Modeling Seasonal Fire Probability in Thailand: A Machine Learning Approach Using Multiyear Remote Sensing Data
Abstract
Highlights
- Anthropogenic fire patterns in northern Thailand are captured well by pairing proven Random Forest modelling methods with a localized model development process, including temporal data disaggregation, representative reference data sampling, and empirical predictor variable selection.
- This method represents a scalable advancement in wildfire probability mapping using open-source tools for data-constrained landscapes.
- Modelling fire probability seasonally using annually paired fire occurrences and predictor variables allows researchers and managers to explore year-to-year variability in fire patterns, which is particularly critical for pre-fire-season resource allocation.
- Annual updates to fire probability maps using this method fill a critical resource gap for fire prevention and response in northern Thailand, helping fire managers to optimize fire management at every stage of planning.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Selection
2.3. Data Selection
2.3.1. Fire Presence and Absence Data
2.3.2. Predictor Variable Data
2.4. Data Preprocessing
2.5. Model Development and Refinement
2.5.1. Multicollinearity
2.5.2. Variable Importance
2.5.3. Accuracy Assessment
2.5.4. Sensitivity Analysis
3. Results
3.1. Variable Importance and Model Sensitivity
3.2. Fire Probability Map
4. Discussion
4.1. Evaluation of Model Results
4.2. Feedback from Stakeholders
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geo-Informatics and Space Technology Development Agency (GISTDA). Summary Report on Forest Fire and Haze Situation in 2023 Using Space and Geospatial Technology; Geo-Informatics and Space Technology Development Agency: Bangkok, Thailand, 2023. [Google Scholar]
- Ku, A. Fire-Climate Relationships in Continental Southeast Asia. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2023. [Google Scholar]
- Chaiyo, U.; Pizzo, Y.; Garivait, S. Estimation of Carbon Released from Dry Dipterocarp Forest Fires in Thailand. Int. J. Environ. Sci. 2013, 7, 522–525. [Google Scholar]
- Thailand Deforestation Rates & Statistics. Available online: https://www.globalforestwatch.org/dashboards/country/THA?category=fires (accessed on 30 December 2024).
- Layer Information: VIIRS (Suomi NPP, NOAA-20 and NOAA-21) Fires and Thermal Anomalies (Day|Night, 375m). Available online: https://firms.modaps.eosdis.nasa.gov/descriptions/FIRMS_VIIRS_Firehotspots.html (accessed on 8 January 2025).
- Chart-asa, C. Spatial-Temporal Patterns of MODIS Active Fire/Hotspots in Chiang Rai, Upper Northern Thailand and the Greater Mekong Subregion Countries During 2003–2015. Appl. Environ. Res. 2021, 43, 121–131. [Google Scholar] [CrossRef]
- Pungkhom, P.; Jinsart, W. Health Risk Assessment from Bush Fire Air Pollutants Using Statistical Analysis and Geographic Information System: A Case Study in Northern Thailand. Int. J. Geoinformatics 2014, 10, 17–24. [Google Scholar]
- Sirimongkonlertkun, N. Smoke Haze Problem and Open Burning Behavior of Local People in Chiang Rai Province. Environ. Nat. Resour. J. 2014, 12, 29–34. [Google Scholar]
- Tang, J.; Weeramongkolkul, M.; Suwankesawong, S.; Saengtabtim, K.; Leelawat, N.; Wongwailikhit, K. Toward a More Resilient Thailand: Developing a Machine Learning-Powered Forest Fire Warning System. Heliyon 2024, 10, e34021. [Google Scholar] [CrossRef]
- Department of National Parks, Wildlife and Plant Conservation. Analysis of Fire Risk Areas in Conservation Forests; Department of National Parks, Wildlife and Plant Conservation: Bangkok, Thailand, 2019. [Google Scholar]
- Pardthaisong, L.; Sin-ampol, P.; Suwanprasit, C.; Charoenpanyanet, A. Haze Pollution in Chiang Mai, Thailand: A Road to Resilience. Procedia Eng. 2018, 212, 85–92. [Google Scholar] [CrossRef]
- Baker, P.J.; Bunyavejchewin, S. Fire Behavior and Fire Effects across the Forest Landscape of Continental Southeast Asia. In Tropical Fire Ecology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 311–334. ISBN 978-3-540-77380-1. [Google Scholar]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of Agricultural Activities, Forest Fires and Agro-Industries on Air Quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Tanpipat, V.; McCarty, J.L.; Davies, D.; Schroeder, W.; Elvidge, C. Active Fire Monitoring of Thailand and Upper ASEAN by Earth Observation Data: Benefits, Lessons Learned, and What Still Needs to Be Known. In Vegetation Fires and Pollution in Asia; Vadrevu, K.P., Ohara, T., Justice, C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 139–153. ISBN 978-3-031-29916-2. [Google Scholar]
- Proceedings of the Conference: Consultation with National Agencies on Validation of Wildfire Risk Map and Integrated Management Information System in 9 Northern Provinces, Thailand. Bangkok, Thailand. 19 June 2024. Available online: https://www.worldbank.org/en/events/2024/06/13/consultation-validation-of-wildfire-risk-map-and-integrated-management-information-system-in-thailand (accessed on 2 September 2025).
