Monitoring Wildfire Risk with a Near-Real-Time Live Fuel Moisture Content System: A Review and Roadmap for Operational Application in New Zealand
Highlights
- A comprehensive evaluation of multispectral, hyperspectral, thermal, and mi-crowave sensors, undertaken individually and in combination, shows how LFMC and fuel types can be monitored with specific applicability to New Zealand.
- The review clarifies trade-offs (resolution, cadence, spectral sensitivity), outlines limitations and identifies opportunities to improve mapping of LFMC and fuel type.
- The synthesis provides the technical groundwork for an operational, near-real-time LFMC prediction system in New Zealand with relevance to other fire-prone regions.
- Such a system will enable more reliable, timely wildfire risk assessment and strengthen decision-making for fire management and emergency response.
Abstract
1. Introduction
2. Review of Current Technology for LFMC and Fuel Type Monitoring
2.1. Available Satellite Instruments
2.1.1. Overview of Sensor Types
2.1.2. Sensor Orbit Types and Revisit Cadence
2.1.3. Spatial Resolution
2.1.4. Spectral Resolution
2.2. Estimation of LFMC
2.2.1. Physical Basis for Detection of LFMC
| Year | Method | Sensor | Indices | Ancillary Inf. | Vegetation | Location | R2 | Reference | 
|---|---|---|---|---|---|---|---|---|
| 2004 | Empirical | AVHRR | NDVI | ST, DOY, LCT | Mediterranean grasslands | Spain | 0.88–0.91 | [65] | 
| AVHRR | NDVI | ST, DOY, LCT | Mediterranean shrubland | Spain | 0.72 | |||
| 2005 | Empirical | MODIS | NDWI, VARI | None | Chaparral | California, USA | 0.79–0.94 | [26] | 
| 2005 | Empirical | MODIS | NDVI, NDWI | None | Chaparral and coastal shrubland | California, USA | 0.39–0.80 | [66] | 
| 2007 | RTM | MODIS | None | Pine stands; hardwood dominated areas | Georgia, USA | 0.57–0.65 | [67] | |
| 2008 | Empirical | MODIS | NDVI, EVI, VARI, VIgreen, NDII6, NDII7, NDWI | None | Chaparral and coastal sage scrub | California, USA | 0.85 | [59] | 
| 2008 | RTM | MODIS | LAI | Mediterranean grassland | Spain | 0.927 | [68] | |
| RTM | MODIS | DM | Mediterranean shrubland | Spain | 0.703 | |||
| Empirical | MODIS | NDVI, SAVI, EVI, GEMI, VARI, NDII6, NDWI, GVMI | None | Mediterranean grassland | Spain | 0.914 | ||
| Empirical | MODIS | NDVI, SAVI, EVI, GEMI, VARI, NDII6, NDWI, GVMI | None | Mediterranean shrubland | Spain | 0.723 | ||
| 2008 | Empirical | AVHRR | NDVI | ST, DOY | Mediterranean grassland | Spain | 0.83 | [60] | 
| AVHRR | NDVI | ST, DOY | Mediterranean shrubland | Spain | 0.71 | |||
| 2011 | Empirical | MODIS | NDIImax − min, VARImax − min | None | Shrubland, heathland, sclerophyll forest | SE Australia | 0.69 | [69] | 
| 2012 | Empirical | AISA Eagle Hawk | Reflectance, first derivatives, MSI, WI, NDWI, TM5/TM7, NDVI, NDII | None | Calluna vulgaris and grassland | Central Pennine uplands, UK | 0.75 | [70] | 
| 2013 | RTM | MODIS | LAI, Ccov | Woodlands | Spain | 0.50 | [25] | |
| 2018 | Empirical | AMSR-E | microwave data | None | Forests, shrublands, grasslands | Mediterranean | 0.32 | [71] | 
| Empirical | MODIS | VARI, SAVI, NDVI, NDWI, NDII6, NDII7, GCMI | None | Forests, shrublands, grasslands | Mediterranean | 0.44 | ||
| 2018 | Empirical | MODIS | NDVI, NDII6, NDII7, GVMI, NDWI, EVI, SAVI, VARI, VIgreen | None | Mediterranean shrubland | Spain | 0.85 | [72] | 
| Empirical | Sentinel-2 | NDVI, NDII6, NDII7, EVI, SAVI, VARI, VIgreen | None | Mediterranean shrubland | Spain | 0.76 | ||
| 2018 | Empirical | MODIS | EVI | Tmin | Chaparral, shrubland | California, USA | 0.68–0.73 | [73] | 
| 2020 | Empirical | Landsat-5 TM | NDVI, NDII, EVI, VARI | Terrain | Chaparral | western USA | 0.48 | [15] | 
| 2020 | Empirical | MODIS | VARI, Vigreen, GVMI, NDWI, NDVI | None | Mediterranean shrubland | Spain | 0.69–0.78 | [74] | 
| RTM | MODIS | None | Mediterranean shrubland | Spain | 0.49 | |||
| 2020 | ML | Sentinel-1 | Soil, LiDAR ht, elevation, slope, NDVI, NDWI, LCT | All | western USA | 0.63 | [43] | |
| ML | Sentinel-1 | Shrub/grassland | western USA | 0.56 | ||||
| ML | Sentinel-1 | Grassland | western USA | 0.56 | ||||
| ML | Sentinel-1 | Mixed forest | western USA | 0.59 | ||||
| ML | Sentinel-1 | Closed needleleaf evergreen | western USA | 0.61 | ||||
| ML | Sentinel-1 | Closed broadleaf deciduous | western USA | 0.49 | ||||
| ML | Sentinel-1 | Shrubland | western USA | 0.69 | ||||
| 2020 | RTM | Himawari-8 | None | croplands, trees | Australia | 0.26 | [48] | |
| RTM | MODIS | None | croplands, trees | Australia | 0.67 | |||
| 2021 | Empirical | Sentinel-2 | EVI, SAVI, OSAVI, NDVI, RVI, VARI, NDMI, NDWI, VIgreen, TCARI, TCARI/OSAVI, SLA | Met. data | Mediterranean shrubland | Eastern Spain | 0.70 | [75] | 
| 2021 | ML | MODIS | Band reflectances | Elevation, slope, | Cropland | Contiguous USA | 0.64 | [76] | 
| ML | MODIS | Band reflectances | aspect, latitude, | Grassland | Contiguous USA | 0.58 | ||
