Shallow Bathymetry from Hyperspectral Imagery Using 1D-CNN: An Innovative Methodology for High Resolution Mapping
Highlights
- Bathymetric maps generated by 1D-CNN models and hyperspectral images consistently reproduced the expected depth gradient from nearshore to offshore and seabed morphologies with high resolution.
- Band optimization implementation reduced computational requirements by 31–38%.
- The Band optimization Pansharpening CNN (BoPsCNN) model is a promising tool for deriving high-resolution shallow bathymetry from hyperspectral remote sensing data.
- The proposed innovative methodology is suitable for moderately turbid waters.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Input and Preprocessing
2.2.1. Satellite Hyperspectral Data
2.2.2. Image Quality
2.2.3. Pansharpening
2.3. Reference Bathymetric Data (RBD)
2.4. Bathymetry Estimation Process
2.4.1. Alignment
2.4.2. Data Splitting
2.4.3. Standardization
2.4.4. Band Optimization
2.4.5. 1D-CNN Model
2.5. 1D-CNN Models Validation and Testing
2.6. Computational Cost
2.7. Derived Maps
- (a)
- Selection of the desired model (i.e., with or without pansharpening and with or without band optimization).
- (b)
- Data structuring: ID, latitude and longitude, and digital number are assigned for each pixel. It should be mentioned that the geographical coordinates of the Ps dataset are those of the panchromatic image.
- (c)
- Standardization: each data structured to be processed must be standardized using Equation (5).
- (d)
- Bathymetry prediction and mapping.
3. Results and Discussion
3.1. Reflectance Spectra in Shallow Waters
3.2. Band Optimization in Hyperspectral Imagery
3.3. Bathymetry Estimation Using 1D-CNN
3.3.1. Testing of 1D-CNN Models on the Entire Study Area
3.3.2. Testing of 1D-CNN Models on a TBP
3.4. Computational Cost Assessment
3.5. Bathymetry Mapping from 1D-CNN
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Review of near-shore satellite derived bathymetry: Classification and account of five decades of coastal bathymetry research. J. Ocean Eng. Sci. 2021, 6, 340–359. [Google Scholar] [CrossRef]
- Li, S.; Su, D.; Yang, F.; Zhang, H.; Wang, X.; Guo, Y. Bathymetric LiDAR and multibeam echo-sounding data registration methodology employing a point cloud model. Appl. Ocean Res. 2022, 123, 103147. [Google Scholar] [CrossRef]
- Su, D.; Yang, F.; Ma, Y.; Zhang, K.; Huang, J.; Wang, M. Classification of coral reefs in the South China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 815–828. [Google Scholar] [CrossRef]
- Guo, K.; Li, Q.; Mao, Q.; Wang, C.; Zhu, J.; Liu, Y.; Xu, W.; Zhang, D.; Wu, A. Errors of Airborne Bathymetry LiDAR Detection Caused by Ocean Waves and Dimension-Based Laser Incidence Correction. Remote Sens. 2021, 13, 1750. [Google Scholar] [CrossRef]
- Paterson, I.L.R.; Dawson, K.E.; Mogg, A.O.M.; Sayer, M.D.J.; Burdett, H.L. Quantitative comparison of ROV and diver-based photogrammetry to reconstruct maerl bed ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 2024, 34, 103147. [Google Scholar] [CrossRef]
- Raber, G.T.; Schill, S.R. Reef Rover: A Low-Cost Small Autonomous Unmanned Surface Vehicle (USV) for Mapping and Monitoring Coral Reefs. Drones 2019, 3, 38. [Google Scholar] [CrossRef]
- Hatcher, G.A.; Warrick, J.A.; Ritchie, A.C.; Dailey, E.T.; Zawada, D.G.; Kranenburg, C.; Yates, K.K. Accurate Bathymetric Maps From Underwater Digital Imagery Without Ground Control. Front. Mar. Sci. 2020, 7, 525. [Google Scholar] [CrossRef]
- Jin, J.; Zhang, J.; Shao, F.; Lyu, Z.; Wang, D. A novel ocean bathymetry technology based on an unmanned surface vehicle. Acta Oceanol. Sin. 2018, 37, 99–106. [Google Scholar] [CrossRef]