- Tiyapairat, Y.; Sajor, E.E. State Simplification, Heterogeneous Causes of Vegetation Fires and Implications on Local Haze Management: Case Study in Thailand. Environ. Dev. Sustain. 2012, 14, 1047–1064. [Google Scholar] [CrossRef]
- Makarabhirom, P.; Ganz, D.; Onprom, S. Community Involvement in Fire Management: Cases and Recommendations for Community-Based Fire Management in Thailand. In Proceedings of the Communities in Flames; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2004. [Google Scholar]
- Smith, R.W.; Shields, B.J.; Ganz, D. Global Forest Resources Assessment 2005—Report on Fires in the South East Asian (ASEAN) Region. In Proceedings of the Fire Management Working Paper 10; Forestry Department, Food and Agriculture Organization of the United Nations: Rome, Italy, 2006. [Google Scholar]
- Prapatigul, P.; Sreshthaputra, S. Causes and Solution of Forest and Agricultural Burning in Northern, Thailand. Int. J. Agric. Technol. 2022, 18, 1715–1726. [Google Scholar]
- Kennedy, K.H.; Maxwell, J.F.; Lumyong, S. Fire and the Production of Astraeus Odoratus (Basidiomycetes) Sporocarps in Deciduous Dipterocarp-Oak Forests of Northern Thailand. Maejo Int. J. Sci. Technol. 2012, 6, 483–504. [Google Scholar]
- Kim Oanh, N.T.; Permadi, D.A.; Dong, N.P.; Nguyet, D.A. Emission of Toxic Air Pollutants and Greenhouse Gases from Crop Residue Open Burning in Southeast Asia. In Land-Atmospheric Research Applications in South and Southeast Asia; Vadrevu, K.P., Ohara, T., Justice, C., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 47–66. ISBN 978-3-319-67474-2. [Google Scholar]
- Sirithian, D.; Thepanondh, S.; Sattler, M.L.; Laowagul, W. Emissions of Volatile Organic Compounds from Maize Residue Open Burning in the Northern Region of Thailand. Atmos. Environ. 2018, 176, 179–187. [Google Scholar] [CrossRef]
- Kumar, I.; Bandaru, V.; Yampracha, S.; Sun, L.; Fungtammasan, B. Limiting Rice and Sugarcane Residue Burning in Thailand: Current Status, Challenges and Strategies. J. Environ. Manag. 2020, 276, 111228. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Hirsch, P. Poverty and Agrarian—Forest Interactions in Thailand. Geogr. Res. 2008, 46, 74–84. [Google Scholar] [CrossRef]
- Tanpipat, V.; Manomaiphiboon, K.; Field, R.D.; deGroot, W.J.; Nhuchaiya, P.; Jaroonrattanapak, N.; Buaniam, C.; Yodcum, J. An Operational Fire Danger Rating System for Thailand and Lower Mekong Region: Development, Utilization, and Experiences. In Vegetation Fires and Pollution in Asia; Vadrevu, K.P., Ohara, T., Justice, C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 575–588. ISBN 978-3-031-29916-2. [Google Scholar]
- Geo-Informatics & Space Technology Development Agency (GISDTA). Thailand Burned Area, 2016–2024; Geo-Informatics & Space Technology Development Agency: Bangkok, Thailand, 2025. [Google Scholar]
- Ratnam, J.; Tomlinson, K.W.; Rasquinha, D.N.; Sankaran, M. Savannahs of Asia: Antiquity, Biogeography, and an Uncertain Future. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150305. [Google Scholar] [CrossRef]
- Stott, P. Stability and Stress in the Savanna Forests of Mainland South-East Asia. J. Biogeogr. 1990, 17, 373–383. [Google Scholar] [CrossRef]
- Eiadthong, W. Endemic and rare plants in dry deciduous dipterocarp forest in Thailand. In Proceedings of the FORTROP II: Tropical Forestry Change in a Changing World, Bangkok, Thailand, 17–20 November 2008; pp. 133–142. [Google Scholar]
- Stott, P. The Savanna Forests of Mainland Southeast Asia: An Ecological Survey. Prog. Phys. Geogr. Earth Environ. 1984, 8, 315–335. [Google Scholar] [CrossRef]
- Baker, P.J.; Bunyavejchewin, S.; Oliver, C.D.; Ashton, P.S. Disturbance History and Historical Stand Dynamics of a Seasonal Tropical Forest in Western Thailand. Ecol. Monogr. 2005, 75, 317–343. [Google Scholar] [CrossRef]
- Rundel, P.; Boonpragob, K. Dry Forest Ecosystems of Thailand. In Seasonally Dry Tropical Forests; Cambridge University Press: Cambridge, UK, 1995; pp. 93–123. ISBN 978-0-521-43514-7. [Google Scholar]
- Laurance, W.F. Slow Burn: The Insidious Effects of Surface Fires on Tropical Forests. Trends Ecol. Evol. 2003, 18, 209–212. [Google Scholar] [CrossRef]
- USDA Forest Service Understand Risk. Available online: https://wildfirerisk.org/understand-risk/ (accessed on 10 September 2024).
- Scott, J.H.; Thompson, M.P.; Calkin, D.E. A Wildfire Risk Assessment Framework for Land and Resource Management; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Washington, DC, USA, 2013.
- About Quantitative Wildfire Risk Assessment (QWRA). Available online: https://iftdss.firenet.gov/firenetHelp/help/pageHelp/content/30-tasks/qwra/qwraabout.htm (accessed on 8 January 2025).
- Geo-Informatics and Space Technology Development Agency (GISTDA). Guide to Using Geospatial Data for Monitoring Wildfires and Haze Monitoring; Geo-Informatics and Space Technology Development Agency: Bangkok, Thailand, 2015. [Google Scholar]
- FDRS|Fire Danger Rating System. Available online: http://www2.dnp.go.th/gis/FDRS/FDRS.php (accessed on 11 October 2024).
- FDRS|Fire Danger Rating System. Available online: https://wildfire.forest.go.th/fdrs/FDRS.php (accessed on 16 October 2024).
