Annual and Interannual Oscillations of Greenland’s Ice Sheet Mass Variations from GRACE/GRACE-FO, Linked with Climatic Indices and Meteorological Parameters
Highlights
- A complete annual/seasonal cycle was observed, based on the correlations between ice mass variations, three climatic indices (i.e., NAO, GBI, AMO), and meteorological parameters (i.e., Temperature, Precipitation, Albedo).
- Interannual oscillations are also observed with periodicities ranging from 4 to 7 years. They could be related to mixed effects from the solid Earth’s rotation and atmospheric oscillations. A second interannual frequency is observed at 11 years, corresponding to the solar cycle.
- With a complex climatic system regulating ice mass variations in Greenland, a single external forcing on one of these indices and parameters could have a cascading effect in space and time at an annual and interannual scale.
Abstract
1. Introduction
2. Materials
2.1. GRACE/GRACE-FO
2.2. Climate Indices
2.2.1. NAO
2.2.2. GBI
2.2.3. AMO
2.3. Meteorological Parameters
3. Methods
3.1. Empirical Orthogonal Function
3.2. Cross Wavelet Transform
4. Results
4.1. GRACE EOF Modes
4.2. Correlations Between Ice Mass Changes and Climate Indices
4.3. Links Between Ice Mass Changes and Meteorological Parameters
5. Discussion and Interpretation
5.1. Mass Changes Validation
5.2. Correlation Between Indices and Parameters
5.3. Annual Cycle
- Sea surface temperature, as shown with the AMO, drives pressure variations over the North Atlantic and modulates precipitation over Greenland.
- The NAO or GBI, and near-surface temperatures are intrinsically linked and mutually reinforcing.
- Precipitation and temperature influence albedo and ice mass, while albedo amplifies the effect of solar radiation on mass variations.
- Heat exchange between the land (NST) and the ocean (AMO) occurs with a one- to two-month lag due to oceanic thermal inertia.
- Finally, the AMO directly forces glacier retreat by promoting ice discharge at marine-terminating glaciers through enhanced calving and frontal melting, driven by oceanic thermal forcing.
5.4. Decadal Oscillation
5.5. Periodicities at 4 and 7 Years
5.6. AMO’s Overall Correlation
5.7. Non-Periodic Events
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| Al | Albedo |
| AMO | Atlantic Multidecadal Oscillation |
| AMOC | Atlantic Meridional Overturning Circulation |
| CARRA | Copernicus Arctic Regional ReAnalysis |
| COI | Cone of Influence |
| CI95% | 95% confidence interval |
| EOF | Empirical Orthogonal Function |
| FFT | Fast Fourier Transform |
| GBI | Greenland Blocking Index |
| GIS | Greenland Ice Sheet |
| GNET | Greenland’s GNSS network |
| GNSS | Global Navigation Satellite System |
| GRACE | Gravity Recovery and Climate Experiment |
| GRACE-FO | Gravity Recovery and Climate Experiment Follow-On |
| ICGEM | International Centre for Global Earth Models |
| IMBIE | Ice Sheet Mass Balance Inter-comparison Exercise |
| NAO | North Atlantic Oscillation |
| NOAA | National Oceanic and Atmospheric Administration |
| NST | Near-Surface Temperature |
| P | Precipitation |
| PSL | Physical Sciences Laboratory |
| SH | Spherical Harmonics |
| SLR | Satellite Laser Ranging |
| SST | Sea Surface Temperature |
| WT | Wavelet Transform |
| XWT | Cross Wavelet Transform |
References
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary Sea Level Changes from Satellite Altimetry: What Have We Learned? What Are the New Challenges? Adv. Space Res. 2018, 62, 1639–1653. [Google Scholar] [CrossRef]
- NASA; JPL/Caltech Greenland Ice Mass Loss 2002–2023. Available online: https://svs.gsfc.nasa.gov/31156/ (accessed on 23 October 2025).
- Hansen, N.; Sørensen, L.S.; Spada, G.; Melini, D.; Forsberg, R.; Mottram, R.; Simonsen, S.B. Revisiting Ice Sheet Mass Balance: Insights into Changing Dynamics in Greenland and Antarctica from ICESat-2 2023. Cryosphere Discuss 2023. [Google Scholar] [CrossRef]
- Ravinder, N.; Shepherd, A.; Otosaka, I.; Slater, T.; Muir, A.; Gilbert, L. Greenland Ice Sheet Elevation Change From CryoSat-2 and ICESat-2. Geophys. Res. Lett. 2024, 51, e2024GL110822. [Google Scholar] [CrossRef]
- Simonsen, S.B.; Barletta, V.R.; Colgan, W.T.; Sørensen, L.S. Greenland Ice Sheet Mass Balance (1992–2020) From Calibrated Radar Altimetry. Geophys. Res. Lett. 2021, 48, e2020GL091216. [Google Scholar] [CrossRef]
- Khan, S.A.; Bamber, J.L.; Rignot, E.; Helm, V.; Aschwanden, A.; Holland, D.M.; Broeke, M.; King, M.; Noël, B.; Truffer, M.; et al. Greenland Mass Trends From Airborne and Satellite Altimetry During 2011–2020. JGR Earth Surf. 2022, 127, e2021JF006505. [Google Scholar] [CrossRef] [PubMed]
