Rural Settlement Mapping and Its Spatiotemporal Dynamics Monitoring in the Yellow River Delta Using Multi-Modal Fusion of Landsat Optical and Sentinel-1 SAR Polarimetric Decomposition Data by Leveraging Deep Learning
Highlights
- A TransUNet-based deep learning framework through integrating Sentinel-1 SAR and Landsat optical data was proposed for high-precision RSA mapping.
- The proposed method achieved superior performance (F1 = 84.77%, mIoU = 85.39%), outperforming other methods in both accuracy and applicability for rural settlement extraction.
- Multi-temporal analysis revealed a distinct “west/south dense—east/north sparse” spatial pattern with clustering characteristics and evolving morphological complexity (2002–2023).
- The study established the comprehensive RSA dataset for the Yellow River Delta, providing critical baseline data for regional sustainable development planning.
Abstract
1. Introduction
2. Study Area and Dataset
2.1. Study Area Overview
2.2. Dataset
2.2.1. Note on Temporal Analysis and Period Selection
2.2.2. Data Source Introduction
3. Methodology
3.1. Overall Framework
3.2. Polarimetric Decomposition of Sentinel-1 Radar Data
3.3. Data Fusion
3.4. Samples
3.5. Deep Learning Model Training
3.5.1. TransUNet Model
3.5.2. U-Net Model
3.5.3. Deeplabv3+ Model
3.5.4. TransDeepLab Model
3.6. Accuracy Assessment
4. Results
4.1. Experimental Settings
4.2. Accuracy Evaluation Results
- (i)
- Model Performance Comparison (Fixed Data Source). Using the multisource fused dataset as a unified data source, four models—U-Net, DeepLabv3+, TransUNet, and TransDeepLab—were employed to extract RSA for the years 2015, 2019, and 2023. By quantitatively comparing the models’ performance in terms of Precision, Recall, F1-score, and mIoU, the optimal extraction model was identified.
- (ii)
- Data Source Comparison (Fixed Model). Using the best-performing model selected in Experiment (i) as the unified extraction method, RSA for 2015, 2019, and 2023 were extracted based on Landsat optical imagery, polarization-decomposed radar imagery, and the fused multisource dataset. This experiment aimed to verify the advantage of multisource and multimodal remote sensing data fusion from a data dimension perspective. The accuracy comparison results of the RSA extraction models are shown in Table 2.
4.3. Extraction Results of RSA
4.4. Spatiotemporal Evolution Characteristics of RSA
4.4.1. RSA Scale Evolution
4.4.2. RSA Density Evolution
4.4.3. RSA Agglomeration Evolution
4.4.4. RSA Morphology Evolution
5. Conclusions and Discussion
5.1. Conclusions
- (a)
- The TransUNet model, integrating optical and polarimetric features, achieved satisfactory accuracy in extracting multi-temporal RSA information in the YRD, with Precision, Recall, F1-score, and mIoU reaching 89.27%, 80.70%, 84.77%, and 85.39%, respectively, making it the optimal strategy for RSA extraction in this study.
- (b)
- Under the same data conditions (fusion of optical and polarimetric features), the mIoU of the TransUNet model improved by 1.89%, 5.06%, and 1.94% compared to U-Net, DeepLabv3+, and TransDeepLab, respectively. The ViT module in TransUNet effectively captures global contextual information, overcoming the limited receptive field of U-Net and DeepLabv3+, while skip connections enable multi-scale feature fusion. Compared with TransDeepLab, TransUNet achieves a more balanced integration of local details and global semantics. Under the same model architecture (TransUNet), the fusion of optical and radar features outperformed using either single-source data alone, as their complementarity enables the model to capture more comprehensive surface information, ensuring stable extraction accuracy in complex scenarios.