- Genchi, S.A.; Vitale, A.J.; Perillo, G.M.E.; Seitz, C.; Delrieux, C.A. Mapping Topobathymetry in a Shallow Tidal Environment Using Low-Cost Technology. Remote Sens. 2020, 12, 1394. [Google Scholar] [CrossRef]
- Martínez Vargas, S.; Vitale, A.J.; Genchi, S.A.; Nogueira, S.F.; Arias, A.H.; Perillo, G.M.E.; Siben, A.; Delrieux, C.A. Monitoring multiple parameters in complex water scenarios using a low-cost open-source data acquisition platform. HardwareX 2023, 16, e00492. [Google Scholar] [CrossRef]
- Li, Z.; Peng, Z.; Zhang, Z.; Chu, Y.; Xu, C.; Yao, S.; García-Fernández, Á.F.; Zhu, X.; Yue, Y.; Levers, A.; et al. Exploring modern bathymetry: A comprehensive review of data acquisition devices, model accuracy, and interpolation techniques for enhanced underwater mapping. Front. Mar. Sci. 2023, 10, 1178845. [Google Scholar] [CrossRef]
- Li, X.; Yang, X.; Zheng, Q.; Pietrafesa, L.J.; Pichel, W.G.; Li, Z.; Li, X. Deep-water bathymetric features imaged by spaceborne SAR in the Gulf Stream region. Geophys. Res. Lett. 2010, 37, L19603. [Google Scholar] [CrossRef]
- Martínez Vargas, S.; Delrieux, C.; Blanco, K.L.; Vitale, A.J. Dense Bathymetry in Turbid Coastal Zones Using Airborne Hyperspectral Images. Photogramm. Eng. Remote Sens. 2021, 87, 923–927. [Google Scholar] [CrossRef]
- Lyzenga, D.R. Passive remote sensing techniques for mapping water depth and bottom features. Appl. Opt. 1978, 17, 379–383. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Theberge, A.E., Jr. Bathymetry: Assessing Methods. In Encyclopedia of Natural Resources, Vol. II—Water and Air; Taylor & Francis: Boca Raton, FL, USA, 2014; pp. 1–8. [Google Scholar] [CrossRef]
- Sun, S.; Chen, Y.; Mu, L.; Le, Y.; Zhao, H. Improving shallow water bathymetry inversion through nonlinear transformation and deep convolutional neural networks. Remote Sens. 2023, 15, 4247. [Google Scholar] [CrossRef]
- Xie, C.; Chen, P.; Zhang, S.; Huang, H. Nearshore Bathymetry from ICESat-2 LiDAR and Sentinel-2 Imagery Datasets Using Physics-Informed CNN. Remote Sens. 2024, 16, 511. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, Y.; Li, B. Recent advances in pansharpening and key problems in applications. Int. J. Remote Sens. 2014, 35, 175–195. [Google Scholar] [CrossRef]
- Loncan, L.; Almeida, L.B.; Bioucas-Dias, J.M.; Briottet, X.; Chanussot, J.; Dobigeon, N.; Fabre, S.; Liao, W.; Licciardi, G.A.; Simoes, M.; et al. Hyperspectral pansharpening: A review. IEEE Geosci. Remote Sens. Mag. 2015, 3, 27–46. [Google Scholar] [CrossRef]
- Karimi, D.; Kabolizadeh, M.; Rangzan, K.; Zaheri Abdehvand, Z.; Balouei, F. New methodology for improved bathymetry of coastal zones based on spaceborne spectroscopy. Int. J. Environ. Sci. Technol. 2025, 22, 3359–3378. [Google Scholar] [CrossRef]
- Qi, J.; Gong, Z.; Yao, A.; Liu, X.; Li, Y.; Zhang, Y.; Zhong, P. Bathymetric-Based Band Selection Method for Hyperspectral Underwater Target Detection. Remote Sens. 2021, 13, 3798. [Google Scholar] [CrossRef]
- Xi, X.; Chen, M.; Wang, Y.; Yang, H. Band-Optimized Bidirectional LSTM Deep Learning Model for Bathymetry Inversion. Remote Sens. 2023, 15, 3472. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Xi, X.; Yang, H. Bathymetry Inversion Using Attention-Based Band Optimization Model for Hyperspectral or Multispectral Satellite Imagery. Water 2023, 15, 3205. [Google Scholar] [CrossRef]
- Servicio de Hidrografía Naval (SHN). Sitio Web Oficial. Available online: https://www.hidro.gov.ar/ (accessed on 21 July 2025).