- Mouginot, J.; Rignot, E.; Bjørk, A.A.; van den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.; Wood, M. Forty-Six Years of Greenland Ice Sheet Mass Balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA 2019, 116, 9239–9244. [Google Scholar] [CrossRef]
- Box, J.E.; Hubbard, A.; Bahr, D.B.; Colgan, W.T.; Fettweis, X.; Mankoff, K.D.; Wehrlé, A.; Noël, B.; Van Den Broeke, M.R.; Wouters, B.; et al. Greenland Ice Sheet Climate Disequilibrium and Committed Sea-Level Rise. Nat. Clim. Change 2022, 12, 808–813. [Google Scholar] [CrossRef]
- Mankoff, K.D.; Fettweis, X.; Langen, P.L.; Stendel, M.; Kjeldsen, K.K.; Karlsson, N.B.; Noël, B.; van den Broeke, M.R.; Solgaard, A.; Colgan, W.; et al. Greenland Ice Sheet Mass Balance from 1840 through next Week. Earth Syst. Sci. Data 2021, 13, 5001–5025. [Google Scholar] [CrossRef]
- The IMBIE Team Mass Balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [CrossRef] [PubMed]
- Otosaka, I.N.; Shepherd, A.; Ivins, E.R.; Schlegel, N.-J.; Amory, C.; van den Broeke, M.; Horwath, M.; Joughin, I.; King, M.; Krinner, G.; et al. Mass Balance of the Greenland and Antarctic Ice Sheets from 1992 to 2020. Earth Syst. Sci. Data 2023, 15, 1597–1616. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Yao, Y.; Zhang, W. GRACE and Mass Budget Method Reveal Decelerated Ice Loss in East Greenland in the Past Decade. Remote Sens. Environ. 2023, 286, 113450. [Google Scholar] [CrossRef]
- Wang, W.; Shen, Y.; Chen, Q.; Wang, F. High-Resolution Mascon Solutions Reveal Glacier-Scale Mass Changes over the Greenland Ice Sheet from 2002 to 2022. Geophys. J. Int. 2023, 236, 494–515. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time Variability of the Earth’s Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE. J. Geophys. Res. 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Ramillien, G.; Seoane, L.; Darrozes, J. An Innovative Slepian Approach to Invert GRACE KBRR for Localized Hydrological Information at the Sub-Basin Scale. Remote Sens. 2021, 13, 1824. [Google Scholar] [CrossRef]
- Bevis, M.; Harig, C.; Khan, S.A.; Brown, A.; Simons, F.J.; Willis, M.; Fettweis, X.; van den Broeke, M.R.; Madsen, F.B.; Kendrick, E.; et al. Accelerating Changes in Ice Mass within Greenland, and the Ice Sheet’s Sensitivity to Atmospheric Forcing. Proc. Natl. Acad. Sci. USA 2019, 116, 1934–1939. [Google Scholar] [CrossRef]
- Graf, M.; Pail, R. Combination of Geometric and Gravimetric Data Sets for the Estimation of High-Resolution Mass Balances of the Greenland Ice Sheet. Geophys. J. Int. 2023, 235, 2149–2167. [Google Scholar] [CrossRef]
- Bian, Y.; Yue, J.; Gao, W.; Li, Z.; Lu, D.; Xiang, Y.; Chen, J. Analysis of the Spatiotemporal Changes of Ice Sheet Mass and Driving Factors in Greenland. Remote Sens. 2019, 11, 862. [Google Scholar] [CrossRef]
- Gałdyn, F.; Sośnica, K.; Zajdel, R.; Meyer, U.; Jäggi, A. Long-Term Ice Mass Changes in Greenland and Antarctica Derived from Satellite Laser Ranging. Remote Sens. Environ. 2024, 302, 113994. [Google Scholar] [CrossRef]
- Forsberg, R.; Sørensen, L.; Simonsen, S. Greenland and Antarctica Ice Sheet Mass Changes and Effects on Global Sea Level. Surv. Geophys. 2017, 38, 89–104. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; A, G.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Mu, Y.; Wei, Y.; Wu, J.; Ding, Y.; Shangguan, D.; Zeng, D. Variations of Mass Balance of the Greenland Ice Sheet from 2002 to 2019. Remote Sens. 2020, 12, 2609. [Google Scholar] [CrossRef]
- Sasgen, I.; Wouters, B.; Gardner, A.S.; King, M.D.; Tedesco, M.; Landerer, F.W.; Dahle, C.; Save, H.; Fettweis, X. Return to Rapid Ice Loss in Greenland and Record Loss in 2019 Detected by the GRACE-FO Satellites. Commun. Earth Env. 2020, 1, 8. [Google Scholar] [CrossRef]
- Groh, A.; Horwath, M.; Horvath, A.; Meister, R.; Sørensen, L.; Barletta, V.; Forsberg, R.; Wouters, B.; Ditmar, P.; Ran, J.; et al. Evaluating GRACE Mass Change Time Series for the Antarctic and Greenland Ice Sheet—Methods and Results. Geosciences 2019, 9, 415. [Google Scholar] [CrossRef]
- Zou, F.; Tenzer, R.; Fok, H.; Nichol, J. Mass Balance of the Greenland Ice Sheet from GRACE and Surface Mass Balance Modelling. Water 2020, 12, 1847. [Google Scholar] [CrossRef]
- Sasgen, I.; Van Den Broeke, M.; Bamber, J.L.; Rignot, E.; Sørensen, L.S.; Wouters, B.; Martinec, Z.; Velicogna, I.; Simonsen, S.B. Timing and Origin of Recent Regional Ice-Mass Loss in Greenland. Earth Planet. Sci. Lett. 2012, 333–334, 293–303. [Google Scholar] [CrossRef]
