Impact of Assimilating Doppler Radar Data on Short-Term Numerical Weather Forecasting at Different Spatial Scales
Abstract
Highlights
- Doppler radar data assimilation significantly improves the initial analysis of mesoscale systems and enhances the accuracy of short-term (0–3 h) quantitative precipitation forecasts, especially for heavy rainfall (>15 mm), compared to using only wind profiler radar data.
- The Barnes filter analysis reveals that forecast improvements from radar data assimilation are most pronounced at the mesoscale but are inherently limited to the first 2–3 h, after which skill rapidly decays. In contrast, large-scale systems show greater stability and predictability over a 6-h forecast period.
- This study underscores the critical value of high-resolution Doppler radar data for initializing and predicting mesoscale convective events, directly leading to more accurate and reliable short-term weather warnings for heavy rainfall.
- The findings highlight a fundamental predictability limit for mesoscale systems and suggest that future research should prioritize techniques to extend the useful forecast window of such rapidly evolving weather phenomena.
Abstract
1. Introduction
2. Weather Case, Model, and Experimental Design
2.1. Weather Case
2.2. Model Configuration and Data
2.3. Radar Data Preprocessing
2.4. Experimental Design
2.5. Methods
2.5.1. Barnes Filtering Method
2.5.2. Threat Score and Bias Score
2.5.3. Pattern Correlation Method
3. Results
3.1. Improvement in the Initial Analysis by Assimilating Radar Data
3.2. Improvement in the Forecast by Assimilating Radar Data
3.3. Impact of Radar DA on the Predictions at Different Spatial Scales
3.3.1. Selection of Weight Constant in the Response Function
3.3.2. Impact of Radar DA on the Analysis at the Meso- and Large-Scale
3.4. Temporal Evolution of Meso- and Large-Scale Systems in the Analysis
3.5. Predictability in the Forecast at the Meso- and Large-Scale
3.6. Impact of Different Filter Parameters
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Initial Field Estimate
Appendix A.2. First Correction Step
Appendix A.3. Further Correction and Final Field Estimation
Appendix A.4. Response Functions
Appendix A.4.1. Initial Response Function
Appendix A.4.2. First Corrected Response Function
Appendix A.4.3. Final Corrected Response Function
References
- Foresti, L.; Rabier, F.; Hamill, T.M.; Livings, D.M. Assessment of two approaches for very short range precipitation probabilistic prediction. Tellus A 2016, 68, 31117. [Google Scholar]
- Gebremichael, M.; Krajewski, W.F.; Kruger, E.L. Assessment and modelling of uncertainty in precipitation forecasts. J. Hydrol. 2004, 298, 58–78. [Google Scholar]
- Liao, Y.; Lu, S.; Yin, G. Short-Term and Imminent Rainfall Prediction Model Based on ConvLSTM and SmaAT-UNet. Sensors 2024, 24, 3576. [Google Scholar] [CrossRef] [PubMed]
- Bergot, T. Adaptive observations during FASTEX: A systematic survey of upstream flights. J. R. Meteorol. Soc. 1999, 125, 3271–3298. [Google Scholar] [CrossRef]
- Szunyogh, I.; Toth, Z.A.; Emanuel, K.; Bishop, C.; Snyder, C.; Morss, R.; Woolen, J.; Marchok, T. Ensemble-based targeting experiments during FASTEX: The effect of dropsonde data from the lear jet. J. R. Meteorol. Soc. 1999, 125, 3189–3217. [Google Scholar]
- Reynolds, C.A.; Webster, P.J.; Kalnay, E. Random Error Growth in NMC’s Global Forecasts. Mon. Weather Rev. 1994, 122, 1281–1305. [Google Scholar] [CrossRef]
- Collischonn, W.; Haas, R.; Andreolli, I. Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model. J. Hydrol. 2005, 305, 87–98. [Google Scholar] [CrossRef]
- Bruno, F.; Cocchi, D.; Greco, F.; Scardovi, E. Spatial reconstruction of rainfall fields from rain gauge and radar data. Stoch. Environ. Res. Risk Assess. 2014, 28, 1235–1245. [Google Scholar] [CrossRef]
- Jiang, J.H.; Yue, Q.; Su, H.; Kangaslahti, P.; Lebsock, M.; Reising, S.; Schoeberl, M.; Wu, L.; Herman, R.L. Simulation of Remote Sensing of Clouds and Humidity from Space Using a Combined Platform of Radar and Multifrequency Microwave Radiometers. Earth Space Sci. 2019, 6, 1234–1243. [Google Scholar] [CrossRef]
- Xiao, Q.; Sun, J. Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed During IHOP_2002. Mon. Weather Rev. 2007, 135, 3381–3404. [Google Scholar] [CrossRef]
- Wakimoto, R.M.; Cai, H.; Murphy, H.V. The Superior, Nebraska, Supercell During BAMEX. Bull. Am. Meteorol. Soc. 2004, 85, 1095–1106. [Google Scholar] [CrossRef]
