Uncovering Forest and Cropland Change with High-Resolution Data in a Biodiversity Hotspot, Madagascar
Abstract
Highlights
- Forest cover stayed under 8.5% in Betsiboka, over 34.6% in ANP; cropland remained below 7%. High accuracy in both regions (OA = 0.87–0.95), with stronger datasets agreement in ANP than Betsiboka (Kappa = 0.68–0.90).
- FROM-GLC10 and ESA best for cropland in Betsiboka; DW and ESRI best for forest, especially in ANP. By 2100, forests may rise 230–300% in Betsiboka but drop up to 39% in ANP across SSPs.
- We assess past and future forest and cropland changes in the Betsiboka basin and the ANP.
- This study highlights the importance of high-resolution ground-based land use data for monitoring land management and calibrating a hydrological model in the region.
Abstract
1. Introduction
- Where do these datasets show greatest spatial agreement?
- Which land cover classes exhibit the most disagreement?
- Which datasets are suitable for monitoring the forest and cropland in the Betsiboka basin and ANP?
- What implications does this have for environmental monitoring in the region?
2. Materials and Methods
2.1. Study Area
2.2. Data Processing
3. Results
3.1. Historical LULC Assessment
3.1.1. Comparison of Land Cover Classifications
3.1.2. Accuracy Assessment of Land Use Datasets
3.1.3. Comparison of the Spatial Representation of Forest and Cropland
3.2. Future LULCC Analysis
3.2.1. Systematic Comparison of Land Cover Change Across Climate Scenarios
3.2.2. Spatiotemporal Dynamics of Projected LULC
3.2.3. Quantification of Transition Patterns Between Land Cover Types
4. Discussion
- In the Betsiboka basin, FROM-GLC10 and ESA WorldCover provided more reliable cropland estimates, while Dynamic World and ESRI Land Cover were better for assessing forest areas. In the ANP, Dynamic World, and ESRI Land Cover offer more consistent estimates of forest and cropland cover. A limitation is the temporal mismatch among LULC datasets (2017–2023), though aligning them to the 2017–2021 period helped minimize bias. We recommend careful consideration of dataset characteristics when applying these products in Madagascar. Future work could incorporate ground truth data for validation and expand the comparison to additional datasets.
- The future projections revealed two divergent futures. Aggressive forest expansion will transform the landscape in Betsiboka dramatically. In contrast, ANP land cover appears stable but not immune to future threats. The uncertainty and accuracy of the future LULC data used in our analysis were a limitation, despite its high resolution [40]. Uncertainties in future LULC datasets arise from multiple sources, including the translation of SSP narratives into quantitative land use pathways, spatial downscaling methods, and assumptions within the models. For Madagascar, important local drivers such as shifting cultivation (tavy), traditional land tenure, governance, protected area enforcement, and national policies are indirectly represented in global frameworks. Nevertheless, these factors greatly affect outcomes like cropland expansion, deforestation, and land degradation. Future studies should compare these data with other future LULC datasets that use ground data for scenario-based land use projections.