- Wunderling, N.; Von Der Heydt, A.S.; Aksenov, Y.; Barker, S.; Bastiaansen, R.; Brovkin, V.; Brunetti, M.; Couplet, V.; Kleinen, T.; Lear, C.H.; et al. Climate Tipping Point Interactions and Cascades: A Review. Earth Syst. Dynam. 2024, 15, 41–74. [Google Scholar] [CrossRef]
- Ryan, J.C.; Medley, B.; Stevens, C.M.; Sutterley, T.C.; Siegfried, M.R. Role of Snowfall Versus Air Temperatures for Greenland Ice Sheet Melt-Albedo Feedbacks. Earth Space Sci. 2023, 10, e2023EA003158. [Google Scholar] [CrossRef]
- Schmid, T.; Radić, V.; Tedstone, A.; Lea, J.M.; Brough, S.; Hermann, M. Atmospheric Drivers of Melt-Related Ice Speed-up Events on the Russell Glacier in Southwest Greenland. Cryosphere 2023, 17, 3933–3954. [Google Scholar] [CrossRef]
- Boyd, C.E. Solar Radiation and Water Temperature. In Water Quality; Springer International Publishing: Cham, Switzerland, 2020; pp. 21–39. ISBN 978-3-030-23334-1. [Google Scholar]
- Blau, M.T.; Ha, K.-J.; Chung, E.-S. Extreme Summer Temperature Anomalies over Greenland Largely Result from Clear-Sky Radiation and Circulation Anomalies. Commun. Earth Environ. 2024, 5, 405. [Google Scholar] [CrossRef]
- Teng, C.-K.-M.; Gu, S.-Y.; Qin, Y.; Dou, X. Impact of Solar Activity on Global Atmospheric Circulation Based on SD-WACCM-X Simulations from 2002 to 2019. Atmosphere 2021, 12, 1526. [Google Scholar] [CrossRef]
- Bei, N.; Xiao, B.; Wang, R.; Yang, Y.; Liu, L.; Han, Y.; Li, G. Impacts of Aerosol-Radiation and Aerosol-Cloud Interactions on a Short-Term Heavy Rainfall Event—A Case Study in the Guanzhong Basin, China. Atmos. Chem. Phys. 2025, 25, 10931–10948. [Google Scholar] [CrossRef]
- Wang, W.; Zender, C.S.; Van As, D.; Fausto, R.S.; Laffin, M.K. Greenland Surface Melt Dominated by Solar and Sensible Heating. Geophys. Res. Lett. 2021, 48, e2020GL090653. [Google Scholar] [CrossRef]
- Drews, A.; Huo, W.; Matthes, K.; Kodera, K.; Kruschke, T. The Sun’s Role in Decadal Climate Predictability in the North Atlantic. Atmos. Chem. Phys. 2022, 22, 7893–7904. [Google Scholar] [CrossRef]
- Kuroda, Y.; Kodera, K.; Yoshida, K.; Yukimoto, S.; Gray, L. Influence of the Solar Cycle on the North Atlantic Oscillation. JGR Atmos. 2022, 127, e2021JD035519. [Google Scholar] [CrossRef]
- Mares, C.; Dobrica, V.; Mares, I.; Demetrescu, C. Solar Signature in Climate Indices. Atmosphere 2022, 13, 1898. [Google Scholar] [CrossRef]
- Hanna, E.; Cropper, T.E.; Hall, R.J.; Cappelen, J. Greenland Blocking Index 1851–2015: A Regional Climate Change Signal. Int. J. Climatol. 2016, 36, 4847–4861. [Google Scholar] [CrossRef]
- Hurrell, J.W. North Atlantic Oscillation (NAO). In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2001; pp. 65–72. ISBN 978-0-12-374473-9. [Google Scholar]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic Multidecadal Oscillation and Its Relation to Rainfall and River Flows in the Continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef]
- Välisuo, I.; Vihma, T.; Pirazzini, R.; Schäfer, M. Interannual Variability of Atmospheric Conditions and Surface Melt in Greenland in 2000–2014. JGR Atmos. 2018, 123, 10443–10463. [Google Scholar] [CrossRef]
- Hanna, E.; Jones, J.M.; Cappelen, J.; Mernild, S.H.; Wood, L.; Steffen, K.; Huybrechts, P. The Influence of North Atlantic Atmospheric and Oceanic Forcing Effects on 1900–2010 Greenland Summer Climate and Ice Melt/Runoff. Int. J. Climatol. 2013, 33, 862–880. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X.; Mote, T.; Wahr, J.; Alexander, P.; Box, J.E.; Wouters, B. Evidence and Analysis of 2012 Greenland Records from Spaceborne Observations, a Regional Climate Model and Reanalysis Data. Cryosphere 2013, 7, 615–630. [Google Scholar] [CrossRef]
- Chudley, T.R.; Howat, I.M.; King, M.D.; Negrete, A. Atlantic Water Intrusion Triggers Rapid Retreat and Regime Change at Previously Stable Greenland Glacier. Nat. Commun. 2023, 14, 2151. [Google Scholar] [CrossRef]
- King, M.A.; Lyu, K.; Zhang, X. Climate Variability a Key Driver of Recent Antarctic Ice-Mass Change. Nat. Geosci. 2023, 16, 1128–1135. [Google Scholar] [CrossRef]
- Meyer, U.; Jean, Y.; Kvas, A.; Dahle, C.; Lemoine, J.M.; Jäggi, A. Combination of GRACE Monthly Gravity Fields on the Normal Equation Level. J. Geod. 2019, 93, 1645–1658. [Google Scholar] [CrossRef]
