al. Phytoplankton Spring Bloom Inhibited by Marine Heatwaves in the North-Western Mediterranean Sea. Geophys. Res. Lett. 2024, 51, e2024GL109141. [Google Scholar] [CrossRef]
- Neri, F.; Garzia, A.; Ubaldi, M.; Romagnoli, T.; Accoroni, S.; Coluccelli, A.; Di Cicco, A.; Memmola, F.; Falco, P.; Totti, C. Ocean Warming, Marine Heatwaves and Phytoplankton Biomass: Long-Term Trends in the Northern Adriatic Sea. Estuar. Coast. Shelf Sci. 2025, 322, 109282. [Google Scholar] [CrossRef]
- Martínez-Fornos, G.; Di Cicco, A.; Talone, M.; Berdalet, E. Evolution of the Phytoplankton Assemblage Composition in the Last 25 Years in the Mediterranean Sea from Satellite Remote Sensing. Correspondence Affiliation: Institut de Ciències del Mar of the Spanish National Research Council (ICM-CSIC), 08003 Barce-lona, Spain. 2026; manuscript in preparation. [Google Scholar]
- Hovmöller, E. The Trough-and-Ridge Diagram. Tellus 1949, 1, 62–66. [Google Scholar] [CrossRef]
- Powley, H.R.; Cappellen, P.V.; Krom, M.D. Nutrient Cycling in the Mediterranean Sea: The Key to Understanding How the Unique Marine Ecosystem Functions and Responds to Anthropogenic Pressures. In Mediterranean Identities—Environment, Society, Culture; Fuerst-Bjelis, B., Ed.; InTech: London, UK, 2017; ISBN 978-953-51-3585-2. [Google Scholar]
- Renault, L.; Oguz, T.; Pascual, A.; Vizoso, G.; Tintore, J. Surface Circulation in the Alborán Sea (Western Mediterranean) Inferred from Remotely Sensed Data. J. Geophys. Res. Oceans 2012, 117, C08009. [Google Scholar] [CrossRef]
- Abdellaoui, B.; Falcini, F.; Baibai, T.; Karim Hilmi, K.; Ettahiri, O.; Santoleri, R.; Houssa, R.; Nhhala, H.; Er-Raioui, H.; Oukhattar, L. Spatial Pattern of Sea Surface Temperature and Chlorophyll-a Trends in Relation to Hydrodynamic Processes in the Alborán Sea. Mediterr. Mar. Sci. 2024, 25, 136–150. [Google Scholar] [CrossRef]
- Rinaldi, E.; Buongiorno Nardelli, B.; Volpe, G.; Santoleri, R. Chlorophyll Distribution and Variability in the Sicily Channel (Mediterranean Sea) as Seen by Remote Sensing Data. Cont. Shelf Res. 2014, 77, 61–68. [Google Scholar] [CrossRef]
- Teruzzi, A.; Aydogdu, A.; Amadio, C.; Clementi, E.; Colella, S.; Di Biagio, V.; Drudi, M.; Fanelli, C.; Feudale, L.; Grandi, A.; et al. Anomalous 2022 Deep-Water Formation and Intense Phytoplankton Bloom in the Cretan Area. State Planet 2024, 4-osr8, 1–15. [Google Scholar] [CrossRef]
- Macias, D.; Garcia-Gorriz, E.; Stips, A. Deep Winter Convection and Phytoplankton Dynamics in the NW Mediterranean Sea under Present Climate and Future (Horizon 2030) Scenarios. Sci. Rep. 2018, 8, 6626. [Google Scholar] [CrossRef] [PubMed]
- Basterretxea, G.; Font-Muñoz, J.S.; Salgado-Hernanz, P.M.; Arrieta, J.; Hernández-Carrasco, I. Patterns of Chlorophyll Interannual Variability in Mediterranean Biogeographical Regions. Remote Sens. Environ. 2018, 215, 7–17. [Google Scholar] [CrossRef]
- Many, G.; Ulses, C.; Estournel, C.; Marsaleix, P. Particulate Organic Carbon Dynamics in the Gulf of Lion Shelf (NW Mediterranean) Using a Coupled Hydrodynamic–Biogeochemical Model. Biogeosciences 2021, 18, 5513–5538. [Google Scholar] [CrossRef]
- Chelazzi, G.; Provini, A.; Santini, G. Ecologia: Dagli Organismi Agli Ecosistemi; Casa Editrice Ambrosiana (Zanichelli): Rozzano, Italy, 2004; ISBN 88-08-08709-3. [Google Scholar]
- Cetinić, I.; Rousseaux, C.S.; Carroll, I.T.; Chase, A.P.; Kramer, S.J.; Werdell, P.J.; Siegel, D.A.; Dierssen, H.M.; Catlett, D.; Neeley, A.; et al. Phytoplankton Composition from sPACE: Requirements, Opportunities, and Challenges. Remote Sens. Environ. 2024, 302, 113964. [Google Scholar] [CrossRef]
- Werdell, P.J.; Behrenfeld, M.J.; Bontempi, P.S.; Boss, E.; Cairns, B.; Davis, G.T.; Franz, B.A.; Gliese, U.B.; Gorman, E.T.; Hasekamp, O.; et al. The Plankton, Aerosol, Cloud, Ocean Ecosystem Mission: Status, Science, Advances. Bull. Am. Meteorol. Soc. 2019, 100, 1775–1794. [Google Scholar] [CrossRef]