- Cropland remained broadly stable, though scenario-specific expansions suggest that forest expansion will not occur at the expense of agricultural land. The aggregation of land cover into Forest, Cropland, and Other, while analytically convenient, is a limitation as it may obscure finer-scale dynamics and transitions relevant to landscape change. To address food insecurity, agricultural intensification is suggested to increase food production on existing croplands. This can be complemented by integrating agroforestry practices [41] to leverage forests as a source of diverse foods and income.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Confusion Matrices Comparing the Agreement Between Datasets
References
- Rakotoarimanana, Z.H.; Ishidaira, H.; Magome, J.; Souma, K. Unveiling hydrological responses in Madagascar’s major river basins: Addressing data scarcity and land-use change impacts. Hydrol. Sci. J. 2025, 70, 559–580. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Tyukavina, A.; Stehman, S.V.; Pickens, A.H.; Potapov, P.; Hansen, M.C. Practical global sampling methods for estimating area and map accuracy of land cover and change. Remote Sens. Environ. 2025, 324, 114714. [Google Scholar] [CrossRef]
- He, D.; Shi, Q.; Xue, J.; Atkinson, P.M.; Liu, X. Very fine spatial resolution urban land cover mapping using an explicable sub-pixel mapping network based on learnable spatial correlation. Remote Sens. Environ. 2023, 299, 113884. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 v200 (Version v200) [Data set]. Zenodo 2022. [Google Scholar] [CrossRef]
- Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel-2 and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; Volume 2021, pp. 4704–4707. [Google Scholar] [CrossRef]
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Tait, A.M. Dynamic World: Near real-time global 10 m land use land cover mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Song, L. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Chakraborty, T.; Simensen, T.; Singh, G. Global 10 m land use land cover datasets: A comparison of Dynamic World, WorldCover and ESRI land cover. Remote Sens. 2022, 14, 4101. [Google Scholar] [CrossRef]
- Xu, P.; Tsendbazar, N.E.; Herold, M.; De Bruin, S.; Koopmans, M.; Birch, T.; Zanaga, D. Comparative validation of recent 10 m-resolution global land cover maps. Remote Sens. Environ. 2024, 311, 114316. [Google Scholar] [CrossRef]
- Xu, Q.; Yordanov, V.; Bruzzone, L.; Brovelli, M.A. High-resolution global land cover maps and their assessment strategies. ISPRS Int. J. Geo-Inf. 2025, 14, 235. [Google Scholar] [CrossRef]
- Zhai, J.; Xiao, C.; Feng, Z.; Liu, Y. Are there suitable global datasets for monitoring of land use and land cover in the tropics? Evidences from mainland Southeast Asia. Glob. Planet. Change 2023, 229, 104233. [Google Scholar] [CrossRef]
- Kerner, H.; Nakalembe, C.; Yang, A.; Zvonkov, I.; McWeeny, R.; Tseng, G.; Becker-Reshef, I. How accurate are existing land cover maps for agriculture in Sub-Saharan Africa? Sci. Data 2024, 11, 486. [Google Scholar] [CrossRef]
- Mudele, O.; Childs, M.L.; Personnat, J.; Golden, C.D. Evaluating agreement between global satellite data products for forest monitoring in Madagascar. Remote Sens. 2025, 17, 1482. [Google Scholar] [CrossRef]