- Sugimoto, S.; Crppl, N.A.; Sun, J.; Xiao, Q.; Barker, D.M. An Examination of WRF 3DVAR Radar Data Assimilation on Its Capability in Retrieving Unobserved Variables and Forecasting Precipitation Through Observing System Simulation Experiments. Mon. Weather Rev. 2009, 137, 4011–4029. [Google Scholar] [CrossRef]
- Chang, S.F.; Sun, Y.C.; Sun, J.; Tai, S.-L. The Implementation of the Ice-Phase Microphysical Process into a Four-Dimensional Variational Doppler Radar Analysis System (VDRAS) and Its Impact on Parameter Retrieval and Quantitative Precipitation Nowcasting. J. Atmos. Sci. 2016, 73, 1015–1038. [Google Scholar] [CrossRef]
- Natenberg, E.; Gao, J.; Xue, M.; Carr, F.H. Analysis and Forecast of a Tornadic Thunderstorm Using Multiple Doppler Radar Data, 3DVAR, and ARPS Model. Adv. Meteorol. 2013, 281695. [Google Scholar] [CrossRef]
- Sun, J. Initialization and Numerical Forecasting of a Supercell Storm Observed during STEPS. Mon. Weather Rev. 2005, 133, 793–813. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y. Analysis and Prediction of a Squall Line Observed during IHOP Using Multiple WSR-88D Observations. Mon. Weather Rev. 2008, 136, 2364–2388. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Xu, X. Characteristic Features of the Evolution of a Meiyu Frontal Rainstorm with Doppler Radar Data Assimilation. Adv. Meteorol. 2018, 9802360. [Google Scholar] [CrossRef]
- Pu, Z.; Li, X.; Sun, J. Impact of Airborne Doppler Radar Data Assimilation on the Numerical Simulation of Intensity Changes of Hurricane Dennis near a Landfall. J. Atmos. Sci. 2009, 66, 3351–3365. [Google Scholar] [CrossRef]
- Dong, J.; Xue, M. Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling hurricane Ike (2008). Q. J. R. Meteorol. Soc. 2012, 139, 467–487. [Google Scholar] [CrossRef]
- Li, X.; Ming, J.; Wang, Y.; Zhao, K.; Xue, M. Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the short-term forecasting of typhoon Meranti (2010) near landfall. J. Geophys. Res.-Atmos. 2013, 118, 10361–10375. [Google Scholar] [CrossRef]
- Wang, M.J.; Xue, M.; Zhao, K.; Dong, J. Assimilation of T-TREC-Retrieved Winds from Single-Doppler Radar with an Ensemble Kalman Filter for the Forecast of Typhoon Jangmi (2008). Mon. Weather Rev. 2014, 142, 1892–1907. [Google Scholar] [CrossRef]
- Qian, Y.; Peng, S.; Liu, S.; Chen, S.; Wang, Z.; Wan, Q.; Chen, Z. Assessing the influence of assimilating radar-observed radial winds on the simulation of a tropical cyclone. Nat. Hazards 2018, 94, 279–298. [Google Scholar] [CrossRef]
- Xiao, Q.; Kuo, Y.H.; Sun, J.; Lee, W.-C.; Lim, E.; Guo, Y.-R.; Barker, D.M. Assimilation of Doppler Radar Observations with a Regional 3DVAR System: Impact of Doppler Velocities on Forecasts of a Heavy Rainfall Case. J. Appl. Meteorol. Climatol. 2005, 44, 768–788. [Google Scholar] [CrossRef]
- Hu, M.; Xue, M.; Gao, J.; Brewster, K. 3DVAR and Cloud Analysis with WSR-88D Level-II Data for the Prediction of the Fort Worth, Texas, Tornadic Thunderstorms. Part II: Impact of Radial Velocity Analysis via 3DVAR. Mon. Weather Rev. 2006, 134, 699–721. [Google Scholar] [CrossRef]
- Chung, K.; Zawadzki, I.; Yau, M.K.; Fillion, L. Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Mon. Weather Rev. 2009, 137, 4415–4435. [Google Scholar] [CrossRef]
- Gao, J.; Stensrud, D.J. Assimilation of Reflectivity Data in a Convective-Scale, Cycled 3DVAR Framework with Hydrometeor Classification. J. Atmos. Sci. 2012, 69, 1054–1065. [Google Scholar] [CrossRef]
- Sun, J.; Crook, N.A. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci. 1997, 54, 1642–1661. [Google Scholar] [CrossRef]
- Kawabata, T.; Kuroda, T.; Seko, H.; Saito, K. A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Weather Rev. 2011, 139, 1911–1931. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Xu, D.; Zhang, L.; Leung, J.C.H.; Li, H.; Gong, J.; Zhang, B. An incremental analysis update in the framework of the four-dimensional variational data assimilation: Description and preliminary tests in the operational China Meteorological Administration Global Forecast System. Q. J. R. Meteorol. Soc. 2024, 150, 2104–2122. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H. Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the US Great Plains. Mon. Weather Rev. 2013, 141, 2245–2264. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Zhang, X. Radar Data Assimilation with WRF 4D-Var. Part I: System Development and Preliminary Testing. Mon. Weather Rev. 2013, 141, 2224–2244. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Xue, M. Assimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble–3DVAR System for the Prediction of Hurricane Ike (2008). Mon. Weather Rev. 2012, 140, 3507–3524. [Google Scholar] [CrossRef]
