Early Warning of Anthracnose on Illicium verum Through the Synergistic Integration of Environmental and Remote Sensing Time Series Data
Abstract
Highlights
- Proposed an early warning framework for anthracnose on I. verum by integrating high-frequency environmental data (meteorological and topographic) with Sentinel-2 time-series imagery.
- Developed an Attention-based Time-Aware LSTM (At-T-LSTM) model that effectively captures temporal dependencies and inter-feature interactions, achieving high accuracy in spatial delineation and temporal early detection.
- The framework enables reliable early detection of anthracnose despite sparse optical observations and weak early-stage spectral responses in cloudy and rainy regions.
- Provides a practical and generalizable tool for precision forestry, supporting the timely risk assessment and sustainable management of I. verum and other forest diseases.
Abstract
1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Sentinel-2 Data
2.3. Environmental Data
2.4. Training, Validation Data and Forest Mask
3. Methodology
3.1. Calculation of Vegetation Indices Sensitive to Anthracnose on I. verum
3.2. Selection of Optimal Sensitive Feature Combination
3.3. Attention-Based Time-Aware Long Short-Term Memory (At-T-LSTM) Model
3.3.1. Time-Aware Long Short-Term Memory (T-LSTM) Model
3.3.2. Incorporating Attention Mechanism into T-LSTM Model
3.4. Accuracy Assessment and Analysis
3.4.1. Accuracy Assessment
3.4.2. Multidimensional Method Comparison
4. Results
4.1. Feature Selection Results
4.2. Spatial Accuracy Assessment of Anthracnose on I. verum Detection
4.2.1. Spatial Accuracy Assessment
4.2.2. Comparison of Spatial Accuracy Between Multi-Source Synergistic Data and Standalone Remote Sensing Data
4.2.3. Comparison of Spatial Accuracy Between At-T-LSTM and Time Series Change Detection Algorithms
4.3. Temporal Accuracy Assessment of Anthracnose on I. verum Detection
4.3.1. Temporal Accuracy Assessment
4.3.2. Comparison of Temporal Accuracy Between Multi-Source Synergistic Data and Standalone Remote Sensing Data
4.3.3. Comparison of Temporal Accuracy Between At-T-LSTM Model and Time-Series Change Detection Algorithms
4.4. Overall Detection Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.W.; Hu, W.T.; Huang, B.K.; Qin, L.P. Illicium verum: A review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol. 2011, 136, 10–20. [Google Scholar] [CrossRef]
- He, Z.; Huan, J.; Ye, M.; Liang, D.; Wu, Y.; Li, W.; Gong, X.; Jiang, L. Based on CiteSpace Insights into Illicium verum Hook. f. Current Hotspots and Emerging Trends and China Resources Distribution. Foods 2024, 13, 1510. [Google Scholar] [CrossRef]
- Liao, W.; Luo, J.; Zou, D.; Zhong, Y.; Wu, Y.; Yan, K.; Huang, N. First Report of Anthracnose Caused by Colletotrichum siamense on Illicium verum in China. Plant Dis. 2023, 107, 2232. [Google Scholar] [CrossRef]
- Li, J.; Zhong, Y.; Chen, J.; Ming, R.; Yao, S.; Li, L.; Tan, Y.; Huang, R.; Yao, C.; Huang, D. Genetic diversity analysis of Illicium verum germplasm resources in Guangxi based on SLAF-seq. Guihaia 2025, 45, 45730–45740. [Google Scholar] [CrossRef]
- Lai, J.-L.; Bai, C.-H.; Pan, J.-M.; Du, F.-J.; Ning, S.; Xu, L.-Y.; Bei, Y.-J. Colletotrichum horii and Colletotrichum fioriniae Causing Anthracnose on Star Anise (Illicium verum) in China. Plant Dis. 2023, 107, 3294. [Google Scholar] [CrossRef]