- Bullock, E.L.; Healey, S.P.; Yang, Z.; Oduor, P.; Gorelick, N.; Omondi, S.; Cohen, W.B. Three decades of land cover change in East Africa. Land 2021, 10, 150. [Google Scholar] [CrossRef]
- Ngcofe, L.; Nkoana, K. Sentinel-2 land cover product comparison: South African National land cover 2020 vs ESRI Global land cover 2020. Abstr. Int. Cartogr. Assoc. 2023, 6, 186. [Google Scholar] [CrossRef]
- Adam, A.Y.F.; Osman, M.B.O.; Gribovszki, Z.; Kalicz, P. Geospatial technologies’ concepts and methods for land use land cover dynamics mapping: Evidence from White Nile State, Sudan. In Application of Geospatial Technology and Modelling on Natural Resources Management; Das, S., Pandey, P.C., Mutanga, O., Tikle, S., Jiang, M., Chatterjee, U., Anand, A., Eds.; Advances in Geographic Information Science; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, C.; Ma, L.; Schmitt, M.; Zhu, X.X. Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with Google Earth Engine. Remote Sens. 2020, 12, 602. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, H.; Li, Z.; Hackman, K.O.; Liu, C.; Andriamiarisoa, R.L.; Gong, P. Automatic high-resolution land cover production in Madagascar using Sentinel-2 time series, tile-based image classification and Google Earth Engine. Remote Sens. 2020, 12, 3663. [Google Scholar] [CrossRef]
- Carrasco, J.; Price, V.; Tulloch, V.; Mills, M. Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodivers. Conserv. 2020, 29, 1841–1854. [Google Scholar] [CrossRef]
- Harper, G.J.; Steininger, M.K.; Tucker, C.J.; Juhn, D.; Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 2007, 34, 325–333. [Google Scholar] [CrossRef]
- Vieilledent, G.; Grinand, C.; Rakotomalala, F.A.; Ranaivosoa, R.; Rakotoarijaona, J.R.; Allnutt, T.F.; Achard, F. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Conserv. 2018, 222, 189–197. [Google Scholar] [CrossRef]
- Rasolofoson, R.A.; Ferraro, P.J.; Jenkins, C.N.; Jones, J.P.G. Effectiveness of community forest management at reducing deforestation in Madagascar. Biol. Conserv. 2015, 184, 271–277. [Google Scholar] [CrossRef]
- Rafanoharana, S.C.; Andrianambinina, F.O.D.; Rasamuel, H.A.; Waeber, P.O.; Wilmé, L.; Ganzhorn, J.U. Projecting forest cover in Madagascar’s protected areas to 2050 and its implications for lemur conservation. Oryx 2024, 58, 155–163. [Google Scholar] [CrossRef]
- Raharimahefa, T.; Kusky, T.M. Environmental monitoring of Bombetoka Bay and the Betsiboka Estuary, Madagascar, using multi-temporal satellite data. J. Earth Sci. 2010, 21, 210–226. [Google Scholar] [CrossRef]
- Rajaonarivelo, F.; Williams, R. Remote sensing-based land suitability analysis for forest restoration in Madagascar. Forests 2022, 13, 1727. [Google Scholar] [CrossRef]
- Sato, H. Significance of seed dispersal by the largest frugivore for large-diaspore trees. Sci. Rep. 2022, 12, 19086. [Google Scholar] [CrossRef]
- Dumas, D.; Bigot, S.; Brou, Y.T.; Ramboarison, R.; Razanaka, S.; Robison, L.R. Evolution des apports en eau dans la plaine rizicole de Marovoay par le fleuve Betsiboka (Madagascar): Reconstitution et projections jusqu’en 2100. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 175–179. [Google Scholar] [CrossRef]
- Rakotoarimanana, Z.H.; Ishidaira, H.; Rakotoarimanana, Z.M.H.; Magome, J.; Souma, K.; Masutani, K. Assessing future intra-basin water availability in Madagascar: Accounting for climate change, population growth, and land use change. Water Res. 2024, 257, 121711. [Google Scholar] [CrossRef] [PubMed]