- (c)
- Analysis of the spatiotemporal evolution of RSA in Dongying City revealed that medium-sized settlements dominate, while extra-large settlements remain few. The density pattern is characterized by “higher density in the west and south, and lower density in the east and north”, with low-density zones distributed in large patches and high-density zones increasingly forming clustered patches and points. The central area of Lijin County has gradually become the core high-density area of RSA. Spatial distribution overall shows an agglomeration pattern, where large-scale RSA often coincide with high-density zones. Settlement patches were initially more regular but have become increasingly complex and irregular, although spatial cohesion remains high, with no significant decline in patch connectivity—further verifying the trend of spatial agglomeration in RSA evolution.
5.2. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Li, Q.; Bai, Y.; Fang, C. A novel framework to evaluate urban-rural coordinated development: A case study in Shanxi Province, China. Habitat Int. 2024, 144, 103013. [Google Scholar] [CrossRef]
- Yang, L.; Ou, C.; Wang, Z.; Du, Z.; Yao, X.; Du, Z. Unveiling patterns and drivers of long-term rural settlement changes from the urban-rural gradient perspective: A case study of the Beijing-Tianjin-Hebei region in China. Habitat Int. 2025, 156, 103300. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.; Ma, W.; Li, Z. How does the rural settlement transition contribute to shaping sustainable rural development? Evidence from Shandong, China. J. Rural Stud. 2021, 82, 279–293. [Google Scholar]
- Zhang, R.; Zhang, X. Spatial Pattern Evolution and Driving Mechanism of Rural Settlements in Rapidly Urbanized Areas: A Case Study of Jiangning District in Nanjing City, China. Land 2023, 12, 749. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Lin, Q. Spatial pattern characteristics and influencing factors of mountainous rural settlements in metropolitan fringe area: A case study of Pingnan County, Fujian Province. Heliyon 2024, 10, e26606. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, S.; Ji, H.; Fan, Y.; Li, P. The modern Yellow River Delta in transition: Causes and implications. Mar. Geol. 2021, 436, 106476. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Feng, Q.; Yin, G.; Zhang, Y. Large-scale subpixel mapping of impervious surface in Yellow River Delta High-efficiency Ecological Economic Zone: An artificial intelligence approach. Earth Sci. Inform. 2024, 18, 43. [Google Scholar] [CrossRef]
- Song, W.; Li, H. Spatial pattern evolution of rural settlements from 1961 to 2030 in Tongzhou District, China. Land Use Policy 2020, 99, 105044. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y. Evolution characteristics and driving factors of negative decoupled rural residential land and resident population in the Yellow River Basin. Land Use Policy 2021, 109, 105685. [Google Scholar] [CrossRef]
- Ji, Z.; Xu, Y.; Sun, M.; Liu, C.; Lu, L.; Huang, A.; Duan, Y.; Liu, L. Spatiotemporal characteristics and dynamic mechanism of rural settlements based on typical transects: A case study of Zhangjiakou City, China. Habitat Int. 2022, 123, 102545. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Qiang, Y.; Lin, Q. Spatial–temporal evolution and land use transition of rural settlements in mountainous counties. Environ. Sci. Eur. 2024, 36, 38. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Wei, T.; Xu, F.; Williams, T.K.-A.; Zhang, H. Entity-based image analysis: A new strategy to map rural settlements from Landsat images. Remote Sens. Environ. 2025, 318, 114549. [Google Scholar] [CrossRef]