- Näsi, R.; Honkavaara, E.; Lyytikäinen-Saarenmaa, P.; Blomqvist, M.; Litkey, P.; Hakala, T.; Viljanen, N.; Kantola, T.; Tanhuanpää, T.; Holopainen, M. Using UAV-Based Photogrammetry and Hyperspectral Imaging for Mapping Bark Beetle Damage at Tree-Level. Remote. Sens. 2015, 7, 15467–15493. [Google Scholar] [CrossRef]
- Mngadi, M.; Germishuizen, I.; Mutanga, O.; Naicker, R.; Maes, W.H.; Odebiri, O.; Schroder, M. A systematic review of the application of remote sensing technologies in mapping forest insect pests and diseases at a tree-level. Sens. Appl. Soc. Environ. 2024, 36, 101341. [Google Scholar] [CrossRef]
- Sun, Z.; Ye, H.; Huang, W.; Qimuge, E.; Bai, H.; Nie, C.; Lu, L.; Qian, B.; Wu, B. Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data. Insects 2023, 14, 138. [Google Scholar] [CrossRef]
- Luo, Y.; Huang, H.; Roques, A. Early Monitoring of Forest Wood-Boring Pests with Remote Sensing. Annu. Rev. Èntomol. 2023, 68, 277–298. [Google Scholar] [CrossRef]
- Housman, I.W.; Chastain, R.A.; Finco, M.V. An evaluation of forest health insect and disease survey data and satellite-based remote sensing forest change detection methods: Case studies in the United States. Remote. Sens. 2018, 10, 1184. [Google Scholar] [CrossRef]
- Thapa, B.; Wolter, P.T.; Sturtevant, B.R.; Townsend, P.A. Linking remote sensing and insect defoliation biology—A cross-system comparison. Remote. Sens. Environ. 2022, 281, 113236. [Google Scholar] [CrossRef]
- Kovalev, A.; Tarasova, O.; Soukhovolsky, V.; Ivanova, Y. Is It Possible to Predict a Forest Insect Outbreak? Backtesting Using Remote Sensing Data. Forests 2024, 15, 1458. [Google Scholar] [CrossRef]
- Lee, H.; Wintermantel, W.M.; Trumble, J.T.; Nansen, C. Timing matters: Remotely sensed vegetation greenness can predict insect vector migration and therefore outbreaks of curly top disease. J. Pest Sci. 2024, 98, 607–617. [Google Scholar] [CrossRef]
- Marinelli, D.; Dalponte, M.; Frizzera, L.; Næsset, E.; Gianelle, D. A method for continuous sub-annual mapping of forest disturbances using optical time series. Remote. Sens. Environ. 2023, 299, 113852. [Google Scholar] [CrossRef]
- Huo, L.N.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote. Sens. Environ. 2021, 255, 112240. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series: Stochastic continuous change detection. Remote. Sens. Environ. 2021, 252, 112167. [Google Scholar] [CrossRef]
- Li, M.; Liu, M.; Wang, X.; Liu, X.; Wu, L.; Li, J. Remote Sensing Recognition Model of Illicium verum Forest Pests and Diseases. Sci. Silvae Sin. 2024, 60, 128–138. [Google Scholar]
- Zheng, Q.; Huang, W.; Xia, Q.; Dong, Y.; Ye, H.; Jiang, H.; Chen, S.; Huang, S. Remote Sensing Monitoring of Rice Diseases and Pests from Different Data Sources: A Review. Agronomy 2023, 13, 1851. [Google Scholar] [CrossRef]
- Ren, C.; Liu, B.; Liang, Z.; Lin, Z.; Wang, W.; Wei, X.; Li, X.; Zou, X. An Innovative Method of Monitoring Cotton Aphid Infestation Based on Data Fusion and Multi-Source Remote Sensing Using Unmanned Aerial Vehicles. Drones 2025, 9, 229. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Z.; Huang, X.; Liu, M.; Zheng, Q.; Zhang, H.; Zhang, G. Pine wood nematode disease area identification based on multi-temporal multi-source remote sensing images and BIT model. Geocarto Int. 2024, 39, 2310117. [Google Scholar] [CrossRef]