| ML | MODIS | Band reflectances | longitude, | Forest | Contiguous USA | 0.42 | ||
| ML | MODIS | Band reflectances | DOY | Shrubland | Contiguous USA | 0.67 | ||
| 2022 | ML | MODIS | Band reflectances | Climate data, climate zone, topography, location, DOY | All vegetation classes | Contiguous USA | 0.70 | [77] | 
| 2022 | ML | Sentinel-2 | VARI, ARVI, RVI2, TCARI/OSAVI, NMDI | Oaks, pines, shrubland, grassland | Spain | 0.55 | [78] | |
| ML | Sent-2/ancill. | VARI, ARVI, RVI2, TCARI/OSAVI, NMDI | Elevation, Slope, north, east, Ht | Oaks, pines, shrubland, grassland | Spain | 0.63 | ||
| ML | Sentinel-1 SAR | Oaks, pines, shrubland, grassland | Spain | 0.28 | ||||
| 2022 | ML | Sentinel-1 (S1) | Soil, LiDAR ht, LCT, elevation, slope | Forests, shrublands, grasslands | western USA | 0.53 | [42] | |
| ML | Landsat-8 (L) | NDWI, NDVI, NIRV, 5 band reflectances | Forests, shrublands, grasslands | western USA | 0.7 | |||
| ML | MODIS (M) | 7 Band reflectances | Forests, shrublands, grasslands | western USA | 0.74 | |||
| ML | L+S1 | Forests, shrublands, grasslands | western USA | 0.81 | ||||
| ML | M+S1 | Forests, shrublands, grasslands | western USA | 0.81 | ||||
| ML | M+L+S1 | Forests, shrublands, grasslands | western USA | 0.85 | ||||
| 2023 | Empirical | Sentinel-2 | EVI, OSAVI, TCARI, Vgreen, VARI, MSI, NMDI | rainfall, slope | Mediterranean shrubland and trees | Eastern Spain | 0.74 | [79] | 
| 2024 | RTM | Himawari | None | Grassland, evergreen forest | Australia, China | 0.60–0.61 | [49] | |
| RTM | Landsat-8 OLI | None | Grassland, evergreen forest | Australia, China | 0.68–0.79 | |||
| RTM | MODIS | None | Grassland, evergreen forest | Australia, China | 0.63–0.76 | |||
| 2025 | ML | MODIS | NDVI, NDWI, NDII6, NDII7, GVMI, EVI, SAVI, VARI, VIgreen, NDTI, STI, MSI, Gratio | DC, DOY | Shrubland | Portugal | 0.78 | [80] | 
2.2.2. Predictions of LFMC Within the Literature
2.3. Predictions of Fuel Type
2.3.1. Fuel Type Classification
2.3.2. Use of Remote Sensing to Classify Fuel Types
3. Modelling Methods for Predicting LFMC
3.1. Empirical Models
3.2. Machine Learning
3.3. Physical Models
4. Modelling Methods for Predicting Fuel Types
4.1. Pixel-Based Models
4.2. Object-Based Image Analysis
4.3. Spectral Mixture Analysis
4.4. Deep Learning
5. Integration of LFMC and Fuel Type into Fire Assessments
5.1. International Fire Risk Assessments
5.2. New Zealand Fire Risk Assessments
6. Pathway for Near-Real-Time Wildfire Risk Prediction Within New Zealand
6.1. Identification of Fuel Types
6.2. Prediction of LFMC
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AFM | Accessory Fuel Moisture | 
| ALS | Airborne Laser Scanning | 
| AVIRIS | Airborne Visible/Infrared Imaging Spectrometer | 
| CFFDRS | Canadian Fire Danger System | 
| CNN | Convolutional Neural Networks | 
| DEM | Digital elevation model | 
| DFMC | Dead fuel moisture content | 
| DL | Deep learning | 
| FBP | Fire Behavior Prediction | 
| FMC | Fuel Moisture Content | 
| FOP | Fire Occurrence Prediction | 
| FWI | Fire Weather Index | 
| GAM | Generalized additive models | 
| GEDI | Global Ecosystem Dynamics Investigation | 
| GOES | Geostationary Operational Environmental Satellite | 
| GPU | Graphics Processing Units | 
| GSD | Ground Sampling Distance | 
| GVMI | Global Vegetation Moisture Index | 
| HLS | Harmonized Landsat and Sentinel-2 dataset | 
| LAI | Leaf area index | 
| LFMC | Live fuel moisture content | 
| LiDAR | Light detection and ranging | 
| MIVIS | Multispectral Infrared and Visible Imaging Spectrometer | 
| ML | Machine learning | 
| MLR | Multivariate linear regression | 
| MODIS | Moderate Resolution Imaging Spectroradiometer | 
| MSI | Moisture Stress Index | 
| NDVI | Normalized Difference Vegetation Index | 
| NIR | Near-infrared | 
| NLR | Non-linear regression | 
| NZFDRS | New Zealand Fire Danger Rating System | 
| OA | Overall accuracy | 
| OBIA | Object-based image analysis | 
| PB | Pixel based | 
| RF | Random forest | 
| RTM | Radiative transfer model | 
| SAR | Synthetic aperture radar | 
| SMA | Spectral Mixture Analysis | 
| SWIR | Shortwave infrared | 
| TIR | Thermal infrared | 
| VARI | Visible Atmospherically Resistant Index | 
| VHR | Very high resolution satellites | 
| VIIRS | Visible Infrared Imaging Radiometer Suite | 
| VIS | Visible | 
| VNIR | Visible and Near-Infrared | 
Appendix A
| Country | Fire Behavior Simulator * | Description | LFMC | DFMC | 
|---|---|---|---|---|
| Australia | Spark [132] | Toolkit for the end-to-end processing, simulation and analysis of wildfires. | Variable based on specific fuel model: percent curing, percent live and dead, moisture content of extinction | Pre-defined user effect function | 
| Australia (southern and eastern) | Phoenix Rapidfire [133]. | Wildfire simulation for operational and preparedness—fire risk modelling. | Grass fuel moisture is based on a grass function | Fine fuel moisture model is incorporated based on weather. Coarse woody fuel consumption based on a drought factor (DF) | 
