Understanding Surface Water Dynamics in Post-Mining Area Through Multi-Source Remote Sensing and Spatial Regression Analysis
Abstract
Highlights
- An increase in water content of vegetation and minor changes in soil moisture were noted between 2015 and 2024.
- The extent of water in the Wartowice flotation reservoir increased significantly over the last 10 years.
- Past copper mining was not the main driving factor of the observed changes in surface water according to local and global regression models.
- Remote sensing enabled detection of surface water changes over a post-mining area.
Abstract
1. Introduction
1.1. Surface Water Changes in Mining and Post-Mining Areas
1.2. Remote Sensing Data and Spatial Statistics Methods in Monitoring Surface Water Changes
1.3. Research Motivation and Objectives
- A limited number of studies have integrated passive and active remote sensing data for a comprehensive analysis of surface water changes, particularly in mining and post-mining areas in Europe;
- Long-term surface water changes in former or active mining areas are rarely examined using remote sensing data;
- There is a lack of research on the application of advanced spatial statistics methods (e.g., Hot Spot analysis, spatial regression, cell statistics) to study surface water dynamics.
- The main objective of this study, derived from the identified research gaps, was to identify statistically significant changes in surface water in a post-mining area over a 10-year period and to determine the factors responsible for these changes. The specific objectives of this study were as follows: (1) description of surface water changes, including the characteristics of changes in water concentration in vegetation and soils; (2) detection of areas of statistically significant changes in surface water between 2015 and 2024; and (3) identification of factors that significantly influence surface water changes using both global and local regression models.
- The study was conducted in the former copper mining area “Konrad”, located in southwest Poland. No studies that combine remote sensing data with spatial statistics and regression models have been conducted in this region to date. The “Konrad” mining area features a complex geological structure, with numerous tectonic faults significantly influencing water flow regulation in the region following mine closure, which affects changes in surface water. To describe these changes in the studied 2014–2025 period, a time series of Landsat-8/9 and Sentinel-1 SAR imagery was utilized to calculate a various surface water and moisture related indices. Identification of areas with statistically significant surface water changes was conducted using the Emerging Hot Spot analysis. To identify the factors significantly influencing the occurrence of hot or cold spots in the study area, Random Forest Regression and Geographically Weighted Regression models were applied.
2. Study Area
2.1. Location
2.2. Geological and Hydrogeological Conditions
2.3. History of Mining in the Old Copper Basin and Land Reclamation Activities
3. Materials and Methods
3.1. Data Acquisition
3.2. Remote Sensing Data Processing
3.2.1. Passive Imagery
- (a)
- Modified Normalized Difference Water Index (MNDWI)—introduced by [64] as a modification of the original Normalized Difference Water Index (NDWI) described in [65]. MNDWI is a normalized index that utilizes reflectance acquired in the green (GREEN) and shortwave infrared (SWIR1) spectral bands, according to Formula (1):
- (b)
- Normalized Difference Moisture Index (NDMI)—an index that combines reflectance information acquired in the near-infrared (NIR) and shortwave infrared (SWIR1) spectral ranges, as developed by [66]:
3.2.2. Active Imagery
3.3. Spatial Statistics Applications
3.3.1. Cell Statistics
3.3.2. Emerging Hot Spot Analysis
3.4. Independent and Dependent Variables Development
- Topographic variables: terrain elevation (DEM2020) and slope (Slope), total Line-of-Sight displacement (DisplacementTotal), distance from rivers (DistRivers), mean NDVI value (NDVI), and distance from built-up areas (DistBuildings);
- Geological-hydrogeological variables: maximum depth of the first aquifer (MaxGroundwaterTable), the geological structure of the study area (Geology), soil permeability (Permeability), the distance from groundwater wells (DistWaterIntake), and the distance from tectonic faults (DistFault);
- Mining variables: the distance from areas of active mining (DistCurrentMining), the distance from sites associated with former copper ore mining (DistMiningCopper), and the distance from tailings dams (DistFlotation);
- Meteorological variables: average precipitation (Precipitation) and Land Surface Temperature (LST) during the studied period of 2015–2024.