- Zhao, Y.; Cui, Z.; Liu, X.; Liu, M.; Yang, B.; Feng, L.; Zhou, B.; Zhang, T.; Tan, Z.; Wu, L. EWMACD Algorithm in Early Detection of Defoliation Caused by Dendrolimus tabulaeformis Tsai et Liu. Remote. Sens. 2024, 16, 2299. [Google Scholar] [CrossRef]
- Shen, Y.Y.; Zhang, J.C.; Shen, D.; Tian, Y.Y.; Huang, W.J.; Yang, X.D. Research progress on habitat suitability assessment of crop diseases and pests by multi-source remote sensing information. Chin. J. Eco-Agric. 2023, 31, 1012–1025. [Google Scholar]
- Wang, J.; Zhang, D. Intelligent pest forecasting with meteorological data: An explainable deep learning approach. Expert Syst. Appl. 2024, 252, 124137. [Google Scholar] [CrossRef]
- Huang, S.; Liao, M.; Cen, Z.; Yan, W. Bionomics of aniseed anthracnose pathogen. For. Pest Dis. 2006, 25, 1–4. [Google Scholar] [CrossRef]
- Liao, W.; Huang, N.; Zou, D.; Qin, S.; Jiang, X. Biological characteristics of pathogens of Colletotrichum horii for Illicium verum anthracnose. For. Pest Dis. 2018, 37, 10–12. [Google Scholar]
- Lin, W.; Xu, M.F.; Quan, Y.B.; Liao, L.; Gao, L. Potential geographic distribution of Spodoptera frugiperda in China based on MaxEnt model. Plant Quar. 2019, 33, 69–73. [Google Scholar]
- Meynard, C.N.; Gay, P.E.; Lecoq, M.; Foucart, A.; Piou, C.; Chapuis, M.P. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Change Biol. 2017, 23, 4739–4749. [Google Scholar] [CrossRef]
- Shen, P.; Li, G. Risk assessment of Bursaphelenchus xylophilus in Hubei Province based on ecological niche factor analysis model. J. Zhejiang AF Univ. 2021, 38, 560–566. [Google Scholar]
- Zhang, J.; Pu, R.; Yuan, L.; Huang, W.; Nie, C.; Yang, G. Integrating Remotely Sensed and Meteorological Observations to Forecast Wheat Powdery Mildew at a Regional Scale. IEEE J. Sel. Top. Appl. Earth Obs. 2014, 7, 4328–4339. [Google Scholar] [CrossRef]
- Yuan, L.; Bao, Z.; Zhang, H.; Zhang, Y.; Liang, X. Habitat monitoring to evaluate crop disease and pest distributions based on multi-source satellite remote sensing imagery. Optik 2017, 145, 66–73. [Google Scholar] [CrossRef]
- Silva, J.R.M.d.; Damásio, C.V.; Sousa, A.M.O.; Bugalho, L.; Pessanha, L.; Quaresma, P. Agriculture pest and disease risk maps considering MSG satellite data and land surface temperature. Int. J. Appl. Earth Obs. 2015, 38, 40–50. [Google Scholar] [CrossRef]
- Bhattacharya, B.K.; Chattopadhyay, C. A multi-stage tracking for mustard rot disease combining surface meteorology and satellite remote sensing. Comput. Electron. Agric. 2013, 90, 35–44. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on Landsat time series. Remote. Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Brooks, E.B.; Wynne, R.H.; Thomas, V.A. On-the-Fly Massively Multitemporal Change Detection Using Statistical Quality Control Charts and Landsat Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3316–3332. [Google Scholar] [CrossRef]
- Peng, D.; Liu, X.; Zhang, Y.; Guan, H.; Li, Y.; Bruzzone, L. Deep learning change detection techniques for optical remote sensing imagery: Status, perspectives and challenges. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104282. [Google Scholar] [CrossRef]
