Early Detection of Dendroctonus valens Infestation with UAV-Based Thermal and Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey and Trees Classification
2.3. UAV-Based Thermal Infrared Image Acquisition and Processing
2.4. UAV-Based Hyperspectral Image Acquisition and Processing
2.5. Classification Models
2.5.1. Significance Analysis
2.5.2. Classification Model
2.5.3. Model Performance Evaluation
3. Results
3.1. Spectral Feature Difference Analysis
3.2. Separability Analysis of SVIs and Temperature Parameters
3.3. RF Model Classification Results for Different Datasets
3.3.1. Classification Results Based on Single Dataset
3.3.2. Classification Results Based on Multiple Data Sources
4. Discussion
4.1. Changes in Physiology and Spectra
4.2. Combination of Hyperspectral and Thermal Data
4.3. Limitations and Future Work
5. Conclusions
- (1)
- After RTB infestation, the spectral characteristics of canopies underwent significant changes. Compared to healthy trees, the spectral curves of dead trees showed significant declines in both the visible (400–760 nm) and near-infrared regions (760 nm to 1016 nm). The infested trees exhibited a noticeable decrease in the near-infrared region, while changes in the visible light region were subtle. All 27 SVIs and the CT used in this study were significantly different for dead trees, whereas 21 SVIs and the CT were significantly different for infested trees;
- (2)
- For single datasets, when reflectance, first derivatives, second derivatives, SVIs, and the temperature parameter were input into the random forest (RF) classifier, the SVIs dataset performed better than the others. For combined datasets, all datasets showed improved accuracy after combining the temperature parameter except R + T. S + T excelled in classifying RTB disturbances, achieving an overall accuracy (OA) of 93.75% from a total of 106 samples and a precision of 91.67% for the 35 early-infested trees. The OA of S + T is 3.13% higher than using the spectral vegetation index alone. This combination also significantly improved early detection precision by 13.89%. 2D + T showed the greatest improvement, with an OA improvement of 18.74% and a precision improvement of 22.22% for early-infested trees;
- (3)
- For the different stages of RTB infestation in trees, models using all datasets effectively identified dead trees. The temperature parameter showed potential in distinguishing between healthy and attacked trees (including early and dead stages). The combination of the HIS and TIR dataset performed well in distinguishing different stages.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, B.; Ren, L.; Jiang, Q.; Liu, Y.; Yu, L.; Luo, Y. Geostatistical analysis of the spatial distribution of Dendroctonus valens in Pinus tabuliformis forests with different levels of infestation. Chin. J. Appl. Entomol. 2020, 57, 1427–1435. [Google Scholar]
- Wu, H.; Li, D.; Luo, Z.; He, S.; Jiang, S.; Song, Y. Disaster risk analysis of Dendroctonus valens in Northeast China. For. Pest Dis. 2022, 41, 22–28. [Google Scholar]
- Lu, X.; Chai, S.; Liu, H.; Jin, J.; Li, Z.; Xu, Z. The current situation and prevention and control countermeasures of forest and grass pests in the Three-North regions of China. For. Pest Dis. 2024, 43, 41–46. [Google Scholar]
- Song, Y.; Wu, H.; Song, L.; Du, W.; Zou, Y.; Dong, Y. Overview and countermeasures of invasive alien species in forest, grassland, and wetland ecosystems in Northeast China. For. Pest Dis. 2024, 43, 19–33. [Google Scholar]
- Li, Z.; Wang, B.; Li, Z.; Bai, G.; Wen, Y. Inner Mongolia focuses on managing invasive alien species. Inner Mongolia For. 2024, 69, 42–44. [Google Scholar]
- Liu, Y.; Gao, B.; Zhang, S.; Ren, L.; Luo, Y. Emergence and landing positions of Dendroctonus valens in Heilihe. Chin. J. Appl. Entomol. 2022, 59, 681–688. [Google Scholar]
- Foster, A.C.; Walter, J.A.; Shugart, H.H.; Sibold, J.; Negron, J. Spectral evidence of early-stage spruce beetle infestation in Engelmann spruce. For. Ecol. Manag. 2017, 384, 347–357. [Google Scholar] [CrossRef]