- Feng, Q.; Niu, B.; Ren, Y.; Su, S.; Wang, J.; Shi, H.; Yang, J.; Han, M. A 10-m national-scale map of ground-mounted photovoltaic power stations in China of 2020. Sci. Data 2024, 11, 198. [Google Scholar] [CrossRef]
- Xing, H.; Zhu, L.; Chen, B.; Liu, C.; Niu, J.; Li, X.; Feng, Y.; Fang, W. A comparative study of threshold selection methods for change detection from very high-resolution remote sensing images. Earth Sci. Inform. 2022, 15, 369–381. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, Y.; Liu, X. Large-Scale Impervious Surface Area Mapping and Pattern Evolution of the Yellow River Delta Using Sentinel-1/2 on the GEE. Remote Sens. 2023, 15, 136. [Google Scholar] [CrossRef]
- Xu, R. Mapping Rural Settlements from Landsat and Sentinel Time Series by Integrating Pixel- and Object-Based Methods. Land 2021, 10, 244. [Google Scholar] [CrossRef]
- Shrestha, B.; Ahmad, S.; Stephen, H. Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale. Environ. Monit. Assess. 2021, 193, 556. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Y.; Feng, Q.; Yin, G.; Zhang, D.; Li, Y.; Gong, J.; Li, Y.; Li, J. Understanding urban expansion and shrinkage via green plastic cover mapping based on GEE cloud platform: A case study of Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2024, 128, 103749. [Google Scholar] [CrossRef]
- Fallatah, A.; Simon, J.; Mitchell, D. Object-based random forest classification for informal settlements identification in the Middle East: Jeddah a case study. Int. J. Remote Sens. 2020, 41, 4421–4445. [Google Scholar] [CrossRef]
- Xing, H.; Bingyao, C.; Yongyu, F.; Yuanlong, N.; Dongyang, H.; Xue, W.; Kong, Y. Mapping irrigated, rainfed and paddy croplands from time-series Sentinel-2 images by integrating pixel-based classification and image segmentation on Google Earth Engine. Geocarto Int. 2022, 37, 13291–13310. [Google Scholar] [CrossRef]
- Wang, Z. Spatial Differentiation Characteristics of Rural Areas Based on Machine Learning and GIS Statistical Analysis—A Case Study of Yongtai County, Fuzhou City. Sustainability 2023, 15, 4367. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.C.; Chi, G.; Wang, Z. Abandoned rural residential land: Using machine learning techniques to identify rural residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [Google Scholar] [CrossRef]
- Zheng, X.; Pu, S.; Xue, X. ASCEND-UNet: An Improved UNet Configuration Optimized for Rural Settlements Mapping. Sensors 2024, 24, 5453. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Feng, Q.; Niu, B.; Chen, B.; Yan, F.; Gong, J.; Liu, J. Mapping urban villages based on point-of-interest data and a deep learning approach. Cities 2025, 156, 105549. [Google Scholar] [CrossRef]
- Chen, Z.; Li, D.; Fan, W.; Guan, H.; Wang, C.; Li, J. Self-Attention in Reconstruction Bias U-Net for Semantic Segmentation of Building Rooftops in Optical Remote Sensing Images. Remote Sens. 2021, 13, 2524. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Q.; Wu, Y.; Tian, W.; Zhang, G. SCA-Net: Multiscale Contextual Information Network for Building Extraction Based on High-Resolution Remote Sensing Images. Remote Sens. 2023, 15, 4466. [Google Scholar] [CrossRef]