- Mou, L.; Zhao, P.; Xie, H.; Chen, Y. T-LSTM: A Long Short-Term Memory Neural Network Enhanced by Temporal Information for Traffic Flow Prediction. IEEE Access 2019, 7, 98053–98060. [Google Scholar] [CrossRef]
- Saravana, L.; Ngo, Q.-H.; Zhang, J.; Vu, T.; Vu, T.L. Integrated attentive Bi-LSTM conditional GAN for power system oscillation localization. Electr. Power Syst. Res. 2025, 242, 111456. [Google Scholar] [CrossRef]
- Qin, R.; Zhao, Z.; Xu, J.; Ye, J.-S.; Li, F.-M.; Zhang, F. HRLT: A high-resolution (1 day, 1 km) and long-term (1961–2019) gridded dataset for surface temperature and precipitation across China. Earth Syst. Sci. Data 2022, 14, 4793–4810. [Google Scholar] [CrossRef]
- Wu, C.; Luo, L.; Li, W.; Li, W. Studies on Resistance of Different Cultivars of Rubber Tree against Colletotrichum gloeosporioides and Physiological Index after Its Control. Acta Agric. Univ. Jiangxiensis 2010, 32, 1152–1157. [Google Scholar]
- Kuang, R.; Feng, H.; Sun, S.; Dan, Y.; Huang, Y.; Wang, J. Resistance of Camellia oleifera varieties to Colletotrichum gloeosporioides and its relations with physiological activities. For. Pest Dis. 2015, 34, 1–4. [Google Scholar] [CrossRef]
- Chávez, R.; Rocco, R.; Gutiérrez, Á.; Dörner, M.; Estay, S. A Self-Calibrated Non-Parametric Time Series Analysis Approach for Assessing Insect Defoliation of Broad-Leaved Deciduous Nothofagus pumilio Forests. Remote Sens. 2019, 11, 204. [Google Scholar] [CrossRef]
- Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of QuickBird high spatial resolution imagery to detect red attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A Landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Wulder, M.A.; Hostert, P. Characterizing spectral–temporal patterns of defoliator and bark beetle disturbances using Landsat time series. Remote Sens. Environ. 2015, 170, 166–177. [Google Scholar] [CrossRef]
- Ma, X.; Huo, Z.; Lu, J.; Wong, Y.D. Deep Forest with SHapley additive explanations on detailed risky driving behavior data for freeway crash risk prediction. Eng. Appl. Artif. Intell. 2025, 141, 109787. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Zhao, F. Integrating Node-Place Model With Shapley Additive Explanation for Metro Ridership Regression. IEEE Trans. Intell. Transp. Syst. 2025, 1–10. [Google Scholar] [CrossRef]
- Bathe, K.D.; Patil, N.S. ConvExNet: Deep learning-based flood detection utilizing Shapley additive explanations. J. Earth Syst. Sci. 2025, 134, 99. [Google Scholar] [CrossRef]
- Tong, T.; Lin, S.; Li, L.; Luo, T.; Huang, H. Remote sensing recognition of pine wilt disease in Pinus massoniana forest combined with microwave and optical time series images. J. Beijing For. Univ. 2024, 46, 40–52. [Google Scholar]
- Xue, J.; Yu, L.; Lin, Q.; Liu, G.; Huang, H. Using Sentinel-1 multi-temporal InSAR- data to monitor the damage degree of shoot beetle in Yunnan pine forest. Remote Sens. Land Resour. 2018, 30, 108–114. [Google Scholar]
- Wang, H.; Chen, X.; Zhang, T.; Li, J.; Liu, K.; Wen, Z.; Kou, M.; Zhang, Y. CATNet: A Small Sample Transfer Learning Method for Key Point Detection of Blast Furnace Burden Surface. ISIJ Int. 2025, 65, 246–256. [Google Scholar] [CrossRef]
- Liao, W.; Zhu, R.; Takiddin, A.; Tariq, M.; Ruan, G.; Cui, X.; Yang, Z. Transfer Learning-Driven Electricity Theft Detection in Small-Sample Cases. IEEE Trans. Instrum. Meas. 2024, 73, 2532013. [Google Scholar] [CrossRef]