- Percival, J.E.H.; Sato, H.; Razanaparany, T.P.; Rakotomamonjy, A.H.; Razafiarison, Z.L.; Kitajima, K. Non fire-adapted dry forest of Northwestern Madagascar: Escalating and devastating trends revealed by Landsat time series and GEDI lidar data. PLoS ONE 2024, 19, e0290203. [Google Scholar] [CrossRef]
- Rasolozaka, M.; Schüßler, D.; Randriafenontsoa, J.; Andriatsitohaina, F.; Rakotomamonjy, P.; Rabarison, H.; Radespiel, U. Reconstructing the alarming fire history of Ankarafantsika National Park in northwestern Madagascar over a 35-year period. Remote Sens. Appl. Soc. Environ. 2025, 38, 101521. [Google Scholar] [CrossRef]
- Ralimanana, H.; Perrigo, A.L.; Smith, R.J.; Borrell, J.S.; Faurby, S.; Rajaonah, M.T.; Antonelli, A. Madagascar’s extraordinary biodiversity: Threats and opportunities. Science 2022, 378, eadf1466. [Google Scholar] [CrossRef]
- Zhang, T.; Cheng, C.; Wu, X. Mapping the spatial heterogeneity of global land use and land cover from 2020 to 2100 at a 1 km resolution. Sci. Data 2023, 10, 748. [Google Scholar] [CrossRef]
- Barati, A.A.; Zhoolideh, M.; Azadi, H.; Lee, J.H.; Scheffran, J. Interactions of land-use cover and climate change at a global level: How to mitigate the environmental risks and warming effects. Ecol. Indic. 2023, 146, 109829. [Google Scholar] [CrossRef]
- Mondanaro, A.; Di Febbraro, M.; Castiglione, S.; Belfiore, A.M.; Girardi, G.; Melchionna, M.; Raia, P. Modelling reveals the effect of climate and land use change on Madagascar’s chameleons fauna. Commun. Biol. 2024, 7, 889. [Google Scholar] [CrossRef]
- Lai, Q.; Beierkuhnlein, C. The vulnerability of Malagasy protected areas in the face of climate change. Diversity 2024, 16, 661. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, X.; Wang, Z.; Fu, D.; Li, H.; Meng, D.; Zhang, J. A field-data-aided comparison of three 10 m land cover products in Southeast Asia. Remote Sens. 2022, 14, 5053. [Google Scholar] [CrossRef]
- Minten, B.; Barrett, C.B. Agricultural technology, productivity, and poverty in Madagascar. World Dev. 2008, 36, 797–822. [Google Scholar] [CrossRef]
- Zaehringer, J.G.; Eckert, S.; Messerli, P. Revealing regional deforestation dynamics in North-Eastern Madagascar—Insights from multi-temporal land cover change analysis. Land 2015, 4, 454–474. [Google Scholar] [CrossRef]
- Liang, S.; He, T.; Huang, J.; Jia, A.; Zhang, Y.; Cao, Y.; Song, L. Advancements in high-resolution land surface satellite products: A comprehensive review of inversion algorithms, products and challenges. Sci. Remote Sens. 2024, 10, 100152. [Google Scholar] [CrossRef]
- Andriatsitohaina, R.N.N.; Laby, P.; Llopis, J.C.; Martin, D.A. Agroforestry in Madagascar: Past, present, and future. Agrofor. Syst. 2024, 98, 1659–1680. [Google Scholar] [CrossRef]
- Weiskopf, S.R.; Cushing, J.A.; Morelli, T.L.; Myers, B.J. Climate change risks and adaptation options for Madagascar. Ecol. Soc. 2021, 26, 36. [Google Scholar] [CrossRef]
- Andrianandrasana, H.T.; Jones, N.; Viraina, F.F.; Malesios, C.; Campera, M.; Zefania, S.; Savage, J. Links between poverty, climate-induced migration and deforestation in western Madagascar. Environ. Dev. 2025, 56, 101284. [Google Scholar] [CrossRef]
Global LULC Datasets | Forest Class ID | Cropland Class ID | Input Data | Classification Method and Accuracy | Data Source | |