- Lombard, F.; Boss, E.; Waite, A.M.; Vogt, M.; Uitz, J.; Stemmann, L.; Sosik, H.M.; Schulz, J.; Romagnan, J.-B.; Picheral, M.; et al. Globally Consistent Quantitative Observations of Planktonic Ecosystems. Front. Mar. Sci. 2019, 6, 196. [Google Scholar] [CrossRef]
- Kramer, S.J.; Bolaños, L.M.; Catlett, D.; Chase, A.P.; Behrenfeld, M.J.; Boss, E.S.; Crockford, E.T.; Giovannoni, S.J.; Graff, J.R.; Haëntjens, N.; et al. Toward a Synthesis of Phytoplankton Community Composition Methods for Global-scale Application. Limnol. Oceanogr. Methods 2024, 22, 217–240. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L. Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance. Remote Sens. Environ. 2004, 89, 361–368. [Google Scholar] [CrossRef]
- Ciotti, Á.M.; Lewis, M.R.; Cullen, J.J. Assessment of the Relationships between Dominant Cell Size in Natural Phytoplankton Communities and the Spectral Shape of the Absorption Coefficient. Limnol. Oceanogr. 2002, 47, 404–417. [Google Scholar] [CrossRef]
- Hoepffner, N.; Sathyendranath, S. Effect of Pigment Composition on Absorption Properties of Phytoplankton. Mar. Ecol. Prog. Ser. 1991, 73, 11–23. [Google Scholar] [CrossRef]
- Kramer, S.J.; Siegel, D.A. How Can Phytoplankton Pigments Be Best Used to Characterize Surface Ocean Phytoplankton Groups for Ocean Color Remote Sensing Algorithms? J. Geophys. Res. Oceans 2019, 124, 7557–7574. [Google Scholar] [CrossRef] [PubMed]
- Flander-Putrle, V.; Francé, J.; Mozetič, P. Phytoplankton Pigments Reveal Size Structure and Interannual Variability of the Coastal Phytoplankton Community (Adriatic Sea). Water 2021, 14, 23. [Google Scholar] [CrossRef]
- Stoń-Egiert, J.; Łotocka, M.; Ostrowska, M.; Kosakowska, A. The Influence of Biotic Factors on Phytoplankton Pigment Composition and Resources in Baltic Ecosystems: New Analytical Results. Oceanologia 2010, 52, 101–125. [Google Scholar] [CrossRef]
- Dierssen, H.; Bracher, A.; Brando, V.; Loisel, H.; Ruddick, K. Data Needs for Hyperspectral Detection of Algal Diversity Across the Globe. Oceanography 2020, 33, 74–79. [Google Scholar] [CrossRef]
- Sosik, H.M.; Olson, R.J. Automated Taxonomic Classification of Phytoplankton Sampled with Imaging-in-flow Cytometry. Limnol. Oceanogr. Methods 2007, 5, 204–216. [Google Scholar] [CrossRef]
- Bastianini, M.; Kraft, K.; Oggioni, A.; Di Cicco, A.; Organelli, E.; Talamo, T.; Bernardi Aubry, F.; Finotto, S.; Seppälä, J.; Siangsano, K.; et al. The Use of Pretrained Convolutional Neural Networks in Recognizing Phytoplankton Species. Cases from a Marine, a Brakishwater and a Freshwater Site. ARPHA Conf. Abstr. 2025, 8, e151406. [Google Scholar] [CrossRef]
- Andersson, A.; Zhao, L.; Brugel, S.; Figueroa, D.; Huseby, S. Metabarcoding vs Microscopy: Comparison of Methods To Monitor Phytoplankton Communities. ACS EST Water 2023, 3, 2671–2680. [Google Scholar] [CrossRef]
- Lazzara, L.; Bianchi, F.; Massi, L.; Ribera d’Alcalà, M. Pigmenti Clorofilliani per La Stima Della Biomassa Fotototrofa. In Metodologie di Campionamento e di Studio del Plancton Marino; SIBM: Genova, Italy; ISPRA: Roma, Italy, 2010; pp. 365–378. ISBN 88-448-0427-1. [Google Scholar]
- Neeley, A.R.; Mannino, A.; Reynolds, R.A.; Roesler, C.; Rottgers, R.; Stramski, D.; Twardowski, M.; Zaneveld, J.R.V. Ocean Optics & Biogeochemistry Protocols for Satellite Ocean Colour Sensor Validation; IOCCG: Dartmouth, NS, Canada, 2018. [Google Scholar]
- Wright, S.; Jeffrey, S.; Mantoura, R.; Llewellyn, C.; Bjornland, T.; Repeta, D.; Welschmeyer, N. Improved HPLC Method for the Analysis of Chlorophylls and Carotenoids from Marine Phytoplankton. Mar. Ecol. Prog. Ser. 1991, 77, 183–196. [Google Scholar] [CrossRef]
- European Commission. Joint Research Centre. The Fifth HPLC Intercomparison on Phytoplankton Pigments (HIP-5): Technical Report; Publications Office: Luxembourg, 2022.







