An Attitude Estimation Method for Space Targets Based on the Selection of Multi-View ISAR Image Sequences
Abstract
Highlights
- Proposes a novel imaging plane normal-based selection criterion for multi-view ISAR sequences, maximizing perspective coverage while minimizing data redundancy.
- Develops an efficient HRNet-PSO framework that enables accurate feature matching and attitude estimation from the sparse selected images.
- Significantly reduces the manual preprocessing burden for non-cooperative target attitude estimation without sacrificing accuracy.
- Provides a robust, algorithm-upgradable solution for enhancing current space surveillance and debris removal missions.
Abstract
1. Introduction
2. Space Target ISAR Imaging Projection Model
3. Methodology
3.1. Selection of Multi-View ISAR Image Sequence
- ●
- Calculation of the imaging plane normal angle for each ISAR image based on its imaging plane orientation to quantify observational information differences.
- ●
- Selection of representative images through uniform angular sampling of the imaging plane normal variation profile.
3.1.1. Imaging Plane Normal Angle Calculation
3.1.2. ISAR Image Selection
3.2. Establishment and Solution of Attitude Estimation Optimization Model
3.2.1. Feature Extraction of Space Target’s Typical Components Based on HRNet
3.2.2. Typical Component Orientation Optimization Solution Based on PSO
- (1)
- Parameter initialization: The initial state of each particle in the swarm is established, encompassing both position and velocity. The position of each particle corresponds to a set of attitude angle parameters. Specifically, for the n-th particle, the initial candidate attitude parameter vector is denoted as . Meanwhile, the initial velocity represents the optimization direction of the particle’s parameters.
- (2)
- Calculation of the cost function: In the l-th iteration, the candidate attitude parameter represented by the n-th particle is denoted as . Based on Equation (13), the cost function is evaluated for the candidate attitude parameters of each particle. For the n-th particle, the attitude parameter corresponding to its historical optimal cost is denoted as , while the attitude parameter corresponding to the global optimal cost across all particles is represented as .
- (3)
- Iteration termination judgment: If no longer decreases, the iteration is terminated, and the parameters stored by are output. If , proceed to step (4);
- (4)
- Parameter update: In the l-th iteration, the state of each particle is updated. Taking the n-th particle as an example, its state parameter update equation is as follows:
4. Experiments
4.1. Experimental Scene Design
4.2. Validity Verification
4.2.1. Tiangong-1
4.2.2. Aqua
4.3. Comparative Analysis with Existing Methods
4.3.1. Performance Comparison of Different Image Selection Methods
4.3.2. Suitability Validation of the Attitude Estimation Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISAR | inverse synthetic aperture radar |
3D | three-dimensional |
2D | two-dimensional |
ADR | Active Debris Removal |
LOS | line-of-sight |
HRNet | high-resolution network |
KPEN | key points extraction network |
DAU-Net | dense attention U-Network |
PSO | particle swarm optimization |
MSE | mean squared error |
TLE | two-line elements |
PO | physical optics |
PAEA | projection area energy accumulation algorithm |
References
- Chen, V.C.; Martorella, M. Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications; SciTech Publishing: West Perth, Australia, 2014. [Google Scholar]
- Zhou, Z.; Liu, L.; Du, R.; Zhou, F. Three-Dimensional Geometry Reconstruction Method for Slowly Rotating Space Targets Utilizing ISAR Image Sequence. Remote Sens. 2022, 14, 1144. [Google Scholar] [CrossRef]