- Dogliotti, A.I.; Ruddick, K.G.; Guerrero, R.A. Seasonal and inter-annual turbidity variability in the Río de la Plata from 15 years of MODIS: El Niño dilution effect. Estuar. Coast. Shelf Sci. 2016, 182, 27–39. [Google Scholar] [CrossRef]
- Framiñán, M.B.; Brown, O.B. Study of the Río de la Plata turbidity front, Part 1: Spatial and temporal distribution. Cont. Shelf Res. 1996, 16, 1259–1282. [Google Scholar] [CrossRef]
- Arena, M.; Pratolongo, P.; Loisel, H.; Tran, M.D.; Jorge, D.S.F.; Delgado, A.L. Optical Water Characterization and Atmospheric Correction Assessment of Estuarine and Coastal Waters around the AERONET-OC Bahía Blanca. Front. Remote Sens. 2024, 5, 1305787. [Google Scholar] [CrossRef]
- Sharma, K.V.; Kumar, V.; Singh, K.; Mehta, D.J. LANDSAT 8 LST Pan sharpening using novel principal component based downscaling model. Remote Sens. Appl. Soc. Environ. 2023, 30, 100963. [Google Scholar] [CrossRef]
- Vivone, G.; Restaino, R.; Dalla Mura, M.; Chanussot, J. Multi-band semiblind deconvolution for pansharpening applications. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 41–44. [Google Scholar] [CrossRef]
- QGIS Development Team QGIS Geographic Information System. Open Source Geospatial Foundation Project. Available online: http://qgis.org (accessed on 21 July 2025).
- Shapley, L.S. A Value for n-Person Games. In Contributions to the Theory of Games, Volume II; Kuhn, H.W., Tucker, A.W., Eds.; Princeton University Press: Princeton, NJ, USA, 1953; pp. 307–318. [Google Scholar] [CrossRef]
- Eren, L. Bearing Fault Detection by One-Dimensional Convolutional Neural Networks. Math. Probl. Eng. 2017, 2017, 8617315. [Google Scholar] [CrossRef]
- Escottá, Á.T.; Beccaro, W.; Arjona Ramírez, M.A. Evaluation of 1D and 2D deep convolutional neural networks for driving event recognition. Sensors 2022, 22, 4226. [Google Scholar] [CrossRef]
- Qazi, E.U.H.; Almorjan, A.; Zia, T. A One-Dimensional Convolutional Neural Network (1D-CNN) Based Deep Learning System for Network Intrusion Detection. Appl. Sci. 2022, 12, 7986. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Chai, E.; Pilanci, M.; Murmann, B. Separating the Effects of Batch Normalization on CNN Training Speed and Stability Using Classical Adaptive Filter Theory. arXiv 2020, arXiv:2002.10674. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Springer Series in Statistics; Springer: New York, NY, USA, 2009; ISBN 978-0-387-84857-0. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Sim, D. Low-complexity CNN with 1D and 2D filters for super-resolution. J. Real-Time Image Process. 2020, 17, 2065–2076. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Evans, R.H.; Brown, J.W.; Smith, R.C.; Baker, K.S.; Clark, D.K. A semianalytic radiance model of ocean color. J. Geophys. Res. Atmos. 1988, 93, 10909–10924. [Google Scholar] [CrossRef]