- Wulder, M.A.; Dymond, C.C.; White, J.C.; Leckie, D.G.; Carroll, A.L. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. For. Ecol. Manag. 2006, 221, 27–41. [Google Scholar] [CrossRef]
- Zhan, Z.; Yu, L.; Li, Z.; Ren, L.; Gao, B.; Wang, L.; Luo, Y. Combining GF-2 and Sentinel-2 Images to Detect Tree Mortality Caused by Red Turpentine Beetle during the Early Outbreak Stage in North China. Forests 2020, 11, 172. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, B.; Bian, L.; Ren, L.; Luo, Y. Invasion of Red Turpentine Beetles led to the increase of native trunk-boring beetles in Chinese pine stands. For. Ecol. Manag. 2024, 557, 121758. [Google Scholar] [CrossRef]
- Gao, B.; Yu, L.; Ren, L.; Zhan, Z.; Luo, Y. Early Detection of Dendroctonus valens Infestation with Machine Learning Algorithms Based on Hyperspectral Reflectance. Remote Sens. 2022, 14, 1373. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Pu, R.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through remote sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Franklin, S.; Wulder, M.; Skakun, R.S.; Carroll, A.L. Mountain pine beetle red-attack forest damage classification using stratified landsat TM data in British Columbia, Canada. Photogramm. Eng. Remote Sens. 2003, 69, 283–288. [Google Scholar] [CrossRef]
- Meddens, A.; Hicke, J.; Vierling, L.; Hudak, A.T. Evaluating methods to detect bark beetle-caused tree mortality using single-date and multi-date Landsat imagery. Remote Sens. Environ. 2013, 132, 49–58. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C. Early Detection of Bark Beetle Infestation in Norway Spruce (Picea abies, L.) using WorldView-2 Data. Photogramm. Fernerkund. Geoinf. 2014, 5, 351–367. [Google Scholar] [CrossRef]
- Attard, M.R.G.; Phillips, R.A.; Bowler, E.; Clarke, P.J.; Cubaynes, H.; Johnston, D.W.; Fretwell, P.T. Review of Satellite Remote Sensing and Unoccupied Aircraft Systems for Counting Wildlife on Land. Remote Sens. 2024, 16, 627. [Google Scholar] [CrossRef]
- Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J. Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Li, H.; Yang, L.; Huang, H.; Yu, L.; Ren, L. Three-Dimensional Convolutional Neural Network Model for Early Detection of Pine Wilt Disease Using UAV-Based Hyperspectral Images. Remote Sens. 2021, 13, 4065. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, B.; Zhao, N.; Zhang, X. Classification Diagnosis on the Damage Degree of Tomicus yunnanensis to Pinus yunnanensis Based on Hyperspectral and Airborne LiDAR. J. Southwest For. Univ. 2022, 42, 80–89. [Google Scholar]
- Lin, Q.; Huang, H.; Wang, J.; Chen, L.; Du, H.; Zhou, G. Early detection of pine shoot beetle attack using vertical profile of plant traits through UAV-based hyperspectral, thermal, and lidar data fusion. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103549. [Google Scholar] [CrossRef]
- Gao, B.; Yu, L.; Ren, L.; Zhan, Z.; Luo, Y. Early Detection of Dendroctonus valens Infestation at Tree Level with a Hyperspectral UAV Image. Remote Sens. 2023, 15, 407. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Groen, T.A.; Heurich, M. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 199–209. [Google Scholar] [CrossRef]
- Liu, Y.; Zhan, Z.; Ren, L.; Ze, S.; Yu, L.; Jiang, Q.; Luo, Y. Hyperspectral evidence of early-stage pine shoot beetle attack in Yunnan pine. For. Ecol. Manag. 2021, 497, 119505. [Google Scholar] [CrossRef]
- Niemann, K.O.; Quinn, G.; Stephen, R.; Visintini, F.; Parton, D. Hyperspectral Remote Sensing of Mountain Pine Beetle with an Emphasis on Previsual Assessment. Can. J. Remote Sens. 2015, 41, 191–202. [Google Scholar] [CrossRef]
- Curran, P.J. Remote Sensing of Foliar Chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Timing of red-edge and shortwave infrared reflectance critical for early stress detection induced by bark beetle (Ips typographus, L.) attack. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101900. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Q.; Meng, S.; Huang, H.; Liu, Y. Individual Tree-Level Monitoring of Pest Infestation Combining Airborne Thermal Imagery and Light Detection and Ranging. Forests 2024, 15, 112. [Google Scholar] [CrossRef]