| DP (and Principal Taxonomic Meaning) | Coefficients | Standard Deviation | p-Value | 
|---|---|---|---|
| Fucoxanthin (Diatoms) | 1.78 | 0.02 | <0.001 | 
| Peridinin (Dinoflagellates) | 0.76 | 0.14 | <0.001 | 
| 19’-hexanoiloxyfucoxanthin (Haptophytes) | 1.07 | 0.03 | <0.001 | 
| 19’-butanoiloxyfucoxanthin (Haptophytes) | 1.18 | 0.17 | <0.001 | 
| Alloxanthin (Cryptophytes) | 1.35 | 0.11 | <0.001 | 
| Total-Chlorophyll b * (Green Algae and Prochlorococcus) | 1.81 | 0.11 | <0.001 | 
| Zeaxanthin (Prokaryotes) | 1.96 | 0.07 | <0.001 | 
| PSCs-PFTs | Functions | a | b | c | d | e | f | 
|---|---|---|---|---|---|---|---|
| MICRO | a(exp(bx)) | 0.3225 | 0.995 | ||||
| PICO | ax3 + bx2 + cx + d | −0.1043 | −0.0819 | −0.1710 | 0.2921 | ||
| NANO | 1 – MICRO − PICO | ||||||
| DIATO | a(exp(bx)) | 0.2986 | 1.094 | ||||
| DINO | MICRO − DIATO | ||||||
| CRYPTO | a(exp(−((x − b)/c))2) + d(exp(−((x − e)/f))2) | 0.1629 | 0.9692 | 0.4601 | 0.0606 | −0.1374 | 0.6537 | 
| GREEN | [exp(ax + b) + cx]−1 | −1.056 | 1.782 | 7.868 | |||
| PROKAR | ax3 + bx2 + cx + d | 0.0355 | 0.1044 | −0.1865 | 0.1046 | ||
| HAPT | 1 – MICRO – CRYPTO – GREEN − PROKAR | 
| Calibration (70% of In Situ Data) | In Situ Validation (30% of In Situ Data) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PSCs-PFTs | r | MBE | RMSE | RPD | APD | N. | r | MBE | RMSE | RPD | APD | N. | 
| MICRO | 0.99 | −0.004 | 0.063 | 4 | 26 | 745 | 0.99 | −0.006 | 0.059 | 8 | 29 | 319 | 
| NANO | 0.98 | 0.005 | 0.039 | 6 | 14 | 748 | 0.99 | 0.004 | 0.038 | 4 | 13 | 320 | 
| PICO | 0.93 | −0.001 | 0.045 | 4 | 16 | 748 | 0.93 | 0.002 | 0.045 | 4 | 16 | 320 | 
| DIATO | 0.99 | −0.003 | 0.065 | 8 | 30 | 745 | 0.99 | −0.006 | 0.059 | 12 | 31 | 319 | 
| DINO | 0.86 | 0.000 | 0.008 | 31 | 66 | 745 | 0.87 | 0.000 | 0.006 | 34 | 69 | 318 | 
| CRYPTO | 0.99 | −0.001 | 0.011 | 19 | 60 | 729 | 0.99 | 0.000 | 0.013 | 22 | 60 | 315 | 
| GREEN | 0.96 | 0.000 | 0.027 | 15 | 35 | 743 | 0.97 | 0.003 | 0.023 | 16 | 34 | 318 | 
| PROKAR | 0.82 | 0.000 | 0.021 | 11 | 29 | 748 | 0.78 | 0.001 | 0.022 | 12 | 29 | 320 | 
| HAPTO | 0.95 | 0.004 | 0.047 | 7 | 15 | 748 | 0.94 | 0.002 | 0.050 | 4 | 14 | 320 | 
| Satellite Validation (Di Cicco et al., 2017 [12] Algorithms) | Satellite Validation (This Work) | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PSCs-PFTs | r | MBE | RMSE | RPD | APD | S | I | N. | r | MBE | RMSE | RPD | APD | S | I | N. | 
| MICRO | 0.79 | −0.044 | 0.201 | −5 | 58 | 0.70 | −0.01 | 115 | 0.82 | −0.022 | 0.204 | −10 | 57 | 0.97 | −0.02 | 110 | 