- Hausstein, H. Simulation of the Transport of Suspended Particulate Matter in the Río de la Plata; GKSS 2008/7; GKSS Research Centre: Geesthacht, Germany, 2008. [Google Scholar]
- Perillo, G.M.E.; Piccolo, M.C.; Parodi, E.; Freije, R.H. The Bahía Blanca Estuary, Argentina. In Coastal Marine Ecosystems of Latin America; Seeliger, U., Kjerfve, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 205–217. [Google Scholar] [CrossRef]










| Study Area | Product | Acquisition Date | Time | 
|---|---|---|---|
| CA#1 | PRS_L2D_STD_20200303140009 | 3 March 2020 | 14:00:09 | 
| PRS_L2D_STD_20200303140013 | 3 March 2020 | 14:00:13 | |
| PRS_L2D_STD_20200824135925 | 24 August 2020 | 13:59:25 | |
| PRS_L2D_STD_20200824135929 | 24 August 2020 | 13:59:29 | |
| PRS_L2D_STD_20200824135933 | 24 August 2020 | 13:59:33 | |
| PRS_L2D_STD_20200824135938 | 24 August 2020 | 13:59:38 | |
| PRS_L2D_STD_20210110135453 | 1 October 2021 | 13:54:53 | |
| PRS_L2D_STD_20220413135340 | 13 April 2022 | 13:53:40 | |
| PRS_L2D_STD_20220413135345 | 13 April 2022 | 13:53:45 | |
| CA#2 | PRS_L2D_STD_20201016141321 | 16 October 2020 | 14:13:21 | 
| PRS_L2D_STD_20201016141325 | 16 October 2020 | 14:13:25 | |
| PRS_L2D_STD_20201016141330 | 16 October 2020 | 14:13:30 | 
| CA#1 | |||||||||||||
| GIF-SHAP (%) | 100 | 90 | 80 | 70 | 60 | 50 | |||||||
| HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | ||
| 0.85 | 0.85 | 0.85 | 0.84 | 0.85 | 0.85 | 0.83 | 0.86 | 0.83 | 0.85 | 0.78 | 0.84 | ||
| MAE (m) | 0.90 | 0.85 | 0.89 | 0.87 | 0.89 | 0.86 | 0.92 | 0.85 | 0.94 | 0.87 | 1.03 | 0.90 | |
| RMSE (m) | 1.17 | 1.18 | 1.16 | 1.21 | 1.16 | 1.20 | 1.22 | 1.16 | 1.25 | 1.18 | 1.39 | 1.23 | |
| BANDS | 63 | 63 | 48 | 39 | 38 | 30 | 30 | 24 | 23 | 19 | 17 | 15 | |
| GIF-SHAP (%) | 100 | 90 | 80 | 70 | 60 | 50 | |||||||
| HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | HSI | Ps-HSI | ||
| 0.89 | 0.80 | 0.88 | 0.81 | 0.89 | 0.82 | 0.87 | 0.80 | 0.86 | 0.80 | 0.86 | 0.81 | ||
| MAE (m) | 1.17 | 1.33 | 1.20 | 1.29 | 1.17 | 1.30 | 1.25 | 1.34 | 1.30 | 1.33 | 1.34 | 1.36 | |
| RMSE (m) | 1.51 | 1.93 | 1.56 | 1.91 | 1.52 | 1.87 | 1.62 | 1.94 | 1.68 | 1.94 | 1.71 | 1.92 | |
| BANDS | 63 | 63 | 48 | 46 | 37 | 36 | 28 | 27 | 21 | 21 | 16 | 15 | |