- Hais, M.; Kučera, T. Surface temperature change of spruce forest as a result of bark beetle attack: Remote sensing and GIS approach. Eur. J. For. Res. 2008, 127, 327–336. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Heurich, M. Sensitivity of Landsat-8 OLI and TIRS Data to Foliar Properties of Early Stage Bark Beetle (Ips typographus, L.) Infestation. Remote Sens. 2019, 11, 398. [Google Scholar] [CrossRef]
- Maes, W.H.; Huete, A.R.; Avino, M.; Boer, M.M.; Dehaan, R.; Pendall, E.; Griebel, A.; Steppe, K. Can UAV-Based Infrared Thermography Be Used to Study Plant-Parasite Interactions between Mistletoe and Eucalypt Trees? Remote Sens. 2018, 10, 2062. [Google Scholar] [CrossRef]
- Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Wang, J.; Meng, S.; Lin, Q.; Liu, Y.; Huang, H. Detection of Yunnan Pine Shoot Beetle Stress Using UAV-Based Thermal Imagery and LiDAR. Appl. Sci. 2022, 12, 4372. [Google Scholar] [CrossRef]
- Smigaj, M.; Gaulton, R.; Suárez, J.C.; Barr, S.L. Combined use of spectral and structural characteristics for improved red band needle blight detection in pine plantation stands. For. Ecol. Manag. 2019, 434, 213–223. [Google Scholar] [CrossRef]
- Zhao, X. Monitoring of Pine Wilt Disease at Different Scales by Combining Thermal Infrared and Optical Remote Sensing Data. Master’s Thesis, Beijing Forestry University, Beijing, China, 31 May 2023. [Google Scholar]
- Sun, X. Study on Water Deficit of Walnut Forest Based on Infrared Thermography Information. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, June 2019. [Google Scholar]
- Allen, B.; Dalponte, M.; Ørka, H.O.; Næsset, E.; Puliti, S.; Astrup, R.; Gobakken, T. UAV-Based Hyperspectral Imagery for Detection of Root, Butt, and Stem Rot in Norway Spruce. Remote Sens. 2022, 14, 3830. [Google Scholar] [CrossRef]
- Einzmann, K.; Atzberger, C.; Pinnel, N.; Glas, C.; Böck, S.; Seitz, R.; Immitzer, M. Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sens. Environ. 2021, 266, 112676. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier. Remote Sens. 2012, 4, 1820–1855. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves. Int. J. Remote Sens. 2010, 19, 657–675. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E., III. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehé, J.A. Detection of Vegetation Stress Via a New High Resolution Fluorescence Imaging System. J. Plant Physiol. 1996, 148, 599–612. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Beck, P.; Zarco-Tejada, P.; Strobl, P.; San Miguel, J. The Feasibility of Detecting Trees Affected by the Pine Wood Nematode Using Remote Sensing; Publications Office of the European Union: Luxembourg, 2015; pp. 1831–9424. [Google Scholar]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Merton, R.; Huntington, J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Proceedings of the Eighth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 9–11 February 1999. [Google Scholar]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef]
- Reyniers, M.; Walvoort, D.J.J.; De Baardemaaker, J. A linear model to predict with a multi-spectral radiometer the amount of nitrogen in winter wheat. Int. J. Remote Sens. 2007, 27, 4159–4179. [Google Scholar] [CrossRef]
- Tian, Y.-C.; Gu, K.-J.; Chu, X.; Yao, X.; Cao, W.-X.; Zhu, Y. Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant Soil. 2013, 376, 193–209. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X.; Tian, Y.; Liu, X.; Cao, W. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2010, 25, 5403–5413. [Google Scholar] [CrossRef]
- Gao, J.; Liang, T.; Yin, J.; Ge, J.; Feng, Q.; Wu, C.; Hou, M.; Liu, J.; Xie, H. Estimation of Alpine Grassland Forage Nitrogen Coupled with Hyperspectral Characteristics during Different Growth Periods on the Tibetan Plateau. Remote Sens. 2019, 11, 2085. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agr. Forest Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Haboudane, D. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Breiman, L. Random Forest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2007, 26, 217–222. [Google Scholar] [CrossRef]