Variable Type | Variable Name * | Dataset Used | Development Method | Value Range [unit] |
---|---|---|---|---|
Dependent | SurfaceWater | Landsat-8/9 imagery | Described in detail in Section 3.3 and Section 3.4 | −4.20–4.05 [-] |
LeafWaterContent | Landsat-8/9 imagery | Described in detail in Section 3.3 and Section 3.4 | −3.89–4.20 [-] | |
SoilMoisture | Sentinel-1 imagery | Described in detail in Section 3.4 | −3.94–3.94 [-] | |
Independent | DisplacementTotal | Sentinel-1 imagery | Described in detail in Section 3.4 | −235–66 [mm] |
DistRivers | Water network data | Euclidean distance from rivers obtained through spatial analysis | 0.0–2089.0 [m] | |
DEM2020 | ALS-based Digital Elevation Model | Digital Elevation Model (DEM) in the form of GRID model, obtained through mosaicking and resampling the XYZ point data | 191.15–293.75 [m a.s.l.] | |
Slope | Digital Elevation Model | Slope calculated based on the DEM2020 variable | 0.0–30.3 [°] | |
NDVI | Landsat-8/9 imagery | Mean NDVI [75] value during 2015–2024 estimated for Landsat imagery dataset described in Section 3.2.1. | −0.05–0.45 [-] | |
DistBuildings | Built-up areas dataset | Euclidean distance from built-up areas (vectorized from raster data beforehand) | 0.0–1381.3 [m] | |
Precipitation | Precipitation | Conversion of raster dataset to vector format | 49.38–50.05 [mm/m2] | |
LST | Landsat-8/9 imagery | Land Surface Temperature obtained from cloud-free Landsat surface reflectance dataset, converted to point format | 292.4–304.3 [K] | |
MaxGroundwaterTable | First aquifer— hydrogeological map | Hydrogeological map digitization and conversion to raster format. Height of the first aquifer obtained through subtracting aquifer depth from surface elevation | 145.29–269.67 [m a.s.l.] | |
Permeability | Geological maps | Geological map digitization and conversion to raster format. Permeability determined based on types of quaternary deposits, applying distribution provided in [76] | [1]—excellent; [2]—good; [3]—average; [4]—weak; [5]—semi-pervious; [6]—impervious; [0]—anthropogenic areas | |
Geology | Geological maps | Geological maps digitization and raster conversion | [0]—basalts; [1]—clays and deluvial sands; [2]—tills; [3]—loesses and loess-like clays; [4]—silts; [5]—muds; [6]—unknown; [7]—sands and gravels; [8]—sandstones; [9]—limestones and marls | |
DistFault | Faults-geological maps | Digitization of the generalized geological map of the border region between Poland, Germany and the Czech Republic; Euclidean distance from faults | 0.0–1770.0 [m] | |
DistWaterIntake | Groundwater wells locations | Digitization of the geo-environmental map of Poland; Euclidean distance from wells | 84.8–9436.3 [m] | |
DistCurrentMining | Active mining | Euclidean distance from active mining areas | 0.0–4883.5 [m] | |
DistFlotation | Tailings dams | Euclidean distance from tailings dams locations | 0.0–3545.6 [m] | |
DistMiningCopper | Former copper ore mining | Euclidean distance from copper ore fields | 0.0–2305.3 [m] |
3.5. Development of Global and Local Regression Models
4. Results
4.1. Analysis of Spatio-Temporal Changes in Surface Water Conditions
4.1.1. Cell Statistics
4.1.2. Emerging Hot Spot Analysis
4.2. Impact of Independent Variables on Surface Water Changes—Global-Scale Approach
4.3. Impact of Independent Variables on Surface Water Changes—Local-Scale Approach
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Bocheńska, T.; Limisiewicz, P.; Poprawski, L. Analiza statystyczna zmian zwierciadła płytkich wód podziemnych w lubińsko-głogowskim obszarze miedzionośnym. In Współczesne Problemy Hydrogeologii; Oficyna Wydawnicza SUDETY: Wrocław, Poland, 1993; Volume VI. [Google Scholar]
- Masood, N.; Hudson-Edwards, K.; Farooqi, A. True Cost of Coal: Coal Mining Industry and Its Associated Environmental Impacts on Water Resource Development. J. Sustain. Min. 2020, 19, 1. [Google Scholar] [CrossRef]
- Cempiel, E. Wpływ poeksploatacyjnych deformacji górotworu na zmiany położenia zwierciadła wód podziemnych. Zesz. Nauk. Politech. Śląskiej 1997, 235, 7–19. [Google Scholar]