| Study | Model | Hyperspectral | Spacial Resolution | Total | Bands | MAE | RMSE | |
|---|---|---|---|---|---|---|---|---|
| Area | Set | (m/px) | Bands | (m) | (m) | |||
| CA#1 | CNN | HSI | 30 | 63 | 3–65 | 0.93 | 0.59 | 0.78 | 
| PsCNN | Ps-HSI | 5 | 63 | 3–65 | 0.93 | 0.88 | 0.80 | |
| BoCNN | HSI | 30 | 38 | 3–12, 15, 16, 18–20, 22, 24, 27–32, 36, 40, 42, 43, 46, 49, 50, 52–55, 58, 61, 62, 64 | 0.93 | 0.61 | 0.81 | |
| BoPsCNN | Ps-HSI | 5 | 24 | 27–38, 45, 49, 52, 53, 56, 58, 60–65 | 0.96 | 0.51 | 0.65 | |
| CA#2 | CNN | HSI | 30 | 63 | 3–65 | 0.92 | 0.91 | 1.24 | 
| PsCNN | Ps-HSI | 5 | 63 | 3–65 | 0.93 | 0.88 | 1.16 | |
| BoCNN | HSI | 30 | 37 | 3, 4, 6–18, 20, 21, 25, 33, 38, 39, 44–46, 51–53, 55, 56, 58–65 | 0.93 | 0.91 | 1.22 | |
| BoPsCNN | Ps-HSI | 5 | 36 | 4, 11, 12, 14, 17, 21, 23, 25–30, 32, 33, 35–44, 47, 52, 54, 55, 57–60, 62, 63, 64 | 0.93 | 0.87 | 1.18 | 
| Study | Model | Bands | Scene | Total Pixels | Batch | Run | T (%) | 
|---|---|---|---|---|---|---|---|
| Area | Dimension | to Process | Size | Time | |||
| (Pixels) | (Approx in Millions) | (Minutes) | |||||
| CA#1 | CNN | 63 | 91.92 | 4 | 3.10 | - | |
| PsCNN | 63 | 3309.22 | 64 | 71.93 | - | ||
| BoCNN | 38 | 55.44 | 4 | 2.07 | 33.07 | ||
| BoPsCNN | 24 | 1260.65 | 32 | 44.26 | 38.46 | ||
| CA#2 | CNN | 63 | 94.68 | 4 | 3.57 | - | |
| PsCNN | 63 | 3408.59 | 64 | 73.12 | - | ||
| BoCNN | 37 | 55.60 | 4 | 2.30 | 35.60 | ||
| BoPsCNN | 36 | 1947.76 | 32 | 50.26 | 31.26 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez Vargas, S.; Genchi, S.A.; Vitale, A.J.; Delrieux, C.A. Shallow Bathymetry from Hyperspectral Imagery Using 1D-CNN: An Innovative Methodology for High Resolution Mapping. Remote Sens. 2025, 17, 3584. https://doi.org/10.3390/rs17213584
Martínez Vargas S, Genchi SA, Vitale AJ, Delrieux CA. Shallow Bathymetry from Hyperspectral Imagery Using 1D-CNN: An Innovative Methodology for High Resolution Mapping. Remote Sensing. 2025; 17(21):3584. https://doi.org/10.3390/rs17213584
Chicago/Turabian StyleMartínez Vargas, Steven, Sibila A. Genchi, Alejandro J. Vitale, and Claudio A. Delrieux. 2025. "Shallow Bathymetry from Hyperspectral Imagery Using 1D-CNN: An Innovative Methodology for High Resolution Mapping" Remote Sensing 17, no. 21: 3584. https://doi.org/10.3390/rs17213584
APA StyleMartínez Vargas, S., Genchi, S. A., Vitale, A. J., & Delrieux, C. A. (2025). Shallow Bathymetry from Hyperspectral Imagery Using 1D-CNN: An Innovative Methodology for High Resolution Mapping. Remote Sensing, 17(21), 3584. https://doi.org/10.3390/rs17213584
 
        



 
       