- Jiang, Y.; Wei, J.; Liu, Z.; Zhang, Y.; Wang, Y. A Novel Three-Dimension Imaging Algorithm Based on Trajectory Association of ISAR Image Sequence. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Chen, J.; Fu, T.; Chen, D.; Gao, M. Observation angle and plane characterisation for ISAR imaging of LEO space objects. Adv. Space Res. 2016, 58, 30–44. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, L.; Du, C.; Wang, X.; Zhong, W. Space Target Attitude Estimation from ISAR Image Sequences with Key Point Extraction Network. IEEE Signal Process. Lett. 2021, 28, 1041–1045. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Du, L.; Song, M.; Xing, M. Joint Estimation of Satellite Attitude and Size Based on ISAR Image Interpretation and Parametric Optimization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Kou, P.; Liu, X.; Zhong, J. Axial attitude estimation of spacecraft in orbit based on ISAR image sequence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7246–7258. [Google Scholar] [CrossRef]
- Liu, B.; Yang, L.; Li, Z. Non-Cooperative Spacecraft Attitude Estimation Based on Feature Extraction on ISAR Images. In Proceedings of the 17th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 26–28 October 2024. [Google Scholar]
- Cui, X.C.; Fu, Y.W.; Chen, S.W. Joint estimation of space target attitude and size based on polarimetric isar images and modified u-net model. In Proceedings of the Eighth Asia Pacific Conference on Optics Manufacture and Third International Forum of Young Scientists on Advanced Optical Manufacturing (APCOM and YSAOM 2023), Shenzhen, China, 4–6 August 2023. [Google Scholar]
- Ning, Y.; Bai, X.; Zhou, F.; Liu, L. Method for inverse synthetic aperture radar imaging of space debris using improved genetic algorithm. IET Radar Sonar Navig. 2017, 11, 812–821. [Google Scholar] [CrossRef]
- Karamanavis, V.; Dirks, H.; Fuhrmann, L.; Schlichthaber, F.; Egli, N.; Patzelt, T.; Klare, J. Characterization of deorbiting satellites and space debris with radar. Adv. Space Res. 2023, 72, 3269–3281. [Google Scholar] [CrossRef]
- Liu, X.-W.; Zhang, Q.; Jiang, L.; Liang, J.; Chen, Y.-J. Reconstruction of Three-Dimensional Images Based on Estimation of Spinning Target Parameters in Radar Network. Remote Sens. 2018, 10, 1997. [Google Scholar] [CrossRef]
- Kucharski, D.; Kirchner, G.; Koidl, F.; Fan, C.; Carman, R.; Moore, C.; Dmytrotsa, A.; Ploner, M.; Bianco, G.; Medvedskij, M.; et al. Attitude and Spin Period of Space Debris Envisat Measured by Satellite Laser Ranging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7651–7657. [Google Scholar] [CrossRef]
- Sommer, S.; Rosebrock, J.; Cerutti, D.; Maori, D.; Krag, H. Temporal analysis of ENVISAT’s rotational motion. In Proceedings of the 7th European Conference on Space Debris, Darmstadt, Germany, 18–21 April 2017. [Google Scholar]
- Bastida, V.; Schafer, L.; Klinkrad, H. Investigation on ENVISAT attitude motion. In Proceedings of the e.Deorbit Workshop, Noordwijk, The Netherlands, 6 May 2014. [Google Scholar]
- Pittet, J.-N.; Šilha, J.; Schildknecht, T. Spin motion determination of the Envisat satellite through laser ranging measurements from a single pass measured by a single station. Adv. Space Res. 2018, 61, 1121–1131. [Google Scholar] [CrossRef]
- Song, C.; Lin, H.-Y.; Zhao, C.-Y. Analysis of Envisat’s rotation state using epoch method. Adv. Space Res. 2020, 66, 2681–2688. [Google Scholar] [CrossRef]
- Lemmens, S.; Krag, H.; Rosebrock, J.; Carnelli, I. Radar mappings for attitude analysis of objects in orbit. In Proceedings of the 6th European Conference on Space Debris, Darmstadt, Germany, 22 April 2013. [Google Scholar]