- Kaszowska, O. Wpływ podziemnej eksploatacji górniczej na powierzchnię terenu. Probl. Ekol. 2007, 11, 52–57. [Google Scholar]
- Miatkowski, Z.; Przeździecki, K.; Zawadzki, J. Obserwacje zróżnicowania przestrzennego warunków wodnych trwałych użytków zielonych w zakresie widzialnym i bliskiej podczerwieni w regionie oddziaływania kopalni odkrywkowej węgla brunatnego. Rocz. Geomatyki 2013, 11, 59–66. [Google Scholar]
- Bajrović, H.B.; Tomašević, V.P.; Raut, J.D. Analysis of the Impact of Mining Activities on Surface Water Quality–Identification of Key Parameters Through Statistical and Chemical Analysis. Pol. J. Environ. Stud. 2025, 34, 2567–2577. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Peräniemi, S.; Vogt, R.D. Environmental Impact of Mining Activities on the Surface Water Quality in Tibet: Gyama Valley. Sci. Total Environ. 2010, 408, 4177–4184. [Google Scholar] [CrossRef]
- Pedrozo-Acuña, A.; Breña-Naranjo, J.A.; Ramírez-Salinas, N.; Bustos-Montes, J.C.; Soriano-Monzalvo, J.C.; Zetina-Robleda, E.F.; López-López, M.R. Environmental Impact of Mining Activities on Water Availability, Quality and Sediments in the Sonora River, Mexico. Water Air Soil Pollut. 2025, 236, 524. [Google Scholar] [CrossRef]
- Guzy, A. Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change. Energies 2024, 17, 5540. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Guzy, A.; Hejmanowski, R. Satellite-Based Monitoring and Modeling of Ground Movements Caused by Water Rebound. Remote Sens. 2020, 12, 1786. [Google Scholar] [CrossRef]
- Greinert, H.; Wróbel, I.; Kołodziejczyk, U. Pojezierze Antropogeniczne w Dorzeczu Nysy Łużyckiej; Wydawnictwo Politechniki Zielonogórskiej: Zielona Góra, Poland, 1997. [Google Scholar]
- Schultze, M.; Pokrandt, K.-H.; Hille, W. Pit Lakes of the Central German Lignite Mining District: Creation, Morphometry and Water Quality Aspects. Limnologica 2010, 40, 148–155. [Google Scholar] [CrossRef]
- Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 401. [Google Scholar] [CrossRef]
- Smentek, A.; Blachowski, J. Remote Sensing Analysis of Environmental Changes in a Post-Mining Area: A Case Study of the Olkusz Region–Preliminary Results. Civ. Environ. Eng. Rep. 2025, 35, 1–18. [Google Scholar] [CrossRef]
- Singh, P.D.; Hawryło, P.; Klamerus-Iwan, A.; Pietrzykowski, M. Spatial Modeling for Detection of Water Retention Capacity in Technosols Developed on Carboniferous Spoil Heap after Hard Coal Mining. Ecol. Inform. 2024, 82, 102751. [Google Scholar] [CrossRef]
- Atwood, A.; Ramesh, S.; Amaya, J.A.; Cadillo-Quiroz, H.; Coayla, D.; Chen, C.-M.; West, A.J. Landscape Controls on Water Availability Limit Revegetation after Artisanal Gold Mining in the Peruvian Amazon. Commun. Earth Environ. 2025, 6, 419. [Google Scholar] [CrossRef]
- Kujawa, P.; Wajs, J.; Kasza, D.; Remondino, F. Monitoring a Flooded Open-Cast Mine with Combining Remote Sensing Techniques. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2025, 48, 155–161. [Google Scholar] [CrossRef]
- Mukherjee, J.; Mukherjee, J.; Chakravarty, D.; Aikat, S. A Novel Index to Detect Opencast Coal Mine Areas From Landsat 8 OLI/TIRS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 891–897. [Google Scholar] [CrossRef]
- Mukherjee, J.; Mukherjee, J.; Chakravarty, D. Automated Detection of Mine Water Bodies Using Landsat 8 OLI/TIRS in Jharia. In Computer Vision, Pattern Recognition, Image Processing, and Graphics, Proceedings of the 7th National Conference, NCVPRIPG 2019, Hubballi, India, 22–24 December 2019; Babu, R.V., Prasanna, M., Namboodiri, V.P., Eds.; Springer: Singapore, 2020; pp. 480–489. [Google Scholar]
- Yu, S.; Sun, L.; Sun, Z.; Wu, M. Water Body Extraction and Change Analysis Based on Landsat Image in Xinjiang Coal-Mining Regions. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6229–6232. [Google Scholar]
- Liu, Y.; Lu, Y.; Li, Y.; Yue, H. Long-Term Remote Monitoring of Three Typical Lake Area Variations in the Nothwest China over the Past 40 Years. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–3, 1165–1168. [Google Scholar] [CrossRef]