| Canada, New Zealand | Prometheus [125]; W.I.S.E. (Wildfire Intelligence and Simulation Engine) | Deterministic wildland fire growth simulation model based on Fire Weather Index (FWI) and Fire Behavior Prediction (FBP) systems. | FMC—foliar moisture content (FBP input for forest fuel types: for Canada, FMC based on latitude, longitude, elevation, and date and can vary 85–120%; in NZ default is 145% all year); grass curing | Based on FWI fuel moisture codes (FFMC, DMC, DC) | 
| USA | WFDS (Wildland-Urban Interface Fire Dynamics Simulator) [134] | Computational fluid dynamics model to solve the governing equations for buoyant flow, heat transfer, combustion, and the thermal degradation of vegetative fuels. | Foliage crown and branch crown moisture inputs | Surface fuel moisture input | 
| USA | FlamMap (& FARSITE) [135,136] | Simulates wildfire behavior for fuel treatment planning. | Constant | Based on weather inputs | 
| USA | FSim [137] | Wildfire risk simulation software that calculates annual probabilities of burning and fire line intensity distributions at various points on the landscape. | None | Distribution of fuel moisture based on weather inputs | 
| Sweden, Indonesia, South Korea, Italy, and Austria | FLAM (wildFire cLimate impacts and Adaptation Model) e.g., [138] | Process-based fire parameterization algorithm linking a fire simulation model with dynamic global vegetation models for planning purposes. | None | FFMC from FWI | 
| Status | Fire Danger Class | Fuel Type | NZ Fire Behaviour Prediction (FBP) Fuel Model | NZ FBP Group 1 | 
|---|---|---|---|---|
| Proposed | Forest | Exotic Forest | Wilding Pine | |
| Existing | Forest | Indigenous Forests | Beech Forests | |
| Existing | Forest | Indigenous Forests | Podocarp/Broadleaf | |
| Proposed | Forest | Indigenous Forests | Broadleaf forest | |
| Proposed | Forest | Indigenous Forests | Mixed Beech/Broadleaf Forest | |
| Proposed | Forest | Indigenous Forests | Mixed Beech/Podocarp/Broadleaf Forest | |
| Existing | Forest | Plantation Forests | Immature Pine 1–4 years old (1st rotation) | Pine Plantation | 
| Existing | Forest | Plantation Forests | Immature Pine 1–4 years old (2nd rotation) | Pine Plantation | 
| Existing | Forest | Plantation Forests | Immature Pine 5–10 years old | Pine Plantation | 
| Existing | Forest | Plantation Forests | Immature pine 11–20 years old | Pine Plantation | 
| Existing | Forest | Plantation Forests | Mature Pine 20+ years old | Pine Plantation | 
| Existing | Forest | Plantation Forests | Plantation Forest Slash | Pine Plantation | 
| Proposed | Forest | Plantation Forests | Shelter Belts and Hedges | Pine Plantation | 
| Proposed | Forest | Plantation Forests | Douglas-fir | |
| Proposed | Forest | Plantation Forests | Eucalypts | |
| Existing | Grass | Crop Stubble | Baled stubble | Stubble | 
| Existing | Grass | Crop Stubble | Unbaled stubble | Stubble | 
| Existing | Grass | Pasture Grasslands | Grazed Pasture | Pasture | 
| Existing | Grass | Pasture Grasslands | Ungrazed Pasture | Pasture | 
| Proposed | Grass | Pasture Grasslands | Orchard, Vineyard | |
| Proposed | Grass | Peatland | Peatland | |
| Existing | Grass | Tussock Grasslands | Grazed Tussock | Tussock | 
| Existing | Grass | Tussock Grasslands | Ungrazed Tussock | Tussock | 
| Proposed | Grass | Tussock Grasslands | Beach Grasses | |
| Proposed | Other | Non-Fuel | Non-burnable | |
| Proposed | Other | Non-vegetation | Refuse Dumps | |
| Proposed | Other | Non-vegetation | Rural Urban Interface | |
| Existing | Scrub | Scrublands | Gorse | |
| Existing | Scrub | Scrublands | Heathlands/Wetlands | |
| Existing | Scrub | Scrublands | Manuka/Kanuka | |
| Existing | Scrub | Scrublands | Hardwood Shrubs | |
| Proposed | Scrub | Scrublands | Broom | |
| Proposed | Scrub | Scrublands | Sub-alpine Shrubs | 
References
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; Van Der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.; Burton, C.; Betts, R.A.; van der Werf, G.R. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Bowman, D.M.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Dupuy, J.-l.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- de Dios, V.R.; Hedo, J.; Camprubí, À.C.; Thapa, P.; Del Castillo, E.M.; de Aragón, J.M.; Bonet, J.A.; Balaguer-Romano, R.; Díaz-Sierra, R.; Yebra, M. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. Sci. Total Environ. 2021, 797, 149104. [Google Scholar] [CrossRef]
- Watt, M.S.; Kirschbaum, M.U.F.; Moore, J.R.; Pearce, H.G.; Bulman, L.S.; Brockerhoff, E.G.; Melia, N. Assessment of multiple climate change effects on plantation forests in New Zealand. For. Int. J. For. Res. 2019, 92, 1–15. [Google Scholar] [CrossRef]
- Stats, N.Z. Wildfire Risk: Data to 2023. Available online: https://www.stats.govt.nz/indicators/wildfire-risk-data-to-2023/ (accessed on 31 August 2025).