- Nuthammachot, N.; Stratoulias, D. A GIS- and AHP-Based Approach to Map Fire Risk: A Case Study of Kuan Kreng Peat Swamp Forest, Thailand. Geocarto Int. 2019, 36, 212–225. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Stratoulias, D. Multi-Criteria Decision Analysis for Forest Fire Risk Assessment by Coupling AHP and GIS: Method and Case Study. Environ. Dev. Sustain. 2021, 23, 17443–17458. [Google Scholar] [CrossRef]
- Thaewthatum, S.; Moolchan, T.; Chaweewong, Y. Forest Fire Risk Forecasting in the Upper North Region of Thailand 2017; Government of Thailand: Bangkok, Thailand, 2017. [Google Scholar]
- Burapapol, K.; Nagasawa, R. Assessment of Wildfire Risk at Recreational Sites in Sri Lanna National Park, Chiang Mai, Northern Thailand, Using Remote Sensing and GIS Techniques. Int. J. Geoinformatics 2017, 13, 13–24. [Google Scholar]
- Van Hoang, T.; Chou, T.Y.; Fang, Y.M.; Nguyen, N.T.; Nguyen, Q.H.; Xuan Canh, P.; Ngo Bao Toan, D.; Nguyen, X.L.; Meadows, M.E. Mapping Forest Fire Risk and Development of Early Warning System for NW Vietnam Using AHP and MCA/GIS Methods. Appl. Sci. 2020, 10, 4348. [Google Scholar] [CrossRef]
- Pradhan, B.; Dini Hairi Bin Suliman, M.; Arshad Bin Awang, M. Forest Fire Susceptibility and Risk Mapping Using Remote Sensing and Geographical Information Systems (GIS). Disaster Prev. Manag. Int. J. 2007, 16, 344–352. [Google Scholar] [CrossRef]
- Ahmad, F.; Uddin, M.M.; Goparaju, L. Fire Risk Assessment along the Climate, Vegetation Type Variability over the Part of Asian Region: A Geospatial Approach. Model. Earth Syst. Environ. 2018, 5, 41–57. [Google Scholar] [CrossRef]
- He, Q.; Jiang, Z.; Wang, M.; Liu, K. Landslide and Wildfire Susceptibility Assessment in Southeast Asia Using Ensemble Machine Learning Methods. Remote Sens. 2021, 13, 1572. [Google Scholar] [CrossRef]
- Tien Bui, D.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical Area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Avand, M.; Al-Ansari, N.; Dinh Du, T.; Yen, H.P.H.; Phong, T.V.; Nguyen, D.H.; Le, H.V.; Mafi-Gholami, D.; et al. Performance Evaluation of Machine Learning Methods for Forest Fire Modeling and Prediction. Symmetry 2020, 12, 1022. [Google Scholar] [CrossRef]
- Tuyen, T.T.; Jaafari, A.; Yen, H.P.H.; Nguyen-Thoi, T.; Phong, T.V.; Nguyen, H.D.; Van Le, H.; Phuong, T.T.M.; Nguyen, S.H.; Prakash, I.; et al. Mapping Forest Fire Susceptibility Using Spatially Explicit Ensemble Models Based on the Locally Weighted Learning Algorithm. Ecol. Inform. 2021, 63, 101292. [Google Scholar] [CrossRef]
- Phoompanich, S.; Barr, S.; Gaulton, R. Development of Geospatial Techniques for Natural Hazard Risk Assessment in Thailand. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-3-W8, 315–322. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, K.-T.T.; Nguyen, V.C.; Le, H.D.; Revhaug, I. Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sens. 2016, 8, 347. [Google Scholar] [CrossRef]
- Adem Esmail, B.; Geneletti, D. Multi-Criteria Decision Analysis for Nature Conservation: A Review of 20 Years of Applications. Methods Ecol. Evol. 2018, 9, 42–53. [Google Scholar] [CrossRef]
- Ferreira, Z.; Almeida, B.; Costa, A.C.; Do Couto Fernandes, M.; Cabral, P. Insights into Landslide Susceptibility: A Comparative Evaluation of Multi-Criteria Analysis and Machine Learning Techniques. Geomat. Nat. Hazards Risk 2025, 16, 2471019. [Google Scholar] [CrossRef]
- Khuc, T.D.; Truong, X.Q.; Tran, V.A.; Bui, D.Q.; Bui, D.P.; Ha, H.; Tran, T.H.M.; Pham, T.T.T.; Yordanov, V. Comparison of Multi-Criteria Decision Making, Statistics, and Machine Learning Models for Landslide Susceptibility Mapping in Van Yen District, Yen Bai Province, Vietnam. Int. J. Geoinformatics 2023, 19, 33–45. [Google Scholar] [CrossRef]
- Uthappa, A.R.; Das, B.; Raizada, A.; Kumar, P.; Jha, P.; Prasad, P.V.V. Forest Fire Susceptibility Mapping Using Multi-Criteria Decision Making and Machine Learning Models in the Western Ghats of India. J. Environ. Manag. 2025, 379, 124777. [Google Scholar] [CrossRef]
- Zhao, L.Q.; van Duynhoven, A.; Dragićević, S. Machine Learning for Criteria Weighting in GIS-Based Multi-Criteria Evaluation: A Case Study of Urban Suitability Analysis. Land 2024, 13, 1288. [Google Scholar] [CrossRef]
- Khalil, U.; Imtiaz, I.; Aslam, B.; Ullah, I.; Tariq, A.; Qin, S. Comparative Analysis of Machine Learning and Multi-Criteria Decision Making Techniques for Landslide Susceptibility Mapping of Muzaffarabad District. Front. Environ. Sci. 2022, 10, 1028373. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hastie, T.; Friedman, J.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY, USA, 2001; ISBN 978-1-4899-0519-2. [Google Scholar]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A Review of Machine Learning Applications in Wildfire Science and Management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- NASA-FIRMS. Available online: https://firms.modaps.eosdis.nasa.gov/map/ (accessed on 17 January 2025).
- National Risk Index: Wildifre. Available online: https://hazards.fema.gov/nri/wildfire (accessed on 18 September 2025).