- Chen, B.; Feng, Q.; Niu, B.; Yan, F.; Gao, B.; Yang, J.; Gong, J.; Liu, J. Multi-modal fusion of satellite and street-view images for urban village classification based on a dual-branch deep neural network. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102794. [Google Scholar] [CrossRef]
- Chen, J.; Mei, J.; Li, X.; Lu, Y.; Yu, Q.; Wei, Q.; Luo, X.; Xie, Y.; Adeli, E.; Wang, Y.; et al. TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers. Med. Image Anal. 2024, 97, 103280. [Google Scholar] [CrossRef] [PubMed]
- Aamir, Z.; Seddouki, M.; Himmy, O.; Maanan, M.; Tahiri, M.; Rhinane, H. Rural settlements segmentation based on deep learning U-Net using remote sensing images. ISPRS Int. Soc. Photogramm. Remote Sens. 2022, 48, 1–5. [Google Scholar] [CrossRef]
- Ye, Z.; Si, B.; Lin, Y.; Zheng, Q.; Zhou, R.; Huang, L.; Wang, K. Mapping and Discriminating Rural Settlements Using Gaofen-2 Images and a Fully Convolutional Network. Sensors 2020, 20, 6062. [Google Scholar] [CrossRef]
- Conrad, C.; Rudloff, M.; Abdullaev, I.; Thiel, M.; Löw, F.; Lamers, J.P.A. Measuring rural settlement expansion in Uzbekistan using remote sensing to support spatial planning. Appl. Geogr. 2015, 62, 29–43. [Google Scholar] [CrossRef]
- Shi, Z.; Ma, L.; Zhang, W.; Gong, M. Differentiation and correlation of spatial pattern and multifunction in rural settlements considering topographic gradients: Evidence from Loess Hilly Region, China. J. Environ. Manag. 2022, 315, 115127. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, S.; Fang, C.; Guan, L.; Liu, M. Global urban and rural settlement dataset from 2000 to 2020. Sci. Data 2024, 11, 1359. [Google Scholar] [CrossRef]
- Hoffman-Hall, A.; Loboda, T.V.; Hall, J.V.; Carroll, M.L.; Chen, D. Mapping remote rural settlements at 30 m spatial resolution using geospatial data-fusion. Remote Sens. Environ. 2019, 233, 111386. [Google Scholar] [CrossRef]
- Verma, A.; Bhattacharya, A.; Dey, S.; López-Martínez, C.; Gamba, P. Built-up area mapping using Sentinel-1 SAR data. ISPRS J. Photogramm. Remote Sens. 2023, 203, 55–70. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, Y.; Feng, Q.; Shi, T.; Zhang, D.; Liu, P. Impervious surface Mapping and its spatial–temporal evolution analysis in the Yellow River Delta over the last three decades using Google Earth Engine. Earth Sci. Inform. 2023, 16, 1727–1739. [Google Scholar] [CrossRef]
- Holm, W.A.; Barnes, R.M. On radar polarization mixed target state decomposition techniques. In Proceedings of the 1988 IEEE National Radar Conference, Arbor, MI, USA, 20–21 April 1988; pp. 249–254. [Google Scholar]
- Fang, L.; Yang, Z.; Mu, W.; Liu, T. A Novel Polarization Scattering Decomposition Model and Its Application to Ship Detection. Remote Sens. 2024, 16, 178. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Salma, S.; Keerthana, N.; Dodamani, B.M. Target decomposition using dual-polarization sentinel-1 SAR data: Study on crop growth analysis. Remote Sens. Appl. Soc. Environ. 2022, 28, 100854. [Google Scholar] [CrossRef]
- Salehi, M.; Maghsoudi, Y.; Mohammadzadeh, A. Assessment of the Potential of H/A/Alpha Decomposition for Polarimetric Interferometric SAR Data. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2440–2451. [Google Scholar] [CrossRef]
- Sinha, S. H/A/α Polarimetric Decomposition Of Dual Polarized Alos Palsar for Efficient Land Feature Detection and Biomass Estimation Over Tropical Deciduous Forest. Geogr. Environ. Sustain. 2022, 15, 37–46. [Google Scholar] [CrossRef]