---|---|---|---|---|---|---|
Historical LULC 10 m resolution | FROM_GLC10 (2017) | 2 | 1 | Sentinel-2, Landsat | Random Forest (72.8%, Global) | Gong et al. (2019) [8] |
ESRI Land Cover (2017–2023) | 2 | 4 | Sentinel-2, AI | Deep Learning (UNet) (85%, Global) | Karra et al. (2021) [6] | |
ESA WorldCover (2020, 2021) | 10 | 40 | Sentinel-1 and Sentinel-2 | Machine Learning (74.4%, Global) | Zanaga et al. (2022) [5] | |
DynamicWorld (2015–Present) | 1 | 1 | Sentinel-2 + AI | Probabilistic NN (77.5%, Global) | Brown et al. (2022) [7] | |
Future LULC 1 km grid resolution | Global LULC Projection Dataset under SSP-RCP Scenarios at 1 km Resolution (2020–2100) | 2 | 1 | ESA-CCI historical LULC data | GCAM model and cellular automata model-PLUS (Kappa = 0.94, OA = 0.97, FoM = 0.10) | Zhang et al. (2023) [33] |
2017 | ||||||||
---|---|---|---|---|---|---|---|---|
Comparison | OA | Kappa | Forest_PA | Forest_UA | Cropland_PA | Cropland_UA | Other_PA | Other_UA |
FROM_GLC10 vs. ESRI_LULC | 0.91 | 0.33 | 0.76 | 0.42 | 0.16 | 0.29 | 0.96 | 0.95 |
FROM_GLC10 vs. DynamicWorld | 0.88 | 0.31 | 0.95 | 0.27 | 0.11 | 0.22 | 0.93 | 0.96 |
ESRI_LULC vs. DynamicWorld | 0.92 | 0.52 | 0.93 | 0.47 | 0.35 | 0.41 | 0.94 | 0.98 |
2021 | ||||||||
Comparison | OA | Kappa | Forest_PA | Forest_UA | Cropland_PA | Cropland_UA | Other_PA | Other_UA |
ESA_LULC vs. ESRI_LULC | 0.90 | 0.44 | 0.61 | 0.73 | 0.24 | 0.45 | 0.97 | 0.93 |
ESA_LULC vs. DynamicWorld | 0.89 | 0.44 | 0.87 | 0.46 | 0.15 | 0.47 | 0.94 | 0.94 |
ESRI_LULC vs. DynamicWorld | 0.92 | 0.51 | 0.95 | 0.43 | 0.31 | 0.53 | 0.94 | 0.97 |
2017 | ||||||||
---|---|---|---|---|---|---|---|---|
Comparison | OA | Kappa | Forest_PA | Forest_UA | Cropland_PA | Cropland_UA | Other_PA | Other_UA |
FROM_GLC10 vs. ESRI_LULC | 0.88 | 0.70 | 0.98 | 0.68 | 0.07 | 0.02 | 0.86 | 0.99 |
FROM_GLC10 vs. DynamicWorld | 0.87 | 0.68 | 0.98 | 0.67 | 0.10 | 0.02 | 0.85 | 0.99 |
ESRI_LULC vs. DynamicWorld | 0.94 | 0.86 | 0.94 | 0.93 | 0.60 | 0.40 | 0.95 | 0.96 |
2021 | ||||||||
Comparison | OA | Kappa | Forest_PA | Forest_UA | Cropland_PA | Cropland_UA | Other_PA | Other_UA |
ESA_LULC vs. ESRI_LULC | 0.94 | 0.87 | 0.87 | 0.99 | 0.37 | 0.01 | 0.98 | 0.93 |
ESA_LULC vs. DynamicWorld | 0.95 | 0.89 | 0.93 | 0.99 | 0.27 | 0.00 | 0.96 | 0.96 |
ESRI_LULC vs. DynamicWorld | 0.95 | 0.90 | 0.99 | 0.92 | 0.63 | 0.37 | 0.94 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rakotoarimanana, Z.H.; Ohte, N.; Rakotoarimanana, Z.M.H. Uncovering Forest and Cropland Change with High-Resolution Data in a Biodiversity Hotspot, Madagascar. Remote Sens. 2025, 17, 3441. https://doi.org/10.3390/rs17203441
Rakotoarimanana ZH, Ohte N, Rakotoarimanana ZMH. Uncovering Forest and Cropland Change with High-Resolution Data in a Biodiversity Hotspot, Madagascar. Remote Sensing. 2025; 17(20):3441. https://doi.org/10.3390/rs17203441
Chicago/Turabian StyleRakotoarimanana, Zy Harifidy, Nobuhito Ohte, and Zy Misa Harivelo Rakotoarimanana. 2025. "Uncovering Forest and Cropland Change with High-Resolution Data in a Biodiversity Hotspot, Madagascar" Remote Sensing 17, no. 20: 3441. https://doi.org/10.3390/rs17203441
APA StyleRakotoarimanana, Z. H., Ohte, N., & Rakotoarimanana, Z. M. H. (2025). Uncovering Forest and Cropland Change with High-Resolution Data in a Biodiversity Hotspot, Madagascar. Remote Sensing, 17(20), 3441. https://doi.org/10.3390/rs17203441