- Meyer, U.; Jaeggi, A.; Dahle, C.; Flechtner, F.; Kvas, A.; Behzadpour, S.; Mayer-Gürr, T.; Lemoine, J.-M.; Bourgogne, S. International Combination Service for Time-Variable Gravity Fields (COST-G); Monthly GRACE Series 2020; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Meyer, U.; Lasser, M.; Dahle, C.; Förste, C.; Behzadpour, S.; Koch, I.; Jäggi, A. Combined Monthly GRACE-FO Gravity Fields for a Global Gravity-Based Groundwater Product. Geophys. J. Int. 2023, 236, 456–469. [Google Scholar] [CrossRef]
- Sun, Y.; Riva, R.; Ditmar, P. Optimizing Estimates of Annual Variations and Trends in Geocenter Motion and J2 from a Combination of GRACE Data and Geophysical Models. JGR Solid Earth 2016, 121, 8352–8370. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output. J. Geophys. Res. 2008, 113, 2007JB005338. [Google Scholar] [CrossRef]
- Kusche, J.; Schmidt, R.; Petrovic, S.; Rietbroek, R. Decorrelated GRACE Time-Variable Gravity Solutions by GFZ, and Their Validation Using a Hydrological Model. J. Geod. 2009, 83, 903–913. [Google Scholar] [CrossRef]
- Roy, K.; Peltier, W.R. Relative Sea Level in the Western Mediterranean Basin: A Regional Test of the ICE-7G_NA (VM7) Model and a Constraint on Late Holocene Antarctic Deglaciation. Quat. Sci. Rev. 2018, 183, 76–87. [Google Scholar] [CrossRef]
- Peltier, W.R. The ICE-7G_NA (VM7) Ice Thickness and Paleotopography 0–26 Ka, Borealis, V1. 2020. Available online: https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP2/ZCDLY1 (accessed on 23 October 2025). [CrossRef]
- Chen, J.L.; Wilson, C.R.; Li, J.; Zhang, Z. Reducing Leakage Error in GRACE-Observed Long-Term Ice Mass Change: A Case Study in West Antarctica. J. Geod. 2015, 89, 925–940. [Google Scholar] [CrossRef]
- Jin, S.; Zou, F. Re-Estimation of Glacier Mass Loss in Greenland from GRACE with Correction of Land–Ocean Leakage Effects. Glob. Planet. Change 2015, 135, 170–178. [Google Scholar] [CrossRef]
- Li, Z.; Chao, B.F.; Zhang, Z.; Jiang, L.; Wang, H. Greenland Interannual Ice Mass Variations Detected by GRACE Time-Variable Gravity. Geophys. Res. Lett. 2022, 49, e2022GL100551. [Google Scholar] [CrossRef]
- Wood, M.; Rignot, E.; Fenty, I.; An, L.; Bjørk, A.; Van Den Broeke, M.; Cai, C.; Kane, E.; Menemenlis, D.; Millan, R.; et al. Ocean Forcing Drives Glacier Retreat in Greenland. Sci. Adv. 2021, 7, eaba7282. [Google Scholar] [CrossRef] [PubMed]
- Fettweis, X.; Mabille, G.; Erpicum, M. Circulations Atmosphériques et Anomalies de Fonte à La Surface de La Calotte Glaciaire Du Groenland. Bull. Société Géographique Liège 2008, 51, 91–104. [Google Scholar]
- Preece, J.R.; Wachowicz, L.J.; Mote, T.L.; Tedesco, M.; Fettweis, X. Summer Greenland Blocking Diversity and Its Impact on the Surface Mass Balance of the Greenland Ice Sheet. JGR Atmos. 2022, 127, e2021JD035489. [Google Scholar] [CrossRef]
- Maure, D.; Kittel, C.; Lambin, C.; Delhasse, A.; Fettweis, X. Spatially Heterogeneous Effect of Climate Warming on the Arctic Land Ice. Cryosphere 2023, 17, 4645–4659. [Google Scholar] [CrossRef]
- Bjørk, A.A.; Aagaard, S.; Lütt, A.; Khan, S.A.; Box, J.E.; Kjeldsen, K.K.; Larsen, N.K.; Korsgaard, N.J.; Cappelen, J.; Colgan, W.T.; et al. Changes in Greenland’s Peripheral Glaciers Linked to the North Atlantic Oscillation. Nat. Clim. Change 2018, 8, 48–52. [Google Scholar] [CrossRef]
- Shang, P.; Su, X.; Luo, Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sens. 2022, 14, 4442. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, C.; Xia, Y.; Yang, Y. North Atlantic Oscillation–Associated Variation in Cloud Phase and Cloud Radiative Forcing over the Greenland Ice Sheet. J. Clim. 2023, 36, 3203–3215. [Google Scholar] [CrossRef]
- Box, J.E.; Fettweis, X.; Stroeve, J.C.; Tedesco, M.; Hall, D.K.; Steffen, K. Greenland Ice Sheet Albedo Feedback: Thermodynamics and Atmospheric Drivers. Cryosphere 2012, 6, 821–839. [Google Scholar] [CrossRef]
- Lewis, G.; Osterberg, E.; Hawley, R.; Marshall, H.P.; Meehan, T.; Graeter, K.; McCarthy, F.; Overly, T.; Thundercloud, Z.; Ferris, D.; et al. Atmospheric Blocking Drives Recent Albedo Change Across the Western Greenland Ice Sheet Percolation Zone. Geophys. Res. Lett. 2021, 48, e2021GL092814. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X.; Van Den Broeke, M.R.; Van De Wal, R.S.W.; Smeets, C.J.P.P.; Van De Berg, W.J.; Serreze, M.C.; Box, J.E. The Role of Albedo and Accumulation in the 2010 Melting Record in Greenland. Environ. Res. Lett. 2011, 6, 014005. [Google Scholar] [CrossRef]