- Wastl, C.; Schunk, C.; Lüpke, M.; Cocca, G.; Conedera, M.; Valese, E.; Menzel, A. Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agric. For. Meteorol. 2013, 168, 15–25. [Google Scholar] [CrossRef]
- Janizadeh, S.; Bateni, S.M.; Jun, C.; Im, J.; Pai, H.-T.; Band, S.S.; Mosavi, A. Combination four different ensemble algorithms with the generalized linear model (GLM) for predicting forest fire susceptibility. Geomat. Nat. Hazards Risk 2023, 14, 2206512. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yebra, M.; Martino, S.; Thonicke, K.; Gómez-Giménez, M.; San-Miguel, J.; Oom, D.; Velea, R.; Mouillot, F.; Molina, J.R.; et al. Towards an Integrated Approach to Wildfire Risk Assessment: When, Where, What and How May the Landscapes Burn. Fire 2023, 6, 215. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt Jr, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Viegas, D.X.; Viegas, M.; Ferreira, A. Moisture content of fine forest fuels and fire occurrence in central Portugal. Int. J. Wildland Fire 1992, 2, 69–86. [Google Scholar] [CrossRef]
- Viegas, D.; Viegas, M.; Ferreira, A. Characteristics of some forest fuels and their relation to the occurence of fires. In Proceedings of the International Conference of Forest Fire Research, Coimbra, Portugal, 19–22 November 1990; pp. 1–13. [Google Scholar]
- Xanthopoulos, G.; Wakimoto, R.H. A time to ignition–temperature–moisture relationship for branches of three western conifers. Can. J. For. Res. 1993, 23, 253–258. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Yebra, M.; Salas, J.; Cardil, A.; Monedero, S.; Ramirez, J.; Martín, M.P.; Vilar, L.; Gajardo, J. A live fuel moisture content product from Landsat TM satellite time series for implementation in fire behavior models. Remote Sens. 2020, 12, 1714. [Google Scholar] [CrossRef]
- Schoenberg, F.P.; Peng, R.; Huang, Z.; Rundel, P. Detection of non-linearities in the dependence of burn area on fuel age and climatic variables. Int. J. Wildland Fire 2003, 12, 1–6. [Google Scholar] [CrossRef]
- Dennison, P.E.; Moritz, M.A. Critical live fuel moisture in chaparral ecosystems: A threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 2009, 18, 1021–1027. [Google Scholar] [CrossRef]
- Dennison, P.E.; Moritz, M.A.; Taylor, R.S. Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California. Int. J. Wildland Fire 2008, 17, 18–27. [Google Scholar] [CrossRef]
- Anderson, S.A.; Anderson, W.R. Ignition and fire spread thresholds in gorse (Ulex europaeus). Int. J. Wildland Fire 2010, 19, 589–598. [Google Scholar] [CrossRef]
- Plucinski, M.P.; Anderson, W.R.; Bradstock, R.A.; Gill, A.M. The initiation of fire spread in shrubland fuels recreated in the laboratory. Int. J. Wildland Fire 2010, 19, 512–520. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Resco de Dios, V.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef]
- Pimont, F.; Ruffault, J.; Martin-StPaul, N.; Dupuy, J.-L. A cautionary note regarding the use of cumulative burnt areas for the determination of fire danger index breakpoints. Int. J. Wildland Fire 2019, 28, 254–258. [Google Scholar] [CrossRef]
- Yebra, M.; Scortechini, G.; Adeline, K.; Aktepe, N.; Almoustafa, T.; Bar-Massada, A.; Beget, M.E.; Boer, M.; Bradstock, R.; Brown, T. Globe-LFMC 2.0, an enhanced and updated dataset for live fuel moisture content research. Sci. Data 2024, 11, 332. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A.; Thorgusen, S.R.; Regelbrugge, J.C.; Weise, D.; Lee, C. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote Sens. Environ. 2003, 88, 442–452. [Google Scholar] [CrossRef]
- Jurdao, S.; Yebra, M.; Guerschman, J.P.; Chuvieco, E. Regional estimation of woodland moisture content by inverting Radiative Transfer Models. Remote Sens. Environ. 2013, 132, 59–70. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M.; Kaiser, J. MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int. J. Remote Sens. 2005, 26, 3867–3873. [Google Scholar] [CrossRef]
- Ruffault, J.; Martin-StPaul, N.; Pimont, F.; Dupuy, J.-L. How well do meteorological drought indices predict live fuel moisture content (LFMC)? An assessment for wildfire research and operations in Mediterranean ecosystems. Agric. For. Meteorol. 2018, 262, 391–401. [Google Scholar] [CrossRef]
- Anderson, S. Forest and rural fire danger rating in New Zealand. In Forestry Handbook; Colley, M., Ed.; New Zealand Institute of Forestry: Christchurch, New Zealand, 2005; pp. 241–244. [Google Scholar]
- Wotton, M. A grass moisture model for the Canadian forest fire danger rating system. In Proceedings of the Eighth Symposium on Fire and Forest Meteorology, Kalispell, MT, USA, 12–15 October 2009; American Meteorological Society: Boston, NE, USA, 2009. [Google Scholar]
- Van Wagner, C. A Method of Computing Fine Fuel Moisture Content Throughout the Diurnal Cycle; Environment Canada, Canadian Forestry Service, Petawawa Forest Experiment Station: Chalk River, ON, USA, 1977. [Google Scholar]
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite remote sensing contributions to wildland fire science and management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef]
- Abdollahi, A.; Yebra, M. Forest fuel type classification: Review of remote sensing techniques, constraints and future trends. J. Environ. Manag. 2023, 342, 118315. [Google Scholar] [CrossRef] [PubMed]
- Ustin, S.L.; Middleton, E.M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 2021, 10, 1. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Scherrer, D.; Bader, M.K.-F.; Körner, C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agric. For. Meteorol. 2011, 151, 1632–1640. [Google Scholar] [CrossRef]
- Seidel, H.; Schunk, C.; Matiu, M.; Menzel, A. Diverging drought resistance of scots pine provenances revealed by infrared thermography. Front. Plant Sci. 2016, 7, 1247. [Google Scholar] [CrossRef] [PubMed]
- Still, C.; Powell, R.; Aubrecht, D.; Kim, Y.; Helliker, B.; Roberts, D.; Richardson, A.D.; Goulden, M. Thermal imaging in plant and ecosystem ecology: Applications and challenges. Ecosphere 2019, 10, e02768. [Google Scholar] [CrossRef]
- Chandra, S.N.R.; Christopherson, J.B.; Casey, K.A.; Lawson, J.; Sampath, A. 2022 Joint Agency Commercial Imagery Evaluation—Remote Sensing Satellite Compendium; U.S. Geological Survey Circular 1500; Geological Survey: Reston, VA, USA, 2022; 279p. Available online: https://pubs.usgs.gov/publication/cir1500 (accessed on 20 August 2025).