- Smith, J.T.; Allred, B.W.; Boyd, C.S.; Davies, K.W.; Jones, M.O.; Kleinhesselink, A.R.; Maestas, J.D.; Naugle, D.E. Where There’s Smoke, There’s Fuel: Dynamic Vegetation Data Improve Predictions of Wildfire Hazard in the Great Basin. Rangel. Ecol. Manag. 2023, 89, 20–32. [Google Scholar] [CrossRef]
- Peters, M.P.; Iverson, L.R.; Matthews, S.N.; Prasad, A.M. Wildfire Hazard Mapping: Exploring Site Conditions in Eastern US Wildland–Urban Interfaces. Int. J. Wildland Fire 2013, 22, 567–578. [Google Scholar] [CrossRef]
- Martín, Y.; Zúñiga-Antón, M.; Rodrigues Mimbrero, M. Modelling Temporal Variation of Fire-Occurrence towards the Dynamic Prediction of Human Wildfire Ignition Danger in Northeast Spain. Geomat. Nat. Hazards Risk 2019, 10, 385–411. [Google Scholar] [CrossRef]
- Vacchiano, G.; Foderi, C.; Berretti, R.; Marchi, E.; Motta, R. Modeling Anthropogenic and Natural Fire Ignitions in an Inner-Alpine Valley. Nat. Hazards Earth Syst. Sci. 2018, 18, 935–948. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Parks, S.A.; Krawchuk, M.A.; Little, J.M.; Flannigan, M.D.; Gowman, L.M.; Moritz, M.A. An Analysis of Controls on Fire Activity in Boreal Canada: Comparing Models Built with Different Temporal Resolutions. Ecol. Appl. 2014, 24, 1341–1356. [Google Scholar] [CrossRef]
- Copernicus Global Land Cover Layers: CGLS-LC100 Collection 3. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_Landcover_100m_Proba-V-C3_Global (accessed on 2 January 2025).
- Copernicus DEM GLO-30: Global 30m Digital Elevation Model. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_DEM_GLO30 (accessed on 16 August 2024).
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Kaewthongrach, R.; Diem, P.; Chidthaisong, A.; Sanwangsri, M.; Hanpattanakit, P.; Varnkovida, P.; Suepa, T. Detecting the El Niño’s Induced Changes in Phenology of a Secondary Dry Dipterocarp Forest by Using Remote Sensing; Tambon Thung Sukala: Bangkok, Thailand, 2018. [Google Scholar]
- Kieu Diem, P. Responses of Tropical Deciduous Forest Phenology to Climate Variation in Northern Thailand. In Proceedings of the Conference: International Conference on Environmental Research and Technology (ICERT 2017), Penang, Malaysia, 25 August 2017. [Google Scholar]
- Kieu Diem, P.; Chidthaisong, A.; Varnakovida, P.; Kaewthongrach, R.; Sanwangsri, M. Estimating the Gross Primary Production of Secondary Dry Dipterocarp Forest Using Vegetation Photosynthesis Model. In Proceedings of the Technology & Innovation for Global Energy Revolution, Bangkok, Thailand, 30 November 2018. [Google Scholar]
- Bunyavejchewin, S.; Baker, P.; Davies, S.J. Seasonally Dry Tropical Forest in Continental Southeast Asia Structure, Composition, and Dynamics. In The Ecology and Conservation of Seasonally Dry Forest in Asia; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 9–35. [Google Scholar]
- Muñoz Sabater, J. ERA5-Land Monthly Averaged Data from 1981 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR (accessed on 2 September 2025).
- Caruana, R.; Niculescu-Mizil, A. An Empirical Comparison of Supervised Learning Algorithms. In Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh PA, USA, 25–29 June 2016; Association for Computing Machinery: New York, NY, USA, 2006; pp. 161–168. [Google Scholar]
- Xu, Z.; Li, J.; Cheng, S.; Rui, X.; Zhao, Y.; He, H.; Xu, L. Wildfire Risk Prediction: A Review. arXiv 2024, arXiv:2405.01607. [Google Scholar] [CrossRef]
- Alkan Akinci, H.; Akinci, H.; Zeybek, M. Comparison of Diverse Machine Learning Algorithms for Forest Fire Susceptibility Mapping in Antalya, Türkiye. Adv. Space Res. 2024, 74, 647–667. [Google Scholar] [CrossRef]
- Malik, A.; Rao, M.R.; Puppala, N.; Koouri, P.; Thota, V.A.K.; Liu, Q.; Chiao, S.; Gao, J. Data-Driven Wildfire Risk Prediction in Northern California. Atmosphere 2021, 12, 109. [Google Scholar] [CrossRef]
- Mishra, M.; Guria, R.; Baraj, B.; Nanda, A.P.; Santos, C.A.G.; Silva, R.M.D.; Laksono, F.A.T. Spatial Analysis and Machine Learning Prediction of Forest Fire Susceptibility: A Comprehensive Approach for Effective Management and Mitigation. Sci. Total Environ. 2024, 926, 171713. [Google Scholar] [CrossRef] [PubMed]
- Moghim, S.; Mehrabi, M. Wildfire Assessment Using Machine Learning Algorithms in Different Regions. Fire Ecol. 2024, 20, 104. [Google Scholar] [CrossRef]