- Lupa, M.; Pełka, A.; Młynarczuk, M.; Staszel, J.; Adamek, K. Why Rivers Disappear—Remote Sensing Analysis of Postmining Factors Using the Example of the Sztoła River, Poland. Remote Sens. 2024, 16, 111. [Google Scholar] [CrossRef]
- Zhong, A.; Wang, Z.; Gen, Y. Research on Water Body Information Extraction and Monitoring in High Water Table Mining Areas Based on Google Earth Engine. Sci. Rep. 2025, 15, 12133. [Google Scholar] [CrossRef]
- Louloudis, G.; Roumpos, C.; Mertiri, E.; Pavloudakis, F.; Karalidis, K. Remote Sensing Data and Indices to Support Water Management: A Holistic Post-Mining Approach for Lignite Mining in Greece. Mine Water Environ. 2023, 42, 618–638. [Google Scholar] [CrossRef]
- Raucoules, D.; Le Mouelic, S.; Carnec, C.; Guise, Y. Monitoring Post-Mining Subsidence in the Nord-Pas-de-Calais Coal Basin (France): Comparison between Interferometric SAR Results and Levelling. Geocarto Int. 2008, 23, 287–295. [Google Scholar] [CrossRef]
- Blachowski, J.; Kopeć, A.; Milczarek, W.; Owczarz, K. Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland. Sustainability 2019, 11, 884. [Google Scholar] [CrossRef]
- John, A. Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry—A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining 2021, 1, 35–58. [Google Scholar] [CrossRef]
- Declercq, P.-Y.; Dusar, M.; Pirard, E.; Verbeurgt, J.; Choopani, A.; Devleeschouwer, X. Post Mining Ground Deformations Transition Related to Coal Mines Closure in the Campine Coal Basin, Belgium, Evidenced by Three Decades of MT-InSAR Data. Remote Sens. 2023, 15, 725. [Google Scholar] [CrossRef]
- Gee, D.; Sowter, A.; Athab, A.; Grebby, S.; Wu, Z.; Boiko, K. Remote Monitoring of Minewater Rebound and Environmental Risk Using Satellite Radar Interferometry. Sci. Total Environ. 2023, 857, 159272. [Google Scholar] [CrossRef]
- Yin, X.; Chai, J.; Deng, W.; Yang, Z.; Tian, G.; Gao, C. Pointwise Modelling and Prediction for Ground Surface Uplifts in Abandoned Coal Mines from InSAR Observations. Remote Sens. 2023, 15, 2337. [Google Scholar] [CrossRef]
- Zheng, M.; Deng, K.; Fan, H.; Du, S. Monitoring and Analysis of Surface Deformation in Mining Area Based on InSAR and GRACE. Remote Sens. 2018, 10, 1392. [Google Scholar] [CrossRef]
- Belba, P.; Kucaj, S.; Thanas, J. Monitoring of Water Bodies and Non-Vegetated Areas in Selenica—Albania with Sar and Optical Images. Geomat. Environ. Eng. 2022, 16, 5–25. [Google Scholar] [CrossRef]
- Abdulraheem, M.I.; Zhang, W.; Li, S.; Moshayedi, A.J.; Farooque, A.A.; Hu, J. Advancement of Remote Sensing for Soil Measurements and Applications: A Comprehensive Review. Sustainability 2023, 15, 15444. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, J.; Lei, T.; Yue, C. GRACE Satellite Monitoring and Driving Factors Analysis of Groundwater Storage under High-Intensity Coal Mining Conditions: A Case Study of Ordos, Northern Shaanxi and Shanxi, China. Hydrogeol. J. 2020, 28, 673–686. [Google Scholar] [CrossRef]
- Lin, G.; Jiang, D.; Fu, J.; Dong, D.; Sun, W.; Li, X. Spatial Relationships of Water Resources with Energy Consumption at Coal Mining Operations in China. Mine Water Environ. 2020, 39, 407–415. [Google Scholar] [CrossRef]
- Blachowski, J.; Dynowski, A.; Buczyńska, A.; Ellefmo, S.L.; Walerysiak, N. Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study. Remote Sens. 2023, 15, 3067. [Google Scholar] [CrossRef]
- Cao, J.; Ma, F.; Guo, J.; Lu, R.; Liu, G. Assessment of Mining-Related Seabed Subsidence Using GIS Spatial Regression Methods: A Case Study of the Sanshandao Gold Mine (Laizhou, Shandong Province, China). Environ. Earth Sci. 2019, 78, 26. [Google Scholar] [CrossRef]
- Sawut, R.; Kasim, N.; Abliz, A.; Hu, L.; Yalkun, A.; Maihemuti, B.; Qingdong, S. Possibility of Optimized Indices for the Assessment of Heavy Metal Contents in Soil around an Open Pit Coal Mine Area. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 14–25. [Google Scholar] [CrossRef]
- Institute of Meteorology and Water Management (IMWM). Climate Maps of Poland. Available online: https://klimat.imgw.pl/pl/climate-maps/ (accessed on 29 May 2025).