- Smigaj, M.; Agarwal, A.; Bartholomeus, H.; Decuyper, M.; Elsherif, A.; de Jonge, A.; Kooistra, L. Thermal Infrared Remote Sensing of Stress Responses in Forest Environments: A Review of Developments, Challenges, and Opportunities. Curr. For. Rep. 2024, 10, 56–76. [Google Scholar] [CrossRef]
- Xie, J.; Qi, T.; Hu, W.; Huang, H.; Chen, B.; Zhang, J. Retrieval of Live Fuel Moisture Content Based on Multi-Source Remote Sensing Data and Ensemble Deep Learning Model. Remote Sens. 2022, 14, 4378. [Google Scholar] [CrossRef]
- Rao, K.; Williams, A.P.; Flefil, J.F.; Konings, A.G. SAR-enhanced mapping of live fuel moisture content. Remote Sens. Environ. 2020, 245, 111797. [Google Scholar] [CrossRef]
- Alonso-Benito, A.; Arroyo, L.A.; Arbelo, M.; Hernández-Leal, P. Fusion of WorldView-2 and LiDAR data to map fuel types in the Canary Islands. Remote Sens. 2016, 8, 669. [Google Scholar] [CrossRef]
- García, M.; Riaño, D.; Chuvieco, E.; Salas, J.; Danson, F.M. Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sens. Environ. 2011, 115, 1369–1379. [Google Scholar] [CrossRef]
- Chirici, G.; Scotti, R.; Montaghi, A.; Barbati, A.; Cartisano, R.; Lopez, G.; Marchetti, M.; McRoberts, R.E.; Olsson, H.; Corona, P. Stochastic gradient boosting classification trees for forest fuel types mapping through airborne laser scanning and IRS LISS-III imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 87–97. [Google Scholar] [CrossRef]
- Domingo, D.; de la Riva, J.; Lamelas, M.T.; García-Martín, A.; Ibarra, P.; Echeverría, M.; Hoffrén, R. Fuel type classification using airborne laser scanning and Sentinel 2 data in Mediterranean forest affected by wildfires. Remote Sens. 2020, 12, 3660. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, X.; Lai, G.; Quan, X. Evaluation of Himawari-8 for live fuel moisture content retrieval. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020. [Google Scholar]
- Quan, X.; Chen, R.; Yebra, M.; Riaño, D.; de Dios, V.R.; Li, X.; He, B.; Nolan, R.H.; Griebel, A.; Boer, M.M. Sub-daily live fuel moisture content estimation from Himawari-8 data. Remote Sens. Environ. 2024, 308, 114170. [Google Scholar] [CrossRef]
- Zawadzki, J.; Cieszewski, C.J.; Zasada, M.; Lowe, R.C. Applying geostatistics for investigations of forest ecosystems using remote sensing imagery. Silva Fenn. 2005, 39, 599–617. [Google Scholar] [CrossRef]
- Lee, J.-H.; Sull, S. Regression tree CNN for estimation of ground sampling distance based on floating-point representation. Remote Sens. 2019, 11, 2276. [Google Scholar] [CrossRef]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Thomas, J.R.; Namken, L.N.; Oerther, G.F.; Brown, R.G. Estimating Leaf Water Content by Reflectance Measurements 1. Agron. J. 1971, 63, 845–847. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Fourty, T.; Baret, F. Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study. Remote Sens. Environ. 1997, 61, 34–45. [Google Scholar]
- Datt, B. Remote sensing of water content in Eucalyptus leaves. Aust. J. Bot. 1999, 47, 909–923. [Google Scholar] [CrossRef]
- Danson, F.M.; Bowyer, P. Estimating live fuel moisture content from remotely sensed reflectance. Remote Sens. Environ. 2004, 92, 309–321. [Google Scholar] [CrossRef]
- Colombo, R.; Meroni, M.; Marchesi, A.; Busetto, L.; Rossini, M.; Giardino, C.; Panigada, C. Estimation of leaf and canopy water content in poplar plantations by means of hyperspectral indices and inverse modeling. Remote Sens. Environ. 2008, 112, 1820–1834. [Google Scholar] [CrossRef]
- Peterson, S.H.; Roberts, D.A.; Dennison, P.E. Mapping live fuel moisture with MODIS data: A multiple regression approach. Remote Sens. Environ. 2008, 112, 4272–4284. [Google Scholar] [CrossRef]
- García, M.; Chuvieco, E.; Nieto, H.; Aguado, I. Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens. Environ. 2008, 112, 3618–3627. [Google Scholar] [CrossRef]
- Vermunt, P. Understanding Radar Backscatter Sensitivity to Vegetation Water Dynamics: Sub-Daily Variations in Ground-Based Experiments. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2022. [Google Scholar]
- Way, J.; Paris, J.; Dobson, M.C.; McDonals, K.; Ulaby, F.T.; Weber, J.; Ustin, L.; Vanderbilt, V.C.; Kasischke, E.S. Diurnal change in trees as observed by optical and microwave sensors: The EOS synergism study. IEEE Trans. Geosci. Remote Sens. 1991, 29, 807–821. [Google Scholar] [CrossRef]
- Beaudoin, A.; Vidal, A.; Desbois, N.; Devaux-Ros, C. Monitoring the water status of Mediterranean forests using ERS-1, to support fire risk prevention. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS’95. Quantitative Remote Sensing for Science and Applications, Florence, Italy, 10–14 July 1995. [Google Scholar]
- Schmidt, L.; Forkel, M.; Zotta, R.-M.; Scherrer, S.; Dorigo, W.A.; Kuhn-Régnier, A.; Van Der Schalie, R.; Yebra, M. Assessing the sensitivity of multi-frequency passive microwave vegetation optical depth to vegetation properties. Biogeosci. Discuss. 2022, 2022, 1–24. [Google Scholar] [CrossRef]
- Chuvieco, E.; Cocero, D.; Riano, D.; Martin, P.; Martınez-Vega, J.; De La Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Dennison, P.; Roberts, D.A.; Peterson, S.H.; Rechel, J. Use of normalized difference water index for monitoring live fuel moisture. Int. J. Remote Sens. 2005, 26, 1035–1042. [Google Scholar] [CrossRef]
- Hao, X.; Qu, J.J. Retrieval of real-time live fuel moisture content using MODIS measurements. Remote Sens. Environ. 2007, 108, 130–137. [Google Scholar] [CrossRef]
- Yebra, M.; Chuvieco, E.; Riano, D. Estimation of live fuel moisture content from MODIS images for fire risk assessment. Agric. For. Meteorol. 2008, 148, 523–536. [Google Scholar] [CrossRef]
- Caccamo, G.; Chisholm, L.; Bradstock, R.; Puotinen, M.L.; Pippen, B. Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data. Int. J. Wildland Fire 2011, 21, 257–269. [Google Scholar] [CrossRef]
- Al-Moustafa, T.; Armitage, R.P.; Danson, F.M. Mapping fuel moisture content in upland vegetation using airborne hyperspectral imagery. Remote Sens. Environ. 2012, 127, 74–83. [Google Scholar] [CrossRef]
- Fan, L.; Wigneron, J.-P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.-L.; Pimont, F.; Al Bitar, A.; Fernandez-Moran, R. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sens. Environ. 2018, 205, 210–223. [Google Scholar] [CrossRef]