- Noël, B.; Fettweis, X.; Van De Berg, W.J.; Van Den Broeke, M.R.; Erpicum, M. Sensitivity of Greenland Ice Sheet Surface Mass Balance to Perturbations in Sea Surface Temperature and Sea Ice Cover: A Study with the Regional Climate Model MAR. Cryosphere 2014, 8, 1871–1883. [Google Scholar] [CrossRef]
- Kim, B.-H.; Seo, K.-W.; Eom, J.; Chen, J.; Wilson, C.R. Antarctic Ice Mass Variations from 1979 to 2017 Driven by Anomalous Precipitation Accumulation. Sci Rep 2020, 10, 20366. [Google Scholar] [CrossRef]
- King, M.A.; Christoffersen, P. Major Modes of Climate Variability Dominate Nonlinear Antarctic Ice-Sheet Elevation Changes 2002–2020. Geophys. Res. Lett. 2024, 51, e2024GL108844. [Google Scholar] [CrossRef]
- Mazzarella, A. Time-Integrated North Atlantic Oscillation as a Proxy for Climatic Change. Nat. Sci. 2013, 05, 149–155. [Google Scholar] [CrossRef]
- Paolo, F.S.; Padman, L.; Fricker, H.A.; Adusumilli, S.; Howard, S.; Siegfried, M.R. Response of Pacific-Sector Antarctic Ice Shelves to the El Niño/Southern Oscillation. Nat. Geosci. 2018, 11, 121–126. [Google Scholar] [CrossRef]
- Barnston, A.G.; Livezey, R.E. Classification, Seasonality and Persistence of Low-Frequency Atmospheric Circulation Patterns. Mon. Weather Rev. 1987, 115, 1083–1126. [Google Scholar] [CrossRef]
- Chen, W.Y.; Dool, H.V. den Sensitivity of Teleconnection Patterns to the Sign of Their Primary Action Center. Mon. Weather Rev. 2003, 131, 2885–2899. [Google Scholar] [CrossRef]
- van den Dool, H.M.; Saha, S.; Johansson, Å. Empirical Orthogonal Teleconnections. J. Clim. 2000, 13, 1421–1435. [Google Scholar] [CrossRef]
- Brils, M.; Kuipers Munneke, P.; Van Den Broeke, M.R. Spatial Response of Greenland’s Firn Layer to NAO Variability. JGR Earth Surf. 2023, 128, e2023JF007082. [Google Scholar] [CrossRef]
- Seip, K.L.; Grøn, Ø.; Wang, H. The North Atlantic Oscillations: Cycle Times for the NAO, the AMO and the AMOC. Climate 2019, 7, 43. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.; Kucharski, F.; Xue, J.; Li, X. Contrasting Spatial Structures of Atlantic Multidecadal Oscillation between Observations and Slab Ocean Model Simulations. Clim. Dyn. 2019, 52, 1395–1411. [Google Scholar] [CrossRef]
- Luu, L.N.; Hanna, E.; De Alwis Pitts, D.; Maddison, J.; Screen, J.A.; Catto, J.L.; Fettweis, X. Greenland Summer Blocking Characteristics: An Evaluation of a High-Resolution Multi-Model Ensemble. Clim. Dyn. 2024, 62, 10503–10523. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Hanna, E.; Cropper, T.E.; Jones, P.D.; Scaife, A.A.; Allan, R. Recent Seasonal Asymmetric Changes in the NAO (a Marked Summer Decline and Increased Winter Variability) and Associated Changes in the AO and Greenland Blocking Index. Int. J. Climatol. 2015, 35, 2540–2554. [Google Scholar] [CrossRef]
- Hanna, E.; Fettweis, X.; Hall, R.J. Brief Communication: Recent Changes in Summer Greenland Blocking Captured by None of the CMIP5 Models. Cryosphere 2018, 12, 3287–3292. [Google Scholar] [CrossRef]
- Dozier, J.; Schneider, S.R.; McGinnis, D.F. Effect of Grain Size and Snowpack Water Equivalence on Visible and Near-infrared Satellite Observations of Snow. Water Resour. Res. 1981, 17, 1213–1221. [Google Scholar] [CrossRef]
- Zheng, F.; Liu, X.; Chen, J.; Huang, W.; Sun, C.; Wang, H. Physical Mechanism of Winter Temperature Multidecadal Variations in Arid Central Asia: The Role of the Atlantic Multidecadal Oscillation (AMO). J. Clim. 2023, 36, 7363–7377. [Google Scholar] [CrossRef]
- Kaplan, A.; Cane, M.A.; Kushnir, Y.; Clement, A.C.; Blumenthal, M.B.; Rajagopalan, B. Analyses of Global Sea Surface Temperature 1856–1991. J. Geophys. Res. 1998, 103, 18567–18589. [Google Scholar] [CrossRef]
- Donohoe, A.; Dawson, E.; McMurdie, L.; Battisti, D.S.; Rhines, A. Seasonal Asymmetries in the Lag between Insolation and Surface Temperature. J. Clim. 2020, 33, 3921–3945. [Google Scholar] [CrossRef]
- Kim, H.; An, S.; Kim, D. Timescale-dependent AMOC–AMO Relationship in an Earth System Model of Intermediate Complexity. Int. J. Climatol. 2021, 41, E3298–E3306. [Google Scholar] [CrossRef]
- Hao, X.; Sein, D.V.; Spiegl, T.; Niu, L.; Chen, X.; Lohmann, G. Modeling the Atlantic Multidecadal Oscillation: The High-Resolution Ocean Brings the Timescale; the Atmosphere, the Amplitude. Ocean-Land-Atmos. Res. 2025, 4, 0085. [Google Scholar] [CrossRef]
- Schyberg, H.; Yang, X.; Køltzow, M.A.Ø.; Amstrup, B.; Bakketun, Å.; Bazile, E.; Bojarova, J.; Box, J.E.; Dahlgren, P.; Hagelin, S.; et al. Arctic Regional Reanalysis on Single Levels from 1991 to Present. 2020. Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-carra-single-levels?tab=overview (accessed on 23 October 2025).