- Wang, J.; Li, Y.; Song, M.; Xing, M. Joint Estimation of Absolute Attitude and Size for Satellite Targets Based on Multi-Feature Fusion of Single ISAR Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–20. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Cao, Y. Dynamic Estimation of Spin Spacecraft Based on Multiple-Station ISAR Images. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2977–2989. [Google Scholar] [CrossRef]
- Du, R.; Zhou, Z.; Liu, L.; Bai, X.; Zhou, F. A new attitude estimation method of space target utilizing ISAR image sequence under low SNR. In Proceedings of the 2021 CIE International Conference on Radar, Haikou, China, 15–19 December 2021. [Google Scholar]
- Kang, B.-S.; Ryu, B.-H.; Kim, C.-H.; Kim, K.-T. Improved Frame-Selection Scheme for ISAR Imaging of Targets in Complex 3-D Motion. IEEE Sens. J. 2018, 18, 111–121. [Google Scholar] [CrossRef]
- Jasinski, T.; Rosenberg, L.; Antipov, I. Automated ISAR Image Quality Assessment. In Proceedings of the 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 6–9 November 2023; pp. 1–5. [Google Scholar]
- Li, J.; Tian, B.; Li, S.; Wang, Y.; He, T.; Xu, S. Inverse Synthetic Aperture Radar Image Quality Assessment Based on BP Neural Network. In Proceedings of the 2023 8th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 8–10 July 2023; pp. 414–418. [Google Scholar]
- Wang, C.; Jiang, L.; Ren, X.; Wang, Z. Primitive-Based 3D Abstraction Method for Spacecraft ISAR Images. J. Radars 2024, 13, 682–695. [Google Scholar]
- Zhou, Y.; Zhang, L.; Xing, C.; Xie, P.; Cao, Y. Target Three-Dimensional Reconstruction from the Multi-View Radar Image Sequence. IEEE Access 2019, 7, 36722–36735. [Google Scholar] [CrossRef]
- Deng, J.; Xie, P.; Zhang, L.; Cong, Y. ISAR-NeRF: Neural Radiance Fields for 3-D Imaging of Space Target from Multiview ISAR Images. IEEE Sens. J. 2024, 24, 11705–11722. [Google Scholar] [CrossRef]
- Cui, X.-C.; Fu, Y.-W.; Su, Y.; Chen, S.-W. Physical Parameters Joint Estimation of Satellite Parabolic Antenna with Key Frame Pol-ISAR Images. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5100416. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, S.; Zhang, C.; Zhi, S.; Li, X. RaNeRF: Neural 3-D Reconstruction of Space Targets from ISAR Image Sequences. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5107215. [Google Scholar] [CrossRef]
- Suwa, K.; Wakayama, T.; Iwamoto, M. Three-Dimensional Target Geometry and Target Motion Estimation Method Using Multistatic ISAR Movies and Its Performance. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2361–2373. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Z.; Zhou, F.; Shi, X. A New 3-D Geometry Reconstruction Method of Space Target Utilizing the Scatterer Energy Accumulation of ISAR Image Sequence. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8345–8357. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, F.; Bai, X. Deep learning-assisted 3D reconstruction of space debris from multi-view ISAR images. Remote Sens. Environ. 2021, 263, 112541. [Google Scholar]
- Luo, Y.; Deng, Y.; Xiang, W.; Zhang, H.; Yang, C.; Wang, L. Radargrammetric 3D Imaging through Composite Registration Method Using Multi-Aspect Synthetic Aperture Radar Imagery. Remote Sens. 2024, 16, 523. [Google Scholar] [CrossRef]
- Zhou, Z.; Jin, X.; Liu, L.; Zhou, F. Three-Dimensional Geometry Reconstruction Method from Multi-View ISAR Images Utilizing Deep Learning. Remote Sens. 2023, 15, 1882. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, Q.; Jiang, Z. 3D Reconstruction of Space Objects from Multi-Views by a Visible Sensor. Sensors 2017, 17, 1689. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xu, F.; Jin, Y.-Q. Three-Dimensional Reconstruction from a Multiview Sequence of Sparse ISAR Imaging of a Space Target. IEEE Trans. Geosci. Remote Sens. 2017, 56, 611–620. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Wang, H. Attitude estimation for space satellite targets with multistatic ISAR systems. J. Electron. Inf. Technol. 2016, 38, 3182–3188. [Google Scholar]