- Pineau, J.; Vincent-Lamarre, P.; Sinha, K.; Larivière, V.; Beygelzimer, A.; d’Alché-Buc, F.; Fox, E.; Larochelle, H. Improving reproducibility in machine learning research: A report from the NeurIPS 2019 reproducibility program. J. Mach. Learn. Res. 2021, 22, 1–20. [Google Scholar]
- Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A Deep Learning-Based Approach for Automated Yellow Rust Disease Detection from High-Resolution Hyperspectral UAV Images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef]
- Ahern, F.J. The effects of bark beetle stress on the foliar spectral reflectance of lodgepole pine. Int. J. Remote Sens. 2007, 9, 1451–1468. [Google Scholar] [CrossRef]
- Reichmuth, A.; Henning, L.; Pinnel, N.; Bachmann, M.; Rogge, D. Early Detection of Vitality Changes of Multi-Temporal Norway Spruce Laboratory Needle Measurements—The Ring-Barking Experiment. Remote Sens. 2018, 10, 57. [Google Scholar] [CrossRef]
- Mullen, K. Early Detection of Mountain Pine Beetle Damage in Ponderosa Pine Forests of the Black Hills Using Hyperspectral and WorldView-2 Data. Master’s Thesis, Minnesota State University, Mankato, MN, USA, 2016. [Google Scholar]
- Cheng, T.; Rivard, B.; Sánchez-Azofeifa, G.A.; Feng, J.; Calvo-Polanco, M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens. Environ. 2010, 114, 899–910. [Google Scholar] [CrossRef]
- Bárta, V.; Hanuš, J.; Dobrovolný, L.; Homolová, L. Comparison of field survey and remote sensing techniques for detection of bark beetle-infested trees. For. Ecol. Manag. 2022, 506, 119984. [Google Scholar] [CrossRef]
- Smigaj, M.; Gaulton, R.; Suárez, J.C.; Barr, S.L. Canopy temperature from an Unmanned Aerial Vehicle as an indicator of tree stress associated with red band needle blight severity. For. Ecol. Manag. 2019, 433, 699–708. [Google Scholar] [CrossRef]
- Lin, H.; Chen, Y.; Zhang, H.; Fu, P.; Fan, Z.; Watling, J. Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct. Ecol. 2017, 31, 2202–2211. [Google Scholar] [CrossRef]
- Runesson, U.T. Considerations for Early Remote Detection of Mountain Pine Beetle in Green-Foliaged Lodgepole Pine. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1991. [Google Scholar]
Class | Grown Color | Infestation Symptoms of RTBs | Number of Samples |
---|---|---|---|
Healthy | Green | No | 29 |
Infested | Green | Yes | 35 |
Dead | Red | Yes | 42 |
Index | Formulation or Depiction | Ref. |
---|---|---|
Pigment-specific simple ratio | PSSRc = R802/R472 | [39] |
Pigment-specific normalized difference | PSNDa = (R800 − R680)/(R800 + R680) | |
PSNDb = (R800 − R635)/(R800 + R635) | ||
PSNDc = (R800 − R470)/(R800 + R470) | ||
Ratio analysis of reflectance | RARS = R745/R513 | [40] |
Lichtenthaler index | LIC = R439/R741 | [41] |
Physiological reflectance index | PRI517 = (R517 − R534)/(R517 + R534) | [42] |
Photochemical reflectance index | PRIm2 = (R600 − R534)/(R600 + R534) | [43] |
PRIm4 = (R570 − R531 − R670)/((R570 + R531 + R670) | ||
PRIn = PRI570/[RDVI × (R700/R670)] | ||
PRI570 = (R570 − R531)/(R570 + R531) | ||
RDVI = (R800 − R670)/(R800 + R670)0.5 | ||
Carotenoid reflectance index | CRI550 = 1/R510 − 1/R550 | [44] |
Red-edge vegetation stress index | RVSI = (R715 − R754)/2 − R732 | [45] |
Curvature index | CUR = R677 × R690/R6852 | [46] |
Health index | HI = (R534 − R698)/(R534 + R698) − R702/2 | [43] |
Optimal vegetation index | VIopt = 1.45 × (R8022 + 1)/(R668 + 0.45) | [47] |
Three-band spectral index | TBSI = (R605 − R521 − R681)/(R605 + R521 + R681) | [48] |
Blue index | BI = R450/R490 | [43] |
Ratio vegetation index | RVI = R810/R660 | [49] |
Normalized difference vegetation index | NDVIg−b = (R537 − R440)/(R537 + R440) | [48] |
Difference vegetation index | DVI = R810 − R680 | [49] |
MERIS terrestrial chlorophyll index | MTCI = (R754 − R709)/(R709 − R681) | [50] |
Soil-adjusted vegetation index | SAVI = (1 + 0.5) × [(R800 − R670)/(R800 + R670 + 0.5)] | [51] |