- Zheng, Y.; Golledge, N.R.; Gossart, A.; Picard, G.; Leduc-Leballeur, M. Statistically Parameterizing and Evaluating a Positive Degree-Day Model to Estimate Surface Melt in Antarctica from 1979 to 2022. Cryosphere 2023, 17, 3667–3694. [Google Scholar] [CrossRef]
- Dumont, M.; Brun, E.; Picard, G.; Michou, M.; Libois, Q.; Petit, J.-R.; Geyer, M.; Morin, S.; Josse, B. Contribution of Light-Absorbing Impurities in Snow to Greenland’s Darkening since 2009. Nat. Geosci 2014, 7, 509–512. [Google Scholar] [CrossRef]
- Wang, S.; Tedesco, M.; Alexander, P.; Xu, M.; Fettweis, X. Quantifying Spatiotemporal Variability of Glacier Algal Blooms and the Impact on Surface Albedo in Southwestern Greenland. Cryosphere 2020, 14, 2687–2713. [Google Scholar] [CrossRef]
- Huai, B.; Ding, M.; Van Den Broeke, M.R.; Reijmer, C.H.; Noël, B.; Sun, W.; Wang, Y. Future Large-Scale Atmospheric Circulation Changes and Greenland Precipitation. npj Clim. Atmos. Sci. 2025, 8, 10. [Google Scholar] [CrossRef]
- Fettweis, X.; Franco, B.; Tedesco, M.; Van Angelen, J.H.; Lenaerts, J.T.M.; Van Den Broeke, M.R.; Gallée, H. Estimating the Greenland Ice Sheet Surface Mass Balance Contribution to Future Sea Level Rise Using the Regional Atmospheric Climate Model MAR. Cryosphere 2013, 7, 469–489. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES. Rev. Geophys. 2002, 40, 3-1–3-41. [Google Scholar] [CrossRef]
- Preisendorfer, R.W.; Mobley, C.D. Principal Component Analysis in Meteorology and Oceanography; Developments in atmospheric science; Elsevier: Amsterdam, The Netherlands, 1988; ISBN 978-0-444-43014-4. [Google Scholar]
- Li, Z.; Chao, B.F.; Wang, H.S.; Zhang, Z.Z. Antarctica Ice-Mass Variations on Interannual Timescale: Coastal Dipole and Propagating Transports. Earth Planet. Sci. Lett. 2022, 595, 117789. [Google Scholar] [CrossRef]
- Mémin, A.; Flament, T.; Alizier, B.; Watson, C.; Rémy, F. Interannual Variation of the Antarctic Ice Sheet from a Combined Analysis of Satellite Gravimetry and Altimetry Data. Earth Planet. Sci. Lett. 2015, 422, 150–156. [Google Scholar] [CrossRef]
- North, G.R.; Bell, T.L.; Cahalan, R.F.; Moeng, F.J. Sampling Errors in the Estimation of Empirical Orthogonal Functions. Mon. Wea. Rev. 1982, 110, 699–706. [Google Scholar] [CrossRef]
- Maity, S.; Nayak, S.; Nayak, H.P.; Bhatla, R. Comprehensive Assessment of RegCM4 towards Interannual Variability of Indian Summer Monsoon Using Multi-Year Simulations. Theor. Appl. Climatol. 2022, 148, 491–516. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the Cross Wavelet Transform and Wavelet Coherence to Geophysical Time Series. Nonlin. Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Goupillaud, P.; Grossmann, A.; Morlet, J. Cycle-Octave and Related Transforms in Seismic Signal Analysis. Geoexploration 1984, 23, 85–102. [Google Scholar] [CrossRef]
- Lopez, T.; Ramillien, G.; Antoine, R.; Darrozes, J.; Cui, Y.-J.; Kerr, Y. Investigation of Short-Term Evolution of Soil Characteristics over the Lake Chad Basin Using GRACE Data. Remote Sens. 2018, 10, 924. [Google Scholar] [CrossRef]
- Morlet, J.; Arens, G.; Fourgeau, E.; Glard, D. Wave Propagation and Sampling Theory—Part I: Complex Signal and Scattering in Multilayered Media. Geophysics 1982, 47, 203–221. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, P.W. Himalayan Tectonic Belt: Morlet Wavelet Variation and Seismic Harmony. Pure Appl. Geophys. 2021, 178, 3471–3488. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. BAMS 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Khan, S.A.; Seroussi, H.; Morlighem, M.; Colgan, W.; Helm, V.; Cheng, G.; Berg, D.; Barletta, V.R.; Larsen, N.K.; Kochtitzky, W.; et al. Smoothed Monthly Greenland Ice Sheet Elevation Changes during 2003–2023. Earth Syst. Sci. Data 2025, 17, 3047–3071. [Google Scholar] [CrossRef]
- McMillan, M.; Leeson, A.; Shepherd, A.; Briggs, K.; Armitage, T.W.K.; Hogg, A.; Kuipers Munneke, P.; Van Den Broeke, M.; Noël, B.; Van De Berg, W.J.; et al. A High-resolution Record of Greenland Mass Balance. Geophys. Res. Lett. 2016, 43, 7002–7010. [Google Scholar] [CrossRef]