- Rodrigues, M.; de la Riva, J. An Insight into Machine-Learning Algorithms to Model Human-Caused Wildfire Occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Shahzad, F.; Mehmood, K.; Hussain, K.; Haidar, I.; Anees, S.A.; Muhammad, S.; Ali, J.; Adnan, M.; Wang, Z.; Feng, Z. Comparing Machine Learning Algorithms to Predict Vegetation Fire Detections in Pakistan. Fire Ecol. 2024, 20, 57. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, F. A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm. Forests 2023, 14, 1506. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, M.; Liu, K. Wildfire Susceptibility Assessment in Southern China: A Comparison of Multiple Methods. Int. J. Disaster Risk Sci. 2017, 8, 164–181. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Valizadeh Kamran, K.; Blaschke, T.; Aryal, J.; Naboureh, A.; Einali, J.; Bian, J. Spatial Prediction of Wildfire Susceptibility Using Field Survey GPS Data and Machine Learning Approaches. Fire 2019, 2, 43. [Google Scholar] [CrossRef]
- Jaafari, A.; Pourghasemi, H.R. 28—Factors Influencing Regional-Scale Wildfire Probability in Iran: An Application of Random Forest and Support Vector Machine. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 607–619. ISBN 978-0-12-815226-3. [Google Scholar]
- Tan, C.; Feng, Z. Mapping Forest Fire Risk Zones Using Machine Learning Algorithms in Hunan Province, China. Sustainability 2023, 15, 6292. [Google Scholar] [CrossRef]
- Schratz, P.; Muenchow, J.; Iturritxa, E.; Richter, J.; Brenning, A. Hyperparameter Tuning and Performance Assessment of Statistical and Machine-Learning Algorithms Using Spatial Data. Ecol. Model. 2019, 406, 109–120. [Google Scholar] [CrossRef]
- Auret, L.; Aldrich, C. Interpretation of Nonlinear Relationships between Process Variables by Use of Random Forests. Miner. Eng. 2012, 35, 27–42. [Google Scholar] [CrossRef]
- Malhotra, S.; Karanicolas, J. A Numerical Transform of Random Forest Regressors Corrects Systematically-Biased Predictions. arXiv 2020, arXiv:2003.07445. [Google Scholar] [CrossRef]
- Barreñada, L.; Dhiman, P.; Timmerman, D.; Boulesteix, A.-L.; Calster, B.V. Understanding Overfitting in Random Forest for Probability Estimation: A Visualization and Simulation Study. Diagn. Progn. Res. 2024, 8, 14. [Google Scholar] [CrossRef]
- Farrell, A.; Wang, G.; Rush, S.A.; Martin, J.A.; Belant, J.L.; Butler, A.B.; Godwin, D. Machine Learning of Large-Scale Spatial Distributions of Wild Turkeys with High-Dimensional Environmental Data. Ecol. Evol. 2019, 9, 5938–5949. [Google Scholar] [CrossRef]
- Kaveh, N.; Ebrahimi, A.; Asadi, E. Comparative Analysis of Random Forest, Exploratory Regression, and Structural Equation Modeling for Screening Key Environmental Variables in Evaluating Rangeland above-Ground Biomass. Ecol. Inform. 2023, 77, 102251. [Google Scholar] [CrossRef]
- Karabiber, F. Gini Impurity. Available online: https://www.learndatasci.com/glossary/gini-impurity/ (accessed on 2 September 2025).
- Sandri, M.; Zuccolotto, P. A Bias Correction Algorithm for the Gini Variable Importance Measure in Classification Trees. J. Comput. Graph. Stat. 2008, 17, 611–628. [Google Scholar] [CrossRef]
- Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef]
- Oshiro, T.M.; Perez, P.S.; Baranauskas, J.A. How Many Trees in a Random Forest? In Proceedings of the Machine Learning and Data Mining in Pattern Recognition; Perner, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 154–168. [Google Scholar]
- Dankowski, T.; Ziegler, A. Calibrating Random Forests for Probability Estimation. Stat. Med. 2016, 35, 3949–3960. [Google Scholar] [CrossRef]
- Mahamart, P. Burned Area. Available online: https://gistda.or.th/news_view.php?n_id=5655&language=EN (accessed on 16 October 2024).
- Oliva, P.; Schroeder, W. Assessment of VIIRS 375 m Active Fire Detection Product for Direct Burned Area Mapping. Remote Sens. Environ. 2015, 160, 144–155. [Google Scholar] [CrossRef]
- Layer Information: MODIS (Aqua & Terra) Fire and Thermal Anomalies (Day|Night, 1km). Available online: https://firms.modaps.eosdis.nasa.gov/descriptions/FIRMS_MODIS_Firehotspots.html (accessed on 8 January 2025).
- FIRMS: How Often Are the Active Fire Data Acquired? NASA Earthdata Forum. Available online: https://forum.earthdata.nasa.gov/viewtopic.php?t=5159 (accessed on 2 September 2025).
- How Often Is FIRMS Updated? NASA Earthdata Forum. Available online: https://forum.earthdata.nasa.gov/viewtopic.php?t=5161 (accessed on 2 September 2025).
- Tanpipat, V.; Honda, K.; Nuchaiya, P. MODIS Hotspot Validation over Thailand. Remote Sens. 2009, 1, 1043–1054. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Lessons Learned on Wildfire Risk Mapping, Integrated Fire Management Systems, and Value Chain Assessments from Northern Thailand (and Globally), Bangkok, Thailand. 2024. Available online: https://documents1.worldbank.org/curated/en/099063025174012581/pdf/P179593-ba554fa7-4095-4146-b804-0bbdb36f308d.pdf (accessed on 2 September 2025).