- Nowak, I.; Nejbert, K. Zastosowanie przenośnego spektrometru rentgenowskiego (pXRF) do badań mineralizacji kruszcowej w skałach cechsztynu dolnego podczas prac terenowych w nieczynnej kopalni miedzi Konrad, niecka północnosudecka, Polska. Cuprum: Czas. Nauk. Tech. Górnictwa Rud 2016, 3, 5–21. [Google Scholar]
- Mądrala, M. Wpływ Zaprzestania Odwodnienia ZG “Konrad” Na Chemizm Wód Podziemnych Synkliny Grodzieckiej w Rejonie Iwin Koło Bolesławca. Biul. Państwowego Inst. Geol. 2010, 440, 101–110. [Google Scholar]
- Głowacki, T. Opracowanie prognozy przemieszczeń pionowych terenu górniczego ZG. Min. Sci. 2015, 128, 33–42. [Google Scholar]
- KGHM Polska Miedź. Monografia KGHM Polska Miedź SA; II; KGHM Cuprum Sp. z o.o. CBR: Lubin, Poland, 2007; ISBN 978-83-922065-7-6. [Google Scholar]
- Sztromwasser, E. Detailed Geological Map of Poland 1: 50 000, Sheet 722 (Chojnów); Polish Geological Institute—National Research Institute: Warsaw, Poland, 1995. [Google Scholar]
- Badura, J. Detailed Geological Map of Poland 1: 50 000, Sheet 721 (Bolesławiec); Polish Geological Institute—National Research Institute: Wrocław, Poland, 2005. [Google Scholar]
- Biel, A. Generalized Geological Map of the Border Between Poland, Germany and Czech Republic (without Quaternary Sediments); Polish Geological Institute—National Research Institute: Wrocław, Poland, 2011. [Google Scholar]
- Horbowy, K. Hydrological Map of Poland 1: 50 000, First Aquifer, Occurrence and Hydrodynamics, Sheet 721 (Bolesławiec); Polish Geological Institute—National Research Institute: Warsaw, Poland, 2018. [Google Scholar]
- Krawczyk, J.; Zawistowski, K. Hydrogeological Map of Poland 1: 50 000, First Aquifer, Occurrence and Hydrodynamics, Sheet 722 (Chojnów); Polish Geological Institute—National Research Institute: Warsaw, Poland, 2018. [Google Scholar]
- Downorowicz, S. Polskie Górnictwo rud Miedzi, Zmiany Środowiskowe: Monografia: Wybrane Publikacje, Opracowania i Dokumenty; Towarzystwo Konsultantów Polskich: Lubin, Poland, 2021. [Google Scholar]
- Paździora, A. Stare Zagłębie Miedziowe; Towarzystwo Miłośników Bolesławca: Bolesławiec, Poland, 2008. [Google Scholar]
- Gawron, M.; Chodak, T.; Szerszeń, L. Wybrane właściwości osadów poflotacyjnych ze zbiornika “Konrad” nr 1 w Iwinach z uwzględnieniem ich przydatności do rekultywacji biologicznej. Zesz. Naukowe. Inżynieria Sr./Uniw. Zielonogórski 2007, 133, 95–102. [Google Scholar]
- Bartoszczuk, P.; Kaszubkiewicz, J.; Marczyk, M.; Patrzałek, A. Dynamika zawartości niektórych metali ciężkich i właściwości fizyczno-chemicznych rekultywowanych odpadów poflotacyjnych. In Zeszyty Naukowe Uniwersytetu Przyrodniczego we Wrocławiu; Rolnictwo/Uniwersytet Przyrodniczy we Wrocławiu: Wrocław, Poland, 2013; Volume 104, pp. 75–86. [Google Scholar]
- Kowalski, A.; Maciejak, K.; Wojewoda, J.; Kozłowski