- Simonsen, S.B.; Sørensen, L.S. Implications of Changing Scattering Properties on Greenland Ice Sheet Volume Change from Cryosat-2 Altimetry. Remote Sens. Environ. 2017, 190, 207–216. [Google Scholar] [CrossRef]
- Auger, J.D.; Birkel, S.D.; Maasch, K.A.; Mayewski, P.A.; Schuenemann, K.C. Examination of Precipitation Variability in Southern Greenland. JGR Atmos. 2017, 122, 6202–6216. [Google Scholar] [CrossRef]
- Hermann, M.; Papritz, L.; Wernli, H. A Lagrangian Analysis of the Dynamical and Thermodynamic Drivers of Large-Scale Greenland Melt Events during 1979–2017. Weather Clim. Dynam. 2020, 1, 497–518. [Google Scholar] [CrossRef]
- Rowley, N.A.; Carleton, A.M.; Fegyveresi, J. Relationships of West Greenland Supraglacial Melt-lakes with Local Climate and Regional Atmospheric Circulation. Int. J. Climatol. 2020, 40, 1164–1177. [Google Scholar] [CrossRef]
- Zhang, Q.; Huai, B.; Van Den Broeke, M.R.; Cappelen, J.; Ding, M.; Wang, Y.; Sun, W. Temporal and Spatial Variability in Contemporary Greenland Warming (1958–2020). J. Clim. 2022, 35, 2755–2767. [Google Scholar] [CrossRef]
- Chylek, P.; Lohmann, U. Ratio of the Greenland to Global Temperature Change: Comparison of Observations and Climate Modeling Results. Geophys. Res. Lett. 2005, 32, 2005GL023552. [Google Scholar] [CrossRef]
- Desbiolles, F.; Meroni, A.N.; Renault, L.; Pasquero, C. Environmental Control of Wind Response to Sea Surface Temperature Patterns in Reanalysis Dataset. J. Clim. 2023, 36, 3881–3893. [Google Scholar] [CrossRef]
- Chen, S.; Wu, R.; Chen, W. The Changing Relationship between Interannual Variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. J. Clim. 2015, 28, 485–504. [Google Scholar] [CrossRef]
- Ramos Buarque, S.; Salas, Y.; Melia, D. Link between the North Atlantic Oscillation and the Surface Mass Balance Components of the Greenland Ice Sheet under Preindustrial and Last Interglacial Climates: A Study with a Coupled Global Circulation Model. Clim. Past 2018, 14, 1707–1725. [Google Scholar] [CrossRef]
- Robson, J.; Sutton, R.T.; Archibald, A.; Cooper, F.; Christensen, M.; Gray, L.J.; Holliday, N.P.; Macintosh, C.; McMillan, M.; Moat, B.; et al. Recent Multivariate Changes in the North Atlantic Climate System, with a Focus on 2005–2016. Int. J. Climatol. 2018, 38, 5050–5076. [Google Scholar] [CrossRef]
- Zahn, M.; Von Storch, H. A Long-term Climatology of North Atlantic Polar Lows. Geophys. Res. Lett. 2008, 35, 2008GL035769. [Google Scholar] [CrossRef]
- Saes, M.J.M.; Gjelstrup, C.V.B.; Visser, A.W.; Stedmon, C.A. Separating Annual, Interannual and Regional Change in Sea Surface Temperature in the Northeastern Atlantic and Nordic Seas. JGR Ocean. 2022, 127, e2022JC018630. [Google Scholar] [CrossRef]
- Silva, T.; Abermann, J.; Noël, B.; Shahi, S.; Van De Berg, W.J.; Schöner, W. The Impact of Climate Oscillations on the Surface Energy Budget over the Greenland Ice Sheet in a Changing Climate. Cryosphere 2022, 16, 3375–3391. [Google Scholar] [CrossRef]
- Ran, J.; Ditmar, P.; Van Den Broeke, M.R.; Liu, L.; Klees, R.; Khan, S.A.; Moon, T.; Li, J.; Bevis, M.; Zhong, M.; et al. Vertical Bedrock Shifts Reveal Summer Water Storage in Greenland Ice Sheet. Nature 2024, 635, 108–113. [Google Scholar] [CrossRef]
- Lee, C.; Song, H.; Choi, Y.; Cho, A.; Marshall, J. Observed Multi-Decadal Increase in the Surface Ocean’s Thermal Inertia. Nat. Clim. Change 2025, 15, 308–314. [Google Scholar] [CrossRef]
- Zavialov, P.O. Physical Oceanography of the Dying Aral Sea; Springer Praxis Books; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-06171-4. [Google Scholar]
- Ambastha, A. The Active and Explosive Sun. In Lectures on Solar Physics; Antia, H.M., Bhatnagar, A., Ulmschneider, P., Eds.; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 619, pp. 127–172. ISBN 978-3-540-01528-4. [Google Scholar]
- Penticton, B.C. Canada Solar 10.7 cm Radio Flux Values (Sfu) 2024. Available online: https://spaceweather.gc.ca/forecast-prevision/solar-solaire/solarflux/sx-5-en.php (accessed on 23 October 2025).