- Tian, J.; Liu, J.; Yan, D.; Li, C.; Chu, Z.; Yu, F. An assimilation test of Doppler radar reflectivity and radial velocity from different height layers in improving the WRF rainfall forecasts. Atmos. Res. 2017, 198, 32–144. [Google Scholar] [CrossRef]
- Tsai, C.C.; Yang, S.C.; Liou, Y.C. Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus A 2014, 66, 21804. [Google Scholar] [CrossRef]
- Yue, J.; Meng, Z. Impact of assimilating Taiwan’s coastal radar radial velocity on forecasting Typhoon Morakot (2009) in southeastern China using a WRF-based EnKF. Sci. China Earth Sci. 2016, 60, 315–327. [Google Scholar] [CrossRef]
- Li, X.; Zeng, M.; Wang, Y.; Wang, W.; Wu, H.; Mei, H. Evaluation of two momentum control variable schemes and their impact on the variational assimilation of radar wind data: Case study of a squall line. Adv. Atmos. Sci. 2016, 33, 1143–1157. [Google Scholar] [CrossRef]
- Montmerle, T.; Faccani, C. Mesoscale assimilation of radial velocities from Doppler radars in a preoperational framework. Mon. Weather Rev. 2009, 137, 1939–1953. [Google Scholar] [CrossRef]
- Tai, S.L.; Liou, Y.C.; Sun, J.Z.; Chang, S.-F.; Kuo, M.-C. Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies During SoWMEX in Taiwan. Weather Forecast. 2011, 26, 975–992. [Google Scholar] [CrossRef]
- Wang, M.; Xue, M.; Zhao, K. An investigation on how inner-core structures obtained through radar data assimilation affect track forecasting of typhoon Jangmi (2008) near Taiwan Island. J. Geophys. Res.-Atmos. 2016, 121, 10601–10616. [Google Scholar] [CrossRef]
- Bachmann, K.; Keil, C. Impact of radar data assimilation and orography on predictability of deep convection. Q. J. R. Meteorol. Soc. 2019, 145, 117–130. [Google Scholar] [CrossRef]
- Barnes, S.L. A technique for maximizing details in numerical weather map analysis. J. Appl. Meteorol. 1964, 3, 396–409. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A.J.; Xiao, Q.N. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef]
- Liu, D.; Huang, C.; Feng, J. Influence of Assimilating Wind Profiling Radar Observations in Distinct Dynamic Instability Regions on the Analysis and Forecast of an Extreme Rainstorm Event in Southern China. Remote Sens. 2022, 14, 3478. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Lacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlate-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Chou, M.D.; Suarez, M.J. A solar radiation parameterization for atmospheric studies. In Technical Report Series on Global Modeling and Data Assimilation; No. NASA/TM-1999-104606; Suarez, M.J., Ed.; NASA Technical Memorandum: Greenbelt, MD, USA, 1999; Volume 15, p. 40. [Google Scholar]
- Grell, G.A.; Devenyi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Janjic, Z.I. The step-mountain Eta coordinate model: Further developments of the convection, viscous layer, and turbulence closure schemes. Mon. Weather Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Helmus, J.J.; Collis, S.M. The python arm radar toolkit (py-art), a library for working with weather radar data in the python programming language. J. Open Res. Softw. 2016, 4, 25. [Google Scholar] [CrossRef]














| Experiments | Observations Assimilated in the Experiment |
|---|---|
| CTL | Wind profiler radar |
| RAD | Both wind radar profiler and S-band Doppler radar |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, G.; Li, T.; Qiu, G.; Su, Z.; Liu, D. Impact of Assimilating Doppler Radar Data on Short-Term Numerical Weather Forecasting at Different Spatial Scales. Remote Sens. 2025, 17, 3384. https://doi.org/10.3390/rs17193384
Luo G, Li T, Qiu G, Su Z, Liu D. Impact of Assimilating Doppler Radar Data on Short-Term Numerical Weather Forecasting at Different Spatial Scales. Remote Sensing. 2025; 17(19):3384. https://doi.org/10.3390/rs17193384
Chicago/Turabian StyleLuo, Guanting, Tingting Li, Ganlin Qiu, Zhizhong Su, and Deqiang Liu. 2025. "Impact of Assimilating Doppler Radar Data on Short-Term Numerical Weather Forecasting at Different Spatial Scales" Remote Sensing 17, no. 19: 3384. https://doi.org/10.3390/rs17193384
APA StyleLuo, G., Li, T., Qiu, G., Su, Z., & Liu, D. (2025). Impact of Assimilating Doppler Radar Data on Short-Term Numerical Weather Forecasting at Different Spatial Scales. Remote Sensing, 17(19), 3384. https://doi.org/10.3390/rs17193384