- Cloude, S.R. The dual polarization entropy/alpha decomposition: A PALSAR case study. Environ. Sci. 2007, 644, 2. [Google Scholar]
- Cabello-Solorzano, K.; Ortigosa de Araujo, I.; Peña, M.; Correia, L.; J Tallón-Ballesteros, A. The Impact of Data Normalization on the Accuracy of Machine Learning Algorithms: A Comparative Analysis. In Proceedings of the 18th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2023), Salamanca, Spain, 5–7 September 2023; pp. 344–353. [Google Scholar]
- Zhu, A.; Lv, G.; Zhou, C.; Qin, C. Geographic similarity: Third Law of Geography? J. Geo-Inf. Sci. 2020, 22, 673–679. [Google Scholar]
- Chen, J.; Lu, Y.; Yu, Q.; Luo, X.; Zhou, Y. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv 2021, arXiv:2102.04306. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. In Proceedings of the Computer Vision—ECCV 2022 Workshops, Tel Aviv, Israel, 23–27 October 2023; pp. 205–218. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.W.; Wu, J. UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 1055–1059. [Google Scholar]
- Liu, J.; Zhang, Y.; Liu, C.; Liu, X. Monitoring Impervious Surface Area Dynamics in Urban Areas Using Sentinel-2 Data and Improved Deeplabv3+ Model: A Case Study of Jinan City, China. Remote Sens. 2023, 15, 1976. [Google Scholar] [CrossRef]
- Azad, R.; Heidari, M.; Shariatnia, M.; Aghdam, E.K.; Karimijafarbigloo, S.; Adeli, E.; Merhof, D. TransDeepLab: Convolution-Free Transformer-Based DeepLab v3+ for Medical Image Segmentation. In Proceedings of the Predictive Intelligence in Medicine, Singapore, 22 September 2022; pp. 91–102. [Google Scholar]
- Liu, P.; Liu, X.; Liu, M.; Shi, Q.; Yang, J.; Xu, X.; Zhang, Y. Building Footprint Extraction from High-Resolution Images via Spatial Residual Inception Convolutional Neural Network. Remote Sens. 2019, 11, 830. [Google Scholar] [CrossRef]
- Luo, H.; Khoshelham, K.; Chen, C.; He, H. Individual tree extraction from urban mobile laser scanning point clouds using deep pointwise direction embedding. ISPRS J. Photogramm. Remote Sens. 2021, 175, 326–339. [Google Scholar] [CrossRef]
- Li, Y.; Shi, T.; Zhang, Y.; Chen, W.; Wang, Z.; Li, H. Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation. ISPRS J. Photogramm. Remote Sens. 2021, 175, 20–33. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, X.; Wu, W.; Zhang, M.; Fu, X.; Li, J.; Jiang, J.; He, Y.; Zhou, C.; Li, W.; et al. Geospatial characterization of rural settlements and potential targets for revitalization by geoinformation technology. Sci. Rep. 2022, 12, 8399. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Zhang, M.; Wang, A.; Ni, Q. Spatio-Temporal Evolution and Driving Factors of Rural Settlements in Low Hilly Region—A Case Study of 17 Cities in Hubei Province, China. Int. J. Environ. Res. Public Health 2021, 18, 2387. [Google Scholar] [CrossRef] [PubMed]
- Shimrah, T.; Sarma, K.; Varga, O.G.; Szilard, S.; Singh, S.K. Quantitative assessment of landscape transformation using earth observation datasets in Shirui Hill of Manipur, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100237. [Google Scholar] [CrossRef]
- Shifaw, E.; Sha, J.; Li, X. Detection of spatiotemporal dynamics of land cover and its drivers using remote sensing and landscape metrics (Pingtan Island, China). Environ. Dev. Sustain. 2020, 22, 1269–1298. [Google Scholar] [CrossRef]
Acquisition Date | Sensor Satellite | Cloud Cover/% |
---|---|---|
28 August 2002 | Landsat 7 ETM+ | 2 |
23 October 2008 | Landsat 5 TM | 7 |