- Georgieva, K.; Kirov, B.; Tonev, P.; Guineva, V.; Atanasov, D. Long-Term Variations in the Correlation between NAO and Solar Activity: The Importance of North–South Solar Activity Asymmetry for Atmospheric Circulation. Adv. Space Res. 2007, 40, 1152–1166. [Google Scholar] [CrossRef]
- Lean, J.L. Sun-Climate Connections. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: Oxford, UK, 2017; ISBN 978-0-19-022862-0. [Google Scholar]
- Berdahl, M.; Rennermalm, A.; Hammann, A.; Mioduszweski, J.; Hameed, S.; Tedesco, M.; Stroeve, J.; Mote, T.; Koyama, T.; McConnell, J.R. Southeast Greenland Winter Precipitation Strongly Linked to the Icelandic Low Position. J. Clim. 2018, 31, 4483–4500. [Google Scholar] [CrossRef]
- Kopec, B.G.; Klein, E.S.; Feldman, G.C.; Pedron, S.A.; Bailey, H.; Causey, D.; Hubbard, A.; Marttila, H.; Welker, J.M. Arctic Freshwater Sources and Ocean Mixing Relationships Revealed With Seawater Isotopic Tracing. JGR Ocean. 2024, 129, e2023JC020583. [Google Scholar] [CrossRef]
- Rosenblum, E.; Stroeve, J.; Gille, S.T.; Lique, C.; Fajber, R.; Tremblay, L.B.; Galley, R.; Loureiro, T.; Barber, D.G.; Lukovich, J.V. Freshwater Input and Vertical Mixing in the Canada Basin’s Seasonal Halocline: 1975 versus 2006–12. J. Phys. Oceanogr. 2022, 52, 1383–1396. [Google Scholar] [CrossRef]
- Kang, S.-Y.; Moon, J.-H.; Kim, T.; Jeon, C.; Song, Y.T. Impact of River-Discharged Freshwater on Surface Ocean Environments Revealed by Synergistic Use of Satellite Measurements in the East China Sea. Estuar. Coast. Shelf Sci. 2024, 307, 108909. [Google Scholar] [CrossRef]
- Moon, J.-H.; Kim, T.; Son, Y.B.; Hong, J.-S.; Lee, J.-H.; Chang, P.-H.; Kim, S.-K. Contribution of Low-Salinity Water to Sea Surface Warming of the East China Sea in the Summer of 2016. Prog. Oceanogr. 2019, 175, 68–80. [Google Scholar] [CrossRef]
- Offermann, D.; Kalicinsky, C.; Koppmann, R.; Wintel, J. Very Long-Period Oscillations in the Atmosphere (0–110 Km). Atmos. Chem. Phys. 2021, 21, 1593–1611. [Google Scholar] [CrossRef]
- Pfeffer, J.; Cazenave, A.; Rosat, S.; Moreira, L.; Mandea, M.; Dehant, V.; Coupry, B. A 6-Year Cycle in the Earth System. Glob. Planet. Change 2023, 229, 104245. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Lohmann, G.; Dima, M.; Prange, M. Linkages between Atmospheric Blocking, Sea Ice Export through Fram Strait and the Atlantic Meridional Overturning Circulation. Sci. Rep. 2016, 6, 32881. [Google Scholar] [CrossRef] [PubMed]
- Duyck, E.; Foukal, N.P.; Frajka-Williams, E. Circulation of Baffin Bay and Hudson Bay Waters on the Labrador Shelf and into the Subpolar North Atlantic. Ocean Sci. 2025, 21, 241–260. [Google Scholar] [CrossRef]
- Xu, H.; Kim, H.-M.; Nye, J.A.; Hameed, S. Impacts of the North Atlantic Oscillation on Sea Surface Temperature on the Northeast US Continental Shelf. Cont. Shelf Res. 2015, 105, 60–66. [Google Scholar] [CrossRef]
- Stendel, M. Polar Portal Season Report 2017; DMI, GEUS, DTU-Space and DTU-Byg. 2018. Available online: https://web.archive.org/web/20250322091307/https://polarportal.dk/fileadmin/polarportal/Polar-portal-saeson-rapport-2017-UK.pdf (accessed on 23 October 2025).
- Barletta, V.R.; Bordoni, A.; Khan, S.A. GNET Derived Mass Balance and Glacial Isostatic Adjustment Constraints for Greenland. Geophys. Res. Lett. 2024, 51, e2023GL106891. [Google Scholar] [CrossRef]








| Common Frequencies | NAO | GBI | AMO | TDT | P | Al |
|---|---|---|---|---|---|---|
| 1 yr | 0.74 M1 | −0.85 M1 | −0.61 M1 | −0.88 M1 | 0.54 M1 | 0.90 M1 |
| 4–7 yr | –– | –– | −0.77 M1 to M4 | –– | –– | 0.80 M1 to M3 |
| 11 yr | 0.77 M1 to M4 | –– | –– | −0.71 M1 + M3 + M4 | 0.75 M1 to M5 | –– |
| >15 yr | –– | −0.91 M1 + M2 | 0.73 M1 + M2 | –– | –– | –– |
| Common Frequencies Between | NAO | GBI | AMO |
|---|---|---|---|
| TDT | |||
| 1 yr | −0.54 | 0.89 | 0.66 |
| 11 yr | −0.58 | –– | 0.79 |
| P | |||
| 1 yr | –– | −0.63 | 0.58 |
| 4–7 yr | –– | –– | 0.59 (2002–2012); 0.76 (2012–2023) |
| 11 yr | 0.76 | –– | 0.83 |
| Al | |||
| 1 yr | –– | −0.95 | –– |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cambier, F.; Darrozes, J.; Llubes, M.; Seoane, L.; Ramillien, G. Annual and Interannual Oscillations of Greenland’s Ice Sheet Mass Variations from GRACE/GRACE-FO, Linked with Climatic Indices and Meteorological Parameters. Remote Sens. 2025, 17, 3552. https://doi.org/10.3390/rs17213552
Cambier F, Darrozes J, Llubes M, Seoane L, Ramillien G. Annual and Interannual Oscillations of Greenland’s Ice Sheet Mass Variations from GRACE/GRACE-FO, Linked with Climatic Indices and Meteorological Parameters. Remote Sensing. 2025; 17(21):3552. https://doi.org/10.3390/rs17213552
Chicago/Turabian StyleCambier, Florent, José Darrozes, Muriel Llubes, Lucia Seoane, and Guillaume Ramillien. 2025. "Annual and Interannual Oscillations of Greenland’s Ice Sheet Mass Variations from GRACE/GRACE-FO, Linked with Climatic Indices and Meteorological Parameters" Remote Sensing 17, no. 21: 3552. https://doi.org/10.3390/rs17213552
APA StyleCambier, F., Darrozes, J., Llubes, M., Seoane, L., & Ramillien, G. (2025). Annual and Interannual Oscillations of Greenland’s Ice Sheet Mass Variations from GRACE/GRACE-FO, Linked with Climatic Indices and Meteorological Parameters. Remote Sensing, 17(21), 3552. https://doi.org/10.3390/rs17213552