- Marino, E.; Guillén-Climent, M.; Algeet, N.; Tomé, J.L.; Hernando, C. Estimation of Live Fuel Moisture Content of Shrubland Using MODIS and Sentinel-2 Images. In Advances in Forest Fire Research; Viegas, D.X., Ed.; Imprensa da Universidade de Coimbra: Coimbra, Portugal, 2018; pp. 218–226. [Google Scholar]
- Myoung, B.; Kim, S.H.; Nghiem, S.V.; Jia, S.; Whitney, K.; Kafatos, M.C. Estimating live fuel moisture from MODIS satellite data for wildfire danger assessment in Southern California USA. Remote Sens. 2018, 10, 87. [Google Scholar] [CrossRef]
- Marino, E.; Yebra, M.; Guillén-Climent, M.; Algeet, N.; Tomé, J.L.; Madrigal, J.; Guijarro, M.; Hernando, C. Investigating live fuel moisture content estimation in fire-prone shrubland from remote sensing using empirical modelling and RTM simulations. Remote Sens. 2020, 12, 2251. [Google Scholar] [CrossRef]
- Costa-Saura, J.M.; Balaguer-Beser, Á.; Ruiz, L.A.; Pardo-Pascual, J.E.; Soriano-Sancho, J.L. Empirical models for spatio-temporal live fuel moisture content estimation in mixed mediterranean vegetation areas using sentinel-2 indices and meteorological data. Remote Sens. 2021, 13, 3726. [Google Scholar] [CrossRef]
- Zhu, L.; Webb, G.I.; Yebra, M.; Scortechini, G.; Miller, L.; Petitjean, F. Live fuel moisture content estimation from MODIS: A deep learning approach. ISPRS J. Photogramm. Remote Sens. 2021, 179, 81–91. [Google Scholar] [CrossRef]
- Miller, L.; Zhu, L.; Yebra, M.; Rüdiger, C.; Webb, G.I. Multi-modal temporal CNNs for live fuel moisture content estimation. Environ. Model. Softw. 2022, 156, 105467. [Google Scholar] [CrossRef]
- Tanase, M.A.; Nova, J.P.G.; Marino, E.; Aponte, C.; Tomé, J.L.; Yáñez, L.; Madrigal, J.; Guijarro, M.; Hernando, C. Characterizing live fuel moisture content from active and passive sensors in a mediterranean environment. Forests 2022, 13, 1846. [Google Scholar] [CrossRef]
- Arcos, M.A.; Edo-Botella, R.; Balaguer-Beser, Á.; Ruiz, L.Á. Analyzing independent LFMC empirical models in the mid-Mediterranean region of Spain attending to vegetation types and bioclimatic zones. Forests 2023, 14, 1299. [Google Scholar] [CrossRef]
- Benali, A.; Baldassarre, G.; Loureiro, C.; Briquemont, F.; Fernandes, P.M.; Rossa, C.; Figueira, R. A Near-Real-Time Operational Live Fuel Moisture Content (LFMC) Product to Support Decision-Making at the National Level. Fire 2025, 8, 178. [Google Scholar] [CrossRef]
- Wang, L.; Quan, X.; He, B.; Yebra, M.; Xing, M.; Liu, X. Assessment of the dual polarimetric sentinel-1A data for forest fuel moisture content estimation. Remote Sens. 2019, 11, 1568. [Google Scholar] [CrossRef]
- Miller, L.; Zhu, L.; Yebra, M.; Rüdiger, C.; Webb, G.I. Projecting live fuel moisture content via deep learning. Int. J. Wildland Fire 2023, 32, 709–727. [Google Scholar] [CrossRef]
- Pellizzaro, G.; Cesaraccio, C.; Duce, P.; Ventura, A.; Zara, P. Relationships between seasonal patterns of live fuel moisture and meteorological drought indices for Mediterranean shrubland species. Int. J. Wildland Fire 2007, 16, 232–241. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, B.; Yan, N.; Zhu, W.; Feng, X. An improved satellite-based approach for estimating vapor pressure deficit from MODIS data. J. Geophys. Res. Atmos. 2014, 119, 12256–12271. [Google Scholar] [CrossRef]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Delwart, S.; Cabot, F.; Boutin, J.; Escorihuela, M.-J.; Font, J.; Reul, N.; Gruhier, C. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc. IEEE 2010, 98, 666–687. [Google Scholar] [CrossRef]
- Holgate, C.; De Jeu, R.A.; van Dijk, A.I.J.M.; Liu, Y.; Renzullo, L.J.; Dharssi, I.; Parinussa, R.M.; Van Der Schalie, R.; Gevaert, A.; Walker, J. Comparison of remotely sensed and modelled soil moisture data sets across Australia. Remote Sens. Environ. 2016, 186, 479–500. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Kuleshov, Y.; Chua, Z.-W.; Watkins, A.B.; Choy, S.; Sun, Q. Evaluating satellite soil moisture datasets for drought monitoring in Australia and the South-West Pacific. Remote Sens. 2022, 14, 3971. [Google Scholar] [CrossRef]
- Holgate, C.M.; Van DIjk, A.I.; Cary, G.J.; Yebra, M. Using alternative soil moisture estimates in the McArthur Forest Fire Danger Index. Int. J. Wildland Fire 2017, 26, 806–819. [Google Scholar] [CrossRef]
- Merrill, D.; Alexander, M.E. Glossary of Forest fire Management Terms; Canadian Committee on Forest Fire Management, National Research Council of Canada: Ottawa, ON, Canada, 1987. [Google Scholar]
- Chuvieco, E.; Riaño, D.; Van Wagtendok, J.; Morsdof, F. Fuel loads and fuel type mapping. In Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data; World Scientific: Hackensack, NJ, USA, 2003; pp. 119–142. [Google Scholar]
- Pettinari, M.L.; Chuvieco, E. Fire danger observed from space. Surv. Geophys. 2020, 41, 1437–1459. [Google Scholar] [CrossRef]
- Lawson, B.; Stocks, B.; Alexander, M.; Van Wagner, C. A system for predicting fire behavior in Canadian forests. In Proceedings of the Eighth Conference on Fire and Forest Meteorology, Detroit, MI, USA, 29 April–2 May 1985; Society of American Foresters: Bethesda, MA, USA, 1985. [Google Scholar]
- Forestry Canada. Development and Structure of the Canadian Forest Fire Behavior Prediction System; Rep. No. ST-X-3; Forestry Canada: Ottawa, ON, Canada, 1992. [Google Scholar]
- Arroyo, L.A.; Healey, S.P.; Cohen, W.B.; Cocero, D.; Manzanera, J.A. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. J. Geophys. Res. Biogeosci. 2006, 111, 1–10. [Google Scholar] [CrossRef]
- Fogarty, L.; Pearce, H.; Catchpole, W.; Alexander, M. Adoption vs. adaptation: Lessons from applying the Canadian forest fire danger rating system in New Zealand. In Proceedings of the 3rd International Conference on Forest Fire Research and 14th Fire and Forest Meteorology Conference, Luso, Coimbra, Portugal, 16–20 November 1998. [Google Scholar]
- Leonardo, E.M.C.; Watt, M.S.; Pearse, G.D.; Dash, J.P.; Persson, H.J. Comparison of TanDEM-X InSAR data and high-density ALS for the prediction of forest inventory attributes in plantation forests with steep terrain. Remote Sens. Environ. 2020, 246, 111833. [Google Scholar] [CrossRef]
- Mallinis, G.; Galidaki, G.; Gitas, I. A comparative analysis of EO-1 Hyperion, Quickbird and Landsat TM imagery for fuel type mapping of a typical Mediterranean landscape. Remote Sens. 2014, 6, 1684–1704. [Google Scholar] [CrossRef]