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Luan, J.; Zhang, C.; Xu, B.; Xue, Y.; Ren, Y. The Predictive Performances of Random Forest Models with Limited Sample Size and Different Species Traits. Fish. Res. 2020, 227, 105534. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef]
- Joseph, V.R. Optimal Ratio for Data Splitting. Stat. Anal. Data Min. ASA Data Sci. J. 2022, 15, 531–538. [Google Scholar] [CrossRef]
- Linn, R.; Winterkamp, J.; Edminster, C.; Colman, J.J.; Smith, W.S. Coupled Influences of Topography and Wind on Wildland Fire Behaviour. Int. J. Wildland Fire 2007, 16, 183–195. [Google Scholar] [CrossRef]
- Junpen, A.; Garivait, S.; Bonnet, S.; Pongpullponsak, A. Fire Spread Prediction for Deciduous Forest Fires in Northern Thailand. Sci. Asia 2013, 39, 535. [Google Scholar] [CrossRef]
- Stott, P.A.; Goldammer, J.G.; Werner, W.L. The Role of Fire in the Tropical Lowland Deciduous Forests of Asia. In Fire in the Tropical Biota; Goldammer, J.G., Ed.; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 1990; Volume 84, pp. 32–44. ISBN 978-3-642-75397-8. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Res. Pap. INT-115; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1972; Volume 115, p. 40. [Google Scholar]
- Stott, P. The Spatial Pattern of Dry Season Fires in the Savanna Forests of Thailand. J. Biogeogr. 1986, 13, 345–358. [Google Scholar] [CrossRef]
- Byram, G.M. Combustion of Forest Fuels. In Forest Fire Control and Use; Davis, K.P., Ed.; McGraw-Hill: New York City, NY, USA, 1959; pp. 61–89. [Google Scholar]
- Burapapol, K.; Nagasawa, R. Mapping Soil Moisture as an Indicator of Wildfire Risk Using Landsat 8 Images in Sri Lanna National Park, Northern Thailand. J. Agric. Sci. 2016, 8, 107. [Google Scholar] [CrossRef]
- Finney, M.A. Mechanistic Modeling of Landscape Fire Patterns. In Spatial Modeling of Forest Landscape Change: Approaches and Applications; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Fukushima, M.; Kanzaki, M.; Hara, M.; Ohkubo, T.; Preechapanya, P.; Choocharoen, C. Secondary Forest Succession after the Cessation of Swidden Cultivation in the Montane Forest Area in Northern Thailand. For. Ecol. Manag. 2008, 255, 1994–2006. [Google Scholar] [CrossRef]
- Schmidt-Vogt, D. Secondary Forests in Swidden Agriculture in the Highlands of Thailand. J. Trop. For. Sci. 2001, 13, 748–767. [Google Scholar]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in Vegetation Fires in South and Southeast Asian Countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef]
- Talukdar, N.R.; Ahmad, F.; Goparaju, L.; Choudhury, P.; Qayum, A.; Rizvi, J. Forest Fire in Thailand: Spatio-Temporal Distribution and Future Risk Assessment. Nat. Hazards Res. 2024, 4, 87–96. [Google Scholar] [CrossRef]
- Hartung, M.; Carreño-Rocabado, G.; Peña-Claros, M.; van der Sande, M.T. Tropical Dry Forest Resilience to Fire Depends on Fire Frequency and Climate. Front. For. Glob. Change 2021, 4, 755104. [Google Scholar] [CrossRef]
- Scott, J.H. Introduction to Fire Behavior Modeling 2012. Available online: https://pyrologix.com/wp-content/uploads/2014/04/Scott_20121.pdf (accessed on 3 September 2025).
- Nelson, R.M. A Model of Diurnal Moisture Change in Dead Forest Fuels; Society of American Foresters: Bethesda, MD, USA, 1991; pp. 109–116. [Google Scholar]
- Beck, J.A.; Alexander, M.E.; Harvey, S.D.; Beaver, A.K. Forecasting Diurnal Variation in Fire Intensity for Use in Wildland Fire Management Applications. In Proceedings of the Fourth Symposium on Fire and Forest Meteorology, Seattle, WA, USA, 13 November 2001. [Google Scholar]
- Saxena, S.; Dubey, R.R.; Yaghoobian, N. A Planning Model for Predicting Ignition Potential of Complex Fuels in Diurnally Variable Environments. Fire Technol. 2023, 59, 2787–2827. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Generation of a Global Fuel Data Set Using the Fuel Characteristic Classification System. Biogeosciences 2016, 13, 2061–2076. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Global Fuelbed Dataset; Department of Geology, Geography and Environment, University of Alcala: Alcalá de Henares, Spain, 2015. [Google Scholar]
- Prichard, S.J.; Sandberg, D.V.; Ottmar, R.D.; Eberhardt, E.; Andreu, A.; Eagle, P.; Swedin, K. Fuel Characteristic Classification System Version 3.0: Technical Documentation; Gen. Tech. Rep. PNW-GTR-887; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2013; Volume 887, p. 79. [Google Scholar] [CrossRef]
- Prichard, S.J.; Andreu, A.G.; Ottmar, R.D.; Eberhardt, E. Fuel Characteristic Classification System (FCCS) Field Sampling and Fuelbed Development Guide; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2019. [Google Scholar]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ. 2021, 253, 112165. [Google Scholar] [CrossRef]
- USGS Landsat 8 Level 2, Collection 2, Tier 1. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_L2 (accessed on 16 August 2024).
- PALSAR-2 ScanSAR Level 2.2. Available online: https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR (accessed on 17 August 2024).
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- TerraClimate: Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces. Available online: https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE (accessed on 15 July 2025).
- Geospatial-Informatics and Space Technology Development Agency (GISTDA) Thailand Roads. Available online: https://data.humdata.org/dataset/thailand-roads? (accessed on 24 October 2024).
- World Settlement Footprint 2015. Available online: https://developers.google.com/earth-engine/datasets/catalog/DLR_WSF_WSF2015_v1 (accessed on 17 August 2024).
- Marconcini, M.; Metz-Marconcini, A.; Üreyen, S.; Palacios-Lopez, D.; Hanke, W.; Bachofer, F.; Zeidler, J.; Esch, T.; Gorelick, N.; Kakarla, A.; et al. Outlining Where Humans Live, the World Settlement Footprint 2015. Sci. Data 2020, 7, 242. [Google Scholar] [CrossRef]
- Royal Forest Department KTC Area. Available online: https://www.forest.go.th/land/ (accessed on 24 October 2024).
- Royal Forest Department National Forest. Available online: https://data.forest.go.th/dataset/reserve_forest (accessed on 24 October 2024).