| NANO | 0.81 | −0.045 | 0.147 | 3 | 67 | 0.78 | −0.02 | 117 | 0.85 | −0.023 | 0.112 | −6 | 51 | 0.94 | −0.02 | 111 | 
| PICO | 0.73 | −0.014 | 0.045 | −9 | 36 | 1.19 | −0.03 | 117 | 0.83 | −0.008 | 0.063 | −4 | 37 | 1.18 | −0.03 | 111 | 
| DIATO | 0.77 | −0.041 | 0.197 | 7 | 68 | 0.66 | −0.01 | 115 | 0.81 | −0.021 | 0.203 | −7 | 58 | 0.97 | −0.02 | 110 | 
| DINO | 0.83 | −0.003 | 0.011 | 21 | 75 | 1.17 | −0.01 | 114 | 0.87 | −0.001 | 0.005 | 8 | 62 | 1.00 | 0.00 | 110 | 
| CRYPTO | 0.67 | −0.011 | 0.076 | 42 | 109 | 0.81 | 0.00 | 109 | 0.74 | −0.002 | 0.036 | −17 | 80 | 1.29 | −0.01 | 109 | 
| GREEN | 0.81 | −0.009 | 0.024 | −2 | 73 | 0.94 | −0.01 | 114 | 0.85 | −0.008 | 0.049 | −5 | 53 | 1.05 | −0.01 | 110 | 
| PROKAR | 0.48 | −0.009 | 0.024 | −5 | 35 | 0.55 | 0.02 | 117 | 0.49 | −0.001 | 0.027 | 9 | 43 | 1.31 | −0.02 | 111 | 
| HAPTO | 0.85 | −0.032 | 0.084 | −12 | 44 | 0.81 | −0.01 | 117 | 0.85 | −0.019 | 0.086 | −7 | 43 | 0.88 | −0.01 | 111 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Cicco, A.; Sammartino, M.; Brando, V.E.; Artuso, F.; Lai, A.; Giardina, I.; Volpe, G.; Palamara, G.M.; Lapucci, C.; Colella, S. Ocean Colour Estimates of Phytoplankton Diversity in the Mediterranean Sea: Update of the Operational Regional Algorithms Within the Copernicus Marine Service. Remote Sens. 2025, 17, 3586. https://doi.org/10.3390/rs17213586
Di Cicco A, Sammartino M, Brando VE, Artuso F, Lai A, Giardina I, Volpe G, Palamara GM, Lapucci C, Colella S. Ocean Colour Estimates of Phytoplankton Diversity in the Mediterranean Sea: Update of the Operational Regional Algorithms Within the Copernicus Marine Service. Remote Sensing. 2025; 17(21):3586. https://doi.org/10.3390/rs17213586
Chicago/Turabian StyleDi Cicco, Annalisa, Michela Sammartino, Vittorio E. Brando, Florinda Artuso, Antonia Lai, Isabella Giardina, Gianluca Volpe, Gian Marco Palamara, Chiara Lapucci, and Simone Colella. 2025. "Ocean Colour Estimates of Phytoplankton Diversity in the Mediterranean Sea: Update of the Operational Regional Algorithms Within the Copernicus Marine Service" Remote Sensing 17, no. 21: 3586. https://doi.org/10.3390/rs17213586
APA StyleDi Cicco, A., Sammartino, M., Brando, V. E., Artuso, F., Lai, A., Giardina, I., Volpe, G., Palamara, G. M., Lapucci, C., & Colella, S. (2025). Ocean Colour Estimates of Phytoplankton Diversity in the Mediterranean Sea: Update of the Operational Regional Algorithms Within the Copernicus Marine Service. Remote Sensing, 17(21), 3586. https://doi.org/10.3390/rs17213586
 
        





 
       