- Roberts, D.A.; Dennison, P.E.; Gardner, M.E.; Hetzel, Y.; Ustin, S.L.; Lee, C.T. Evaluation of the potential of Hyperion for fire danger assessment by comparison to the Airborne Visible/Infrared Imaging Spectrometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1297–1310. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Varga, T.A.; Asner, G.P. Hyperspectral and LiDAR remote sensing of fire fuels in Hawaii Volcanoes National Park. Ecol. Appl. 2008, 18, 613–623. [Google Scholar] [CrossRef]
- Chrysafis, I.; Damianidis, C.; Giannakopoulos, V.; Mitsopoulos, I.; Dokas, I.M.; Mallinis, G. Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece. Remote Sens. 2023, 15, 1015. [Google Scholar] [CrossRef]
- Riaño, D.; Chuvieco, E.; Salas, J.; Palacios-Orueta, A.; Bastarrika, A. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can. J. For. Res. 2002, 32, 1301–1315. [Google Scholar] [CrossRef]
- Hardy, C.C.; Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of the western US. Photogramm. Eng. Remote Sens. 1999, 65, 603–610. [Google Scholar]
- Cunill Camprubi, A.; González-Moreno, P.; Resco de Dios, V. Live fuel moisture content mapping in the Mediterranean Basin using random forests and combining MODIS spectral and thermal data. Remote Sens. 2022, 14, 3162. [Google Scholar] [CrossRef]
- Arganaraz, J.P.; Landi, M.A.; Bravo, S.J.; Gavier-Pizarro, G.I.; Scavuzzo, C.M.; Bellis, L.M. Estimation of live fuel moisture content from MODIS images for fire danger assessment in Southern Gran Chaco. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5339–5349. [Google Scholar] [CrossRef]
- Lai, G.; Quan, X.; Yebra, M.; He, B. Model-driven estimation of closed and open shrublands live fuel moisture content. GIScience Remote Sens. 2022, 59, 1837–1856. [Google Scholar] [CrossRef]
- Riaño, D.; Vaughan, P.; Chuvieco, E.; Zarco-Tejada, P.J.; Ustin, S.L. Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: Analysis at leaf and canopy level. IEEE Trans. Geosci. Remote Sens. 2005, 43, 819–826. [Google Scholar] [CrossRef]
- DeCastro, A.L.; Juliano, T.W.; Kosović, B.; Ebrahimian, H.; Balch, J.K. A computationally efficient method for updating fuel inputs for wildfire behavior models using sentinel imagery and random forest classification. Remote Sens. 2022, 14, 1447. [Google Scholar] [CrossRef]
- Palomino, A.F.; Espino, P.S.; Reyes, C.B.; Rojas, J.A.J.; y Silva, F.R. Estimation of moisture in live fuels in the mediterranean: Linear regressions and random forests. J. Environ. Manag. 2022, 322, 116069. [Google Scholar] [CrossRef]
- Adab, H.; Devi Kanniah, K.; Beringer, J. Estimating and Up-Scaling Fuel Moisture and Leaf Dry Matter Content of a Temperate Humid Forest Using Multi Resolution Remote Sensing Data. Remote Sens. 2016, 8, 961. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; Van Dijk, A.I.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Yebra, M.; Shokirov, S. Validation of Fuel Moisture Content Estimates from the Australian Flammability Monitoring Systems for Coastal Shrublands in the Perth Region—Black Summer Final Report; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2022. [Google Scholar]
- Quan, X.; Yebra, M.; Riaño, D.; He, B.; Lai, G.; Liu, X. Global fuel moisture content mapping from MODIS. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102354. [Google Scholar] [CrossRef]
- Trouvé, R.; Jiang, R.; Fedrigo, M.; White, M.D.; Kasel, S.; Baker, P.J.; Nitschke, C.R. Combining environmental, multispectral, and LiDAR data improves forest type classification: A case study on mapping cool temperate rainforests and mixed forests. Remote Sens. 2022, 15, 60. [Google Scholar] [CrossRef]
- Long, X.; Li, X.; Lin, H.; Zhang, M. Mapping the vegetation distribution and dynamics of a wetland using adaptive-stacking and Google Earth Engine based on multi-source remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102453. [Google Scholar] [CrossRef]
- Pande-Chhetri, R.; Abd-Elrahman, A.; Liu, T.; Morton, J.; Wilhelm, V.L. Object-based classification of wetland vegetation using very high-resolution unmanned air system imagery. Eur. J. Remote Sens. 2017, 50, 564–576. [Google Scholar] [CrossRef]
- Degerickx, J.; Roberts, D.A.; Somers, B. Enhancing the performance of Multiple Endmember Spectral Mixture Analysis (MESMA) for urban land cover mapping using airborne lidar data and band selection. Remote Sens. Environ. 2019, 221, 260–273. [Google Scholar] [CrossRef]
- Malhi, R.K.M.; Kiran, G.S.; Srivastava, P.K.; Bhattacharya, B.K.; Mohanta, A. Spectral mixture analysis of AVIRIS-NG data for grouping plant functional types. Adv. Space Res. 2024, 73, 1439–1448. [Google Scholar] [CrossRef]
- Zheng, J.-Y.; Hao, Y.-Y.; Wang, Y.-C.; Zhou, S.-Q.; Wu, W.-B.; Yuan, Q.; Gao, Y.; Guo, H.-Q.; Cai, X.-X.; Zhao, B. Coastal Wetland Vegetation Classification Using Pixel-Based, Object-Based and Deep Learning Methods Based on RGB-UAV. Land 2022, 11, 2039. [Google Scholar] [CrossRef]
- McArthur, A.G. Fire Behaviour in Eucalypt Forests; Forestry and Timber Bureau Leaflet 107; Forestry and Timber Bureau, Department of National Development: Canberra, ACT, Australia, 1967. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972; Volume 115. [Google Scholar]
- Papadopoulos, G.D.; Pavlidou, F.-N. A comparative review on wildfire simulators. IEEE Syst. J. 2011, 5, 233–243. [Google Scholar] [CrossRef]
- Singh, H.; Ang, L.-M.; Paudyal, D.; Acuna, M.; Srivastava, P.K.; Srivastava, S.K. A Comprehensive Review of Empirical and Dynamic Wildfire Simulators and Machine Learning Techniques used for the Prediction of Wildfire in Australia. Technol. Knowl. Learn. 2025, 30, 935–968. [Google Scholar] [CrossRef]
- Anderson, S.A.J.; Schou, W.C.; Clement, B. NZ Fire Behaviour Toolkit: User Guide and Technical Report; New Zealand Fire Service Commission Research Report #105; New Zealand Fire Service Commission: Wellington, New Zealand, 2008; ISBN 978-1-877539-21-3. [Google Scholar]
- Tymstra, C.; Bryce, R.W.; Wotton, B.M.; Taylor, S.W.; Armitage, O.B. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model; Information Report NOR-X-417; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2010; 88p. [Google Scholar]
- Thompson, S.; Grüner, I.; Gapare, N. New Zealand Land Cover Database Version 2: Illustrated Guide to Target Classes; Ministry for the Environment: Wellington, New Zealand, 2003. [Google Scholar]
- Landcare Research. LCDB v5.0—Land Cover Database Version 5.0; Landcare Research New Zealand Ltd.: Mainland, New Zealand, 2020; Available online: https://lris.scinfo.org.nz/layer/104400-lcdb-v50-land-cover-database-version-50-mainland-new-zealand-deprecated/ (accessed on 15 August 2025).