- Li, D.; Zhan, M.; Liu, H.; Liao, Y.; Liao, G. A Robust Translational Motion Compensation Method for ISAR Imaging Based on Keystone Transform and Fractional Fourier Transform Under Low SNR Environment. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2140–2156. [Google Scholar] [CrossRef]
- Xin, H.-C.; Bai, X.; Song, Y.-E.; Li, B.-Z.; Tao, R. ISAR imaging of target with complex motion associated with the fractional Fourier transform. Digit. Signal Process. 2018, 83, 332–345. [Google Scholar] [CrossRef]
- Luo, X.; Guo, L.; Shang, S.; Song, D.; Li, X.; Liu, W. ISAR imaging method for non-cooperative slow rotation targets in space. In Proceedings of the 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–4. [Google Scholar]
- Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5693–5703. [Google Scholar]
- Zhou, Y.; Xie, P.; Li, C.; Jian, M.; Zhang, L.; Zhang, W. Automatic Dynamic Estimation of On-Orbit Satellites Through Spaceborne ISAR Imaging. IEEE Trans. Radar Syst. 2023, 1, 34–47. [Google Scholar] [CrossRef]
- Ma, G.; Wei, S.; Zhou, Y. DAU-Net: A Dense Attention U-Network for Space Target Attitude Estimation Based on ISAR Images. In Proceedings of the 2024 IEEE 8th International Conference on Vision, Image and Signal Processing (ICVISP), Kuala Lumpur, Malaysia, 27–29 December 2024; pp. 1–6. [Google Scholar]
- Montenbruck, O.; Gill, E. Satellite Orbits: Models, Methods, and Applications; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–30. [Google Scholar]
- Moore, L.; Potter, L.; Ash, J. Three-dimensional position accuracy in circular synthetic aperture radar. IEEE Aerosp. Electron. Syst. Mag. 2014, 29, 29–40. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Cao, Y.; Wu, Z. Attitude Estimation and Geometry Reconstruction of Satellite Targets Based on ISAR Image Sequence Interpretation. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1698–1711. [Google Scholar] [CrossRef]
- Wang, Y.; Ling, H. 3D scattering center extraction from ISAR image sequences using attributed scattering models. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2289–2302. [Google Scholar]
The Multi-View ISAR Image Selection Method |
---|
1. Input: Interval angle ; |
2. Calculate the imaging plane of each image according to Equation (3) and Equation (4); |
3. Calculate the imaging plane normal vector of each image according to Equation (5); |
4. Calculate azimuth angle and elevation angle of the imaging plane normal of each image according to Equations (9) and (10); |
5. According to the azimuth angle of the imaging plane normal of sequential ISAR images, select the ISAR image corresponding to the maximum and minimum ; |
6. According to the elevation angle of the imaging plane normal of sequential ISAR images, select the ISAR image corresponding to the maximum elevation angle and minimum ; |
7. According to the angle of the imaging plane normal of sequential ISAR images and the interval angle , generate an equally spaced partition grid , where ; |
8. According to the angle of sequential ISAR images and the equally spaced partition grid , find the point in the equally spaced grid closest to the angle , and record the azimuth angle and elevation angle of this point as and ; |
9. Calculate the Euclidean distance between imaging plane normal angle and its nearest grid point , select the corresponding ISAR image when ; |
10. Output: Selected ISAR images. |
Parameter | Specification |