- Department of National Parks, Wildlife, and Plant Conservation Office of Conservation Area Management Boundaries. Available online: http://www2.dnp.go.th/gis/Blog%20Posts/%E0%B8%94%E0%B8%B2%E0%B8%A7%E0%B8%99%E0%B9%82%E0%B8%AB%E0%B8%A5%E0%B8%94-%E0%B8%95%E0%B8%B2%E0%B8%A3%E0%B8%B2%E0%B8%87-%E0%B9%81%E0%B8%A5%E0%B8%B0-shp.html (accessed on 24 October 2024).
- GHSL: Global Population Surfaces 1975–2030. Available online: https://developers.google.com/earth-engine/datasets/catalog/JRC_GHSL_P2023A_GHS_POP (accessed on 17 August 2024).
- European Commission (Ed.) GHSL Data Package 2023; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-19156-9. [Google Scholar]
- Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in Random Forest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinform. 2007, 8, 25. [Google Scholar] [CrossRef]
- Bradter, U.; Altringham, J.D.; Kunin, W.E.; Thom, T.J.; O’Connell, J.; Benton, T.G. Variable Ranking and Selection with Random Forest for Unbalanced Data. Environ. Data Sci. 2022, 1, e30. [Google Scholar] [CrossRef]
- Craney, T.A.; Surles, J.G. Model-Dependent Variance Inflation Factor Cutoff Values. Qual. Eng. 2002, 14, 391–403. [Google Scholar] [CrossRef]
- O’brien, R.M. A Caution Regarding Rules of Thumb for Variance Inflation Factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Strobl, C.; Boulesteix, A.-L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional Variable Importance for Random Forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and Variable Importance in Random Forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Li, H. smileRandomForest Source Code. Available online: https://github.com/haifengl/smile/blob/master/core/src/main/java/smile/classification/RandomForest.java (accessed on 3 September 2025).
- Ferreira, I.J.M.; Campanharo, W.A.; Barbosa, M.L.F.; Silva, S.S.D.; Selaya, G.; Aragão, L.E.O.C.; Anderson, L.O. Assessment of Fire Hazard in Southwestern Amazon. Front. For. Glob. Change 2023, 6, 1107417. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Ahmadi, M. Assessing Accuracy Methods of Species Distribution Models: AUC, Specificity, Sensitivity and the True Skill Statistic. Acta Sci. Hum. Soc. Sci. 2018, 18, 13. [Google Scholar]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A Misleading Measure of the Performance of Predictive Distribution Models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef]
- Fan, J.; Upadhye, S.; Worster, A. Understanding Receiver Operating Characteristic (ROC) Curves. Can. J. Emerg. Med. 2006, 8, 19–20. [Google Scholar] [CrossRef]
- Hanberry, B.B.; He, H.S. Prevalence, Statistical Thresholds, and Accuracy Assessment for Species Distribution Models. Web Ecol. 2013, 13, 13–19. [Google Scholar] [CrossRef]
- Casella, G.; Berger, R. Statistical Inference, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2024; ISBN 978-1-003-45628-5. [Google Scholar]
- Sullivan, A.; Baker, E.; Kurvits, T. Spreading like Wildfire: The Rising Threat of Extraordinary Landscape Fires; United Nations Environment Programme: Nairobi, Kenya, 2022. [Google Scholar]
- Kane, V.R.; Lutz, J.A.; Cansler, C.A.; Povak, N.A.; Churchill, D.J.; Smith, D.F.; Kane, J.T.; North, M.P. Water Balance and Topography Predict Fire and Forest Structure Patterns. For. Ecol. Manag. 2015, 338, 1–13. [Google Scholar] [CrossRef]
- Saha, A.; Datta, A. Random Forests for Binary Geospatial Data (Preprint). arXiv 2025, arXiv:2302.13828. [Google Scholar] [CrossRef]
- Pyregence Pyrecast. Available online: https://pyrecast.org/ (accessed on 3 January 2025).
- Alkhatib, R.; Sahwan, W.; Alkhatieb, A.; Schütt, B. A Brief Review of Machine Learning Algorithms in Forest Fires Science. Appl. Sci. 2023, 13, 8275. [Google Scholar] [CrossRef]
- Andrianarivony, H.S.; Akhloufi, M.A. Machine Learning and Deep Learning for Wildfire Spread Prediction: A Review. Fire 2024, 7, 482. [Google Scholar] [CrossRef]
Environmental Variables | ||||||
---|---|---|---|---|---|---|
Category | Variable | Units | Description | Available Temporal Extent | Available Spatial Extent | Data Source |
Topography | Elevation | meters | Elevation above sea level | NA | global | [70] |
Slope | degrees | Degree of incline | NA | global | [70] | |
Aspect | degrees | Orientation of slope | NA | global | [70] | |
Fuels | Woody and herbaceous fuel load | tons per ha | Combined mass of fuel from sound woody and primary herbaceous vegetation | 2015 | global | [130,131] |
Litter cover | percent | Percent of ground cover of leaf litter | 2015 | global | [130] | |
Litter depth | centimeters | Depth of vegetative litter | 2015 | global | [130] | |
Grass height | centimeters | Height of primary herbaceous vegetation | 2015 | global | [130] | |
Potential fire behavior | Flame length | meters | Modeled flame length from the Fuel Characteristic Classification System | 2015 | global | [118,130,131,132,133] |
Rate of fire spread | meters per minute | Modeled rate of fire spread from the Fuel Characteristic Classification System | 2015 | global | [116,130,131,133] | |
Forest type | Distance to forest type | kilometers | Distance to common forest types 1. Dry Evergreen Forest 2. Hill Evergreen Forest 3. Pine Forest 4. Mixed Deciduous Forest 5. Dry Dipterocarp Forest 6. Bamboo Forest 7. Teak Plantation 8. Secondary Growth Forest 9. Old clearing 10. Eucalyptus Plantation | NA | Thailand | RFD * |
Vegetation Characteristics | Canopy cover | percent | Percent of cover of trees from above (peak of growing season) | 2000–2023, annual | Mekong region | [134] ** |
Change in canopy cover | percent | Difference in canopy cover between current year and prior year; positive values indicate increase, negative values indicate decrease | 2001–2023, annual | Mekong region | [134] ** | |