Optimized soil-adjusted vegetation index | OSAVI1 = (1 + 0.16) × [(R800 − R670)/(R800 + R670 + 0.16)] | [52] |
OSAVI2 = (1 + 0.16) × [(R750 − R705)/(R750 + R705 + 0.16)] | ||
Modified triangular vegetation index | MTVI = 1.2 × [1.2 × (R800 − R550) − 2.5 × (R670 − R550)] | [53] |
Canopy temperature | CT | [34] |
Data Type | Variables | Data Type | Variables |
---|---|---|---|
Single dataset | Reflectance | Combined dataset | Reflectance + Temperature parameter |
Single dataset | 1st derivative | Combined dataset | 1st derivative + Temperature parameter |
Single dataset | 2nd derivative | Combined dataset | 2nd derivative + Temperature parameter |
Single dataset | Vegetation indices | Combined dataset | Vegetation indices + Temperature parameter |
Single dataset | Temperature parameter |
Abbreviation | Input Variables | Number of Variables | Parameters | |
---|---|---|---|---|
Random_State of Train_Test_Split | Random_State of 10-Kfold | |||
S | SVIs | 27 | 42 | 49 |
R | Reflectance of bands | 143 | 42 | 46 |
1D | 1st derivative | 116 | 46 | 46 |
2D | 2nd derivative | 100 | 42 | 49 |
T | Temperature parameter | 1 | 48 | 49 |
Abbreviation | Input | OA | Kappa | Class | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|---|---|---|
S | SVIs | 90.62 | 0.86 | Healthy | 87.5 | 77.78 | 82 |
Infested | 81.82 | 90 | 86 | ||||
Dead | 100 | 100 | 100 | ||||
R | Reflectance of bands | 84.38 | 0.76 | Healthy | 85.71 | 66.67 | 75 |
Infested | 72.73 | 80 | 76 | ||||
Dead | 92.86 | 100 | 96 | ||||
1D | 1st derivative | 81.25 | 0.72 | Healthy | 66.67 | 80 | 73 |
Infested | 80 | 66.67 | 73 | ||||
Dead | 100 | 100 | 100 | ||||
2D | 2nd derivative | 78.12 | 0.67 | Healthy | 60 | 66.67 | 63 |
Infested | 66.67 | 60 | 63 | ||||
Dead | 100 | 100 | 100 | ||||
T | Temperature parameter | 71.88 | 0.56 | Healthy | 85.71 | 75 | 80 |
Infested | 50 | 55.56 | 53 | ||||
Dead | 80 | 80 | 80 |
Abbreviation | Input Variables | Number of Variables | Parameters | |
---|---|---|---|---|
Random_State of Train_Test_Split | Random_State of 10-Kfold | |||
S + T | SVIs + Temperature parameter | 28 | 46 | 48 |
R + T | Reflectance of bands + Temperature parameter | 144 | 47 | 48 |
1D + T | 1st derivative + Temperature parameter | 117 | 46 | 42 |
2D + T | 2nd derivative + Temperature parameter | 101 | 42 | 42 |
Abbreviation | Input | OA | Kappa | Class | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|---|---|---|
S + T | SVIs + Temperature parameter | 93.75 | 0.91 | Healthy | 90 | 90 | 90 |
Infested | 91.67 | 91.67 | 91.67 | ||||
Dead | 100 | 100 | 100 | ||||
R + T | Reflectance of bands + Temperature parameter | 81.25 | 0.72 | Healthy | 80 | 80 | 80 |
Infested | 69.23 | 81.82 | 75 | ||||
Dead | 100 | 81.82 | 90 | ||||
1D + T | 1st derivative + Temperature parameter | 84.38 | 0.76 | Healthy | 77.78 | 70 | 74 |
Infested | 76.92 | 83.33 | 80 | ||||
Dead | 100 | 100 | 100 | ||||
2D + T | 2nd derivative + Temperature parameter | 90.62 | 0.86 | Healthy | 80 | 88.89 | 84 |
Infested | 88.89 | 80 | 84 | ||||
Dead | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, P.; Yu, L.; Zhou, Q.; Kuang, J.; Tang, R.; Ren, L.; Luo, Y. Early Detection of Dendroctonus valens Infestation with UAV-Based Thermal and Hyperspectral Images. Remote Sens. 2024, 16, 3840. https://doi.org/10.3390/rs16203840
Bi P, Yu L, Zhou Q, Kuang J, Tang R, Ren L, Luo Y. Early Detection of Dendroctonus valens Infestation with UAV-Based Thermal and Hyperspectral Images. Remote Sensing. 2024; 16(20):3840. https://doi.org/10.3390/rs16203840
Chicago/Turabian StyleBi, Peiyun, Linfeng Yu, Quan Zhou, Jinjia Kuang, Rui Tang, Lili Ren, and Youqing Luo. 2024. "Early Detection of Dendroctonus valens Infestation with UAV-Based Thermal and Hyperspectral Images" Remote Sensing 16, no. 20: 3840. https://doi.org/10.3390/rs16203840
APA StyleBi, P., Yu, L., Zhou, Q., Kuang, J., Tang, R., Ren, L., & Luo, Y. (2024). Early Detection of Dendroctonus valens Infestation with UAV-Based Thermal and Hyperspectral Images. Remote Sensing, 16(20), 3840. https://doi.org/10.3390/rs16203840