- Li, X.; Wang, A. Forest pest monitoring and early warning using UAV remote sensing and computer vision techniques. Sci. Rep. 2025, 15, 401. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhu, H.; Lin, C.; Lin, C.; Liu, G.; Liu, G.; Wang, D.; Wang, D.; Qin, S.; Qin, S.; et al. Intelligent agriculture: Deep learning in UAV-based remote sensing imagery for crop diseases and pests detection. Front. Plant Sci. 2024, 15, 1435016. [Google Scholar] [CrossRef] [PubMed]
Year | 2018 | 2019 | ||||||
---|---|---|---|---|---|---|---|---|
Month | March | April | May | June | Marth | April | May | June |
Number of Images | 1 | 4 | 3 | 3 | 1 | 4 | 3 | 4 |
Index | Formulation | Indicated Change | Relevance to Anthracnose Detection |
---|---|---|---|
EVI | Blade structure | Detects microstructural changes in canopy caused by hyphal penetration and cell destruction during early infection | |
RGI | Coloration | Sensitive to chlorosis and dark lesion formation characteristic of anthracnose | |
NBR | Moisture stress and blade structure | Captures water regulation disruption and necrosis caused by infection |
Test Result | Infested Point | Healthy Point | Total | User’s Accuracy | |
---|---|---|---|---|---|
Label | |||||
Infested point | 52 | 8 | 60 | 0.87 | |
Healthy point | 9 | 51 | 60 | 0.85 | |
Total | 61 | 59 | |||
Producer’s accuracy | 0.85 | 0.86 | F1-score | 0.86 |
Env–Remote Sensing | Remote Sensing | |
---|---|---|
Precision | 0.85 | 0.73 |
Recall | 0.87 | 0.77 |
OA | 0.85 | 0.74 |
F1-Score | 0.86 | 0.75 |
Comparison | b (A Correct, B Wrong) | c (A Wrong, B Correct) | b + c | χ2 | p-Value |
---|---|---|---|---|---|
AT-T-LSTM vs. COLD | 33 | 19 | 52 | 3.77 | 0.052 |
AT-T-LSTM vs. EWMACD | 28 | 14 | 42 | 4.67 | 0.031 |
COLD vs. EWMACD | 24 | 10 | 34 | 5.76 | 0.016 |
Early Stage | Mid to Late Stage | Total | ||||
---|---|---|---|---|---|---|
Remote Sensing | Env–Remote Sensing | Remote Sensing | Env–Remote Sensing | Remote Sensing | Env–Remote Sensing | |
Detected Point | 32 | 43 | 14 | 9 | 46 | 52 |
Proportion | 70% | 83% | 30% | 17% | 100% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, Y.; Zhang, T.; Du, J.; Li, Y.; Wu, L.; Liu, X. Early Warning of Anthracnose on Illicium verum Through the Synergistic Integration of Environmental and Remote Sensing Time Series Data. Remote Sens. 2025, 17, 3294. https://doi.org/10.3390/rs17193294
Li J, Zhao Y, Zhang T, Du J, Li Y, Wu L, Liu X. Early Warning of Anthracnose on Illicium verum Through the Synergistic Integration of Environmental and Remote Sensing Time Series Data. Remote Sensing. 2025; 17(19):3294. https://doi.org/10.3390/rs17193294
Chicago/Turabian StyleLi, Junji, Yuxin Zhao, Tianteng Zhang, Jiahui Du, Yucai Li, Ling Wu, and Xiangnan Liu. 2025. "Early Warning of Anthracnose on Illicium verum Through the Synergistic Integration of Environmental and Remote Sensing Time Series Data" Remote Sensing 17, no. 19: 3294. https://doi.org/10.3390/rs17193294
APA StyleLi, J., Zhao, Y., Zhang, T., Du, J., Li, Y., Wu, L., & Liu, X. (2025). Early Warning of Anthracnose on Illicium verum Through the Synergistic Integration of Environmental and Remote Sensing Time Series Data. Remote Sensing, 17(19), 3294. https://doi.org/10.3390/rs17193294