Change in canopy height | meters | Difference in canopy height between current year and prior year; positive values indicate increase, negative values indicate decrease | 2001–2023, annual | Mekong region | [135] ** | |
Normalized difference moisture index (NDMI) | unitless | Captures moisture content of vegetation; calculated from the near-infrared and shortwave infrared bands using the formula (SWIR2-Red)/(SWIR2+Red); positive values indicate higher moisture, negative values indicate lower moisture | 2013–2024 | global | [136] | |
Enhanced vegetation index (EVI) | unitless | Captures density and health of vegetation; calculated from the red, blue, and near-infrared bands using the formula 2.5 × (NIR-red)/(NIR + (6 × red) − (7.5 × blue) + 1); positive values indicate higher moisture, negative values indicate lower moisture | 2013–2024 | global | [136] | |
Seasonal Differences in HH SAR signal | decibels | Difference between Synthetic Aperture Radar (SAR) HH polarization backscatter between the wet and dry seasons | 2014–2024 | global | [137] | |
Climate | Maximum temperature | degrees Celsius | Average maximum temperature of air at 2 m above the earth surface | 1958–2023, monthly | global | [138,139] |
Precipitation | millimeters | Sum of accumulated precipitation | 1958–2023, monthly | global | [138,139] | |
Vapor pressure deficit (VPD) | kilopascals | Difference between the amount of moisture in the air and how much moisture the air can hold when it is saturated; calculated from dewpoint temperature and temperature | 1958–2023, monthly | global | [138,139] | |
Soil moisture | millimeters | Water content of soil; calculated using a one-dimensional soil water balance model | 1958–2023, monthly | global | [138,139] | |
Palmer drought severity index (PDSI) | unitless | Quantifies long-term drought and can be interpreted as relative dryness as a deviation from normal conditions; calculated from temperature data and precipitation data with a physical water balance model; values range from −10 to 10, negative values indicate dryer conditions and positive values indicate wetter conditions | 1958–2023, monthly | global | [138,139] | |
Water Availability | Distance to water | kilometers | Distance to natural and artificial sources of water (Farm ponds, Irrigation canals, Oceans, Reservoirs, Lakes, Lagoons, Rivers, Canals) | NA | Thailand | LDD *** |
Normalized difference water index (NDWI) | unitless | Captures the presence of open water bodies and moisture content of vegetation; calculated from the red and near-infrared bands; positive values indicate surface water present, negative values indicate no surface water present | 2013–2024 | global | [136] | |
Socioeconomic Variables | ||||||
Category | Variable | Units | Description | Available Temporal Extent | Available Spatial Extent | Data Source |
Crop type | Distance to crop types | kilometers | Distance to crop types managed with fire 1.Maize 2. Corn 3. Sugarcane | NA | Thailand | LDD *** |
Recent burn history | Distance to burns (1 & 2 years prior) | kilometers | Distance to burn scars that occurred 1 year prior to the year of interest and 2 years prior to the year of interest | 2015–2023, annual | Thailand | GISTDA **** |
Human influence and accessibility | Distance to roads | kilometers | Distance to roads | NA | Thailand | [140] |
Distance to settlements | kilometers | Distance to buildings | 2015 | global | [141,142] | |
Distance to SPK & KTC areas | kilometers | Distance to land under special agricultural management provisions in either the Sor Por Kor (SPK) and Kor Tor Chor (KTC) programs (land reform areas under laws M64 and M121) | NA | Thailand | [143] | |
Distance to DNP & RFD areas | kilometers | Distance to land under the jurisdiction and protection of either the Department of National Parks (DNP) or the Royal Forestry Department (RFD) | NA | Thailand | [144,145] | |
Population count | people per hectare | Population density, represented by the number of people residing per hectare | 1975–2030, 5-year intervals | global | [146,147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bihari, E.; Dyson, K.; Johnston, K.; dela Torre, D.M.G.; Chaiyana, A.; Tenneson, K.; Sittirin, W.; Poortinga, A.; Tanpipat, V.; Wanthongchai, K.; et al. Modeling Seasonal Fire Probability in Thailand: A Machine Learning Approach Using Multiyear Remote Sensing Data. Remote Sens. 2025, 17, 3378. https://doi.org/10.3390/rs17193378
Bihari E, Dyson K, Johnston K, dela Torre DMG, Chaiyana A, Tenneson K, Sittirin W, Poortinga A, Tanpipat V, Wanthongchai K, et al. Modeling Seasonal Fire Probability in Thailand: A Machine Learning Approach Using Multiyear Remote Sensing Data. Remote Sensing. 2025; 17(19):3378. https://doi.org/10.3390/rs17193378
Chicago/Turabian StyleBihari, Enikoe, Karen Dyson, Kayla Johnston, Daniel Marc G. dela Torre, Akkarapon Chaiyana, Karis Tenneson, Wasana Sittirin, Ate Poortinga, Veerachai Tanpipat, Kobsak Wanthongchai, and et al. 2025. "Modeling Seasonal Fire Probability in Thailand: A Machine Learning Approach Using Multiyear Remote Sensing Data" Remote Sensing 17, no. 19: 3378. https://doi.org/10.3390/rs17193378
APA StyleBihari, E., Dyson, K., Johnston, K., dela Torre, D. M. G., Chaiyana, A., Tenneson, K., Sittirin, W., Poortinga, A., Tanpipat, V., Wanthongchai, K., Kunlamai, T., Dalton, E., Saisaward, C., Tornorsam, M., Ganz, D., & Saah, D. (2025). Modeling Seasonal Fire Probability in Thailand: A Machine Learning Approach Using Multiyear Remote Sensing Data. Remote Sensing, 17(19), 3378. https://doi.org/10.3390/rs17193378