---|---|
Image dimension | 512 × 512 |
Bandwidth | 3 GHZ |
Frequency band | Ka-band |
Pulse repetition rate | 100 HZ |
Parameter | Arc 1 | Arc 2 | Arc 3 |
---|---|---|---|
Original image count | 204 | 108 | 189 |
Selected image count | 15 | 13 | 10 |
Data reduction rate | 92.6% | 88.0% | 94.7% |
Parmeter | Estimated Value | Truth Value | Error |
---|---|---|---|
Arc 1 | (−14.9°, −108.1°, 36.2°) | (−14°, −112°, 30°) | 6.5° |
Arc 2 | (−16.1°, −109.1°, 25.6°) | 6.2° | |
Arc 3 | (−13.6°, −111.0°, 34.4°) | 4.3° |
Parmeter | Estimated Value | Truth Value | Error |
---|---|---|---|
Arc 1 | (143.5°, 35.7°, −82.8°) | (145°, 32°, −84°) | 4.8° |
Arc 2 | (144.5°, 31.1°, −78.0°) | 5.6° | |
Arc 3 | (150.1°, 30.1°, −83.4°) | 5.4° |
Method | Estimated Value | Truth Value | Error |
---|---|---|---|
Equal-frame | (−17.9°, −117.6°, 37.9°) | (−14°, −112°, 30°) | 11.5° |
Equal-time | (−8.2°, −117.8°, 22.4°) | 10.4° | |
Proposed | (−10.2°, −107.2°, 35.9°) | 7.8° |
Method | Estimated Value | Truth Value | Error |
---|---|---|---|
Coverage-1 | (−12.2°, −108.4°, 22.5°) | (−14°, −112°, 30°) | 9.2° |
Coverage-2 | (−16.9°, −105.8°, 23.1°) | 10.8° | |
Proposed | (−11.1°, −117.9°, 24.8°) | 7.5° |
Target | Parmeter | PAEA | Proposed Method | ||
---|---|---|---|---|---|
Result | Error | Result | Error | ||
Tiangong-1 | Arc 1 | (−18.6°, −110.7°, 28.3°) Cost time: 216.3 s | 5.2° | (−13.1°, −115.8°, 24.8°) Cost time: 79.5 s | 5.7° |
Arc 2 | (−11.3°, −110.2°, 26.7°) Cost time: 191.4 s | 4.9° | (−17.3°, −108.5°, 28.6°) Cost time: 58.5 s | 5.3° | |
Arc 3 | (−6.4°, −113.9°, 33.2°) Cost time: 244.9 s | 4.7° | (−13.6°, −111.0°, 34.1°) Cost time: 75.2 s | 4.0° | |
Aqua | Arc 1 | (147.3°, 27.9°, −78.2°) Cost time: 225.8 s | 5.4° | (141.0°, 32.5°, −81.7°) Cost time: 77.9 s | 4.8° |
Arc 2 | (148.6°, 34.1°, −85.8°) Cost time: 218.6 s | 4.1° | (149.4°, 28.8°, −81.4°) Cost time: 59.1 s | 5.2° | |
Arc 3 | (141.5°, 34.2°, −81.3°) Cost time: 253.8 s | 5.6° | (148.7°, 30.7°, −85.2°) Cost time: 72.4 s | 4.3° |
Target | Parmeter | PAEA | Proposed Method | ||
---|---|---|---|---|---|
Result | Error | Result | Error | ||
Tiangong-1 | Arc 1 | (−18.9°, −115.4°, 21.5°) Cost time: 15.1 s | 9.5° | (−14.9°, −108.1°, 36.2°) Cost time: 19.9 s | 6.5° |
Arc 2 | (−13.1°, −119.1°, 25.9°) Cost time: 17.1 s | 7.3° | (−16.1°, −109.1°, 25.6°) Cost time: 18.6 s | 6.2° | |
Arc 3 | (−7.1°, −115.6°, 35.3°) Cost time: 16.6 s | 9.7° | (−13.6°, −111.0°, 34.4°) Cost time: 17.4 s | 4.3° | |
Aqua | Arc 1 | (146.5°, 31.7°, −75.8°) Cost time: 18.7 s | 8.2° | (143.5°, 35.7°, −82.8°) Cost time: 19.5 s | 4.8° |
Arc 2 | (144.9°, 44.3°, −92.5°) Cost time: 20.7 s | 10.2° | (144.5°, 31.1°, −78.0°) Cost time: 18.9 s | 5.6° | |
Arc 3 | (149.8°, 33.9°, −79.4°) Cost time: 12.5 s | 7.6° | (150.1°, 30.1°, −83.4°) Cost time: 17.1 s | 5.4° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ning, X.; Sun, D.; Du, R. An Attitude Estimation Method for Space Targets Based on the Selection of Multi-View ISAR Image Sequences. Remote Sens. 2025, 17, 3432. https://doi.org/10.3390/rs17203432
Li J, Ning X, Sun D, Du R. An Attitude Estimation Method for Space Targets Based on the Selection of Multi-View ISAR Image Sequences. Remote Sensing. 2025; 17(20):3432. https://doi.org/10.3390/rs17203432
Chicago/Turabian StyleLi, Junzhi, Xin Ning, Dou Sun, and Rongzhen Du. 2025. "An Attitude Estimation Method for Space Targets Based on the Selection of Multi-View ISAR Image Sequences" Remote Sensing 17, no. 20: 3432. https://doi.org/10.3390/rs17203432
APA StyleLi, J., Ning, X., Sun, D., & Du, R. (2025). An Attitude Estimation Method for Space Targets Based on the Selection of Multi-View ISAR Image Sequences. Remote Sensing, 17(20), 3432. https://doi.org/10.3390/rs17203432