- Fire and Emergency New Zealand (FENZ). Grassland Curing Guide: New Zealand Edition; Fire and Emergency New Zealand: Wellington, New Zealand, 2023. [Google Scholar]
- Anderson, S.A.J. Future Options for Fire Behaviour Modelling and Fire Danger Rating in New Zealand. Proc. R. Soc. Qld. 2009, 115, 119–127. [Google Scholar] [CrossRef]
- Wiser, S.; Arnst, E. NZ National Vegetation Survey Occurrence Data. Landcare Research. Occurrence Dataset. 2025. Available online: https://www.gbif.org/dataset/788439f0-3b56-11dc-8c19-b8a03c50a862 (accessed on 24 September 2025).
- Guk, E.; Bar-Massada, A.; Yebra, M.; Scortechini, G.; Levin, N. Examining the Transferability of Remote-Sensing-Based Models of Live Fuel Moisture Content for Predicting Wildfire Characteristics. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14762–14776. [Google Scholar] [CrossRef]
- CSIRO. SPARK: A Toolkit for the End-to-End Processing, Simulation and Analysis of Wildfires. 2024. Available online: https://research.csiro.au/spark/ (accessed on 16 August 2025).
- Tolhurst, K.; Shields, B.; Chong, D. Phoenix: Development and application of a bushfire risk management tool. Aust. J. Emerg. Manag. 2008, 23, 47–54. [Google Scholar]
- McGrattan, K.; Hostikka, S.; McDermott, R.; Floyd, J.; Weinschenk, C.; Overholt, K. Fire Dynamics Simulator FDS User’s Guide; NIST Special Publication 1018-5; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. [Google Scholar]
- Finney, M.A.; Andrews, P.L. FARSITE: Fire Area Simulator—A program for fire growth simulation. Fire Manag. Notes 1999, 59, 13–15. [Google Scholar]
- Finney, M.A. An overview of FlamMap fire modeling capabilities. In Fuels Management-How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; Proceedings RMRS-P-41; Andrews, P.L., Butler, B.W., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 213–220. [Google Scholar]
- Dillon, G.K.; Scott, J.H.; Jaffe, M.R.; Olszewski, J.H.; Vogler, K.C.; Finney, M.A.; Short, K.C.; Riley, K.L.; Grenfell, I.C.; Jolly, W.M.; et al. Spatial Datasets of Probabilistic Wildfire Risk Components for the United States (270 m), 3rd ed.; Forest Service Research Data Archive: Fort Collins, CO, USA, 2023. [Google Scholar] [CrossRef]
- Cimdins, R.; Krasovskiy, A.; Kraxner, F. Regional Variability and Driving Forces behind Forest Fires in Sweden. Remote Sens. 2022, 14, 5826. [Google Scholar] [CrossRef]





| Attribute | Model Type | ||
|---|---|---|---|
| Empirical | ML | Physical | |
| Computational requirements | Low | High | High | 
| Generalizability across various conditions | Low | Low | High | 
| Requires understanding of physical variables | Low | Low | High | 
| Parameterization | Low | Low | High | 
| Interpretability | High | Low | High | 
| Complexity | Low | High | High | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watt, M.S.; Gross, S.; Difuntorum, J.K.; McCarty, J.L.; Pearce, H.G.; Shuman, J.K.; Yebra, M. Monitoring Wildfire Risk with a Near-Real-Time Live Fuel Moisture Content System: A Review and Roadmap for Operational Application in New Zealand. Remote Sens. 2025, 17, 3580. https://doi.org/10.3390/rs17213580
Watt MS, Gross S, Difuntorum JK, McCarty JL, Pearce HG, Shuman JK, Yebra M. Monitoring Wildfire Risk with a Near-Real-Time Live Fuel Moisture Content System: A Review and Roadmap for Operational Application in New Zealand. Remote Sensing. 2025; 17(21):3580. https://doi.org/10.3390/rs17213580
Chicago/Turabian StyleWatt, Michael S., Shana Gross, John Keithley Difuntorum, Jessica L. McCarty, H. Grant Pearce, Jacquelyn K. Shuman, and Marta Yebra. 2025. "Monitoring Wildfire Risk with a Near-Real-Time Live Fuel Moisture Content System: A Review and Roadmap for Operational Application in New Zealand" Remote Sensing 17, no. 21: 3580. https://doi.org/10.3390/rs17213580
APA StyleWatt, M. S., Gross, S., Difuntorum, J. K., McCarty, J. L., Pearce, H. G., Shuman, J. K., & Yebra, M. (2025). Monitoring Wildfire Risk with a Near-Real-Time Live Fuel Moisture Content System: A Review and Roadmap for Operational Application in New Zealand. Remote Sensing, 17(21), 3580. https://doi.org/10.3390/rs17213580
 
        


 
       