05 June 2015 | Landsat 8 OLI | 16.21 |
31 June 2019 | Landsat 8 OLI | 19.77 |
15 September 2023 | Landsat 8 OLI | 0.06 |
Method | Precision (%) | Recall (%) | F1 (%) | mIoU (%) |
---|---|---|---|---|
U-Net | 89.10 | 76.72 | 82.45 | 83.50 |
Deeplabv3+ | 88.96 | 69.93 | 78.31 | 80.33 |
TransUNet | 89.27 | 80.70 | 84.77 | 85.39 |
TransDeepLab | 87.24 | 78.11 | 82.42 | 83.45 |
Data Source Types | Precision (%) | Recall (%) | F1 (%) | mIoU (%) |
---|---|---|---|---|
Optical Remote Sensing Data | 91.13 | 71.69 | 80.25 | 81.83 |
Radar Remote Sensing Data | 86.29 | 65.15 | 74.24 | 77.39 |
Fused Optical and Radar Data | 89.27 | 80.70 | 84.77 | 85.39 |
Category | Range (km2) | 2002 | 2008 | 2015 | 2019 | 2023 |
---|---|---|---|---|---|---|
Small settlements | ≤0.01 | 361 | 185 | 413 | 361 | 703 |
Small-to-medium settlements | 0.01–0.05 | 386 | 362 | 356 | 410 | 372 |
Medium settlements | 0.05–0.2 | 761 | 688 | 700 | 779 | 762 |
Large settlements | 0.2–0.5 | 228 | 236 | 242 | 249 | 275 |
Extra-large settlements | ≥0.5 | 35 | 66 | 62 | 62 | 53 |
All settlements | 1771 | 1537 | 1773 | 1861 | 2165 |
Category | Range (km2) | 2002 | 2008 | 2015 | 2019 | 2023 |
---|---|---|---|---|---|---|
Small settlements | ≤0.01 | 1.26 | 0.78 | 1.33 | 0.97 | 1.88 |
Small-to-medium settlements | 0.01–0.05 | 10.61 | 10.87 | 10.23 | 12.38 | 10.29 |
Medium settlements | 0.05–0.2 | 85.75 | 74.05 | 74.71 | 84.68 | 84.58 |
Large settlements | 0.2–0.5 | 66.98 | 71.51 | 73.01 | 76.84 | 83.26 |
Extra-large settlements | ≥0.5 | 26.03 | 51.19 | 49.66 | 51.25 | 43.73 |
All settlements | 190.63 | 208.40 | 208.94 | 226.12 | 223.74 |
Year | NP | AREA_MN | LSI | SHAPE_MN | COHESION |
---|---|---|---|---|---|
2002 | 1728 | 10.991 | 49.047 | 1.263 | 92.992 |
2008 | 1505 | 13.801 | 45.898 | 1.258 | 93.664 |
2015 | 1657 | 12.613 | 48.697 | 1.292 | 93.724 |
2019 | 1621 | 13.956 | 50.166 | 1.316 | 94.002 |
2023 | 1951 | 11.468 | 54.518 | 1.317 | 93.952 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zhang, Y.; Meng, F.; Gong, J.; Zhang, D.; Peng, Y.; Zhang, C. Rural Settlement Mapping and Its Spatiotemporal Dynamics Monitoring in the Yellow River Delta Using Multi-Modal Fusion of Landsat Optical and Sentinel-1 SAR Polarimetric Decomposition Data by Leveraging Deep Learning. Remote Sens. 2025, 17, 3512. https://doi.org/10.3390/rs17213512
Liu J, Zhang Y, Meng F, Gong J, Zhang D, Peng Y, Zhang C. Rural Settlement Mapping and Its Spatiotemporal Dynamics Monitoring in the Yellow River Delta Using Multi-Modal Fusion of Landsat Optical and Sentinel-1 SAR Polarimetric Decomposition Data by Leveraging Deep Learning. Remote Sensing. 2025; 17(21):3512. https://doi.org/10.3390/rs17213512
Chicago/Turabian StyleLiu, Jiantao, Yan Zhang, Fei Meng, Jianhua Gong, Dong Zhang, Yu Peng, and Can Zhang. 2025. "Rural Settlement Mapping and Its Spatiotemporal Dynamics Monitoring in the Yellow River Delta Using Multi-Modal Fusion of Landsat Optical and Sentinel-1 SAR Polarimetric Decomposition Data by Leveraging Deep Learning" Remote Sensing 17, no. 21: 3512. https://doi.org/10.3390/rs17213512
APA StyleLiu, J., Zhang, Y., Meng, F., Gong, J., Zhang, D., Peng, Y., & Zhang, C. (2025). Rural Settlement Mapping and Its Spatiotemporal Dynamics Monitoring in the Yellow River Delta Using Multi-Modal Fusion of Landsat Optical and Sentinel-1 SAR Polarimetric Decomposition Data by Leveraging Deep Learning. Remote Sensing, 17(21), 3512. https://doi.org/10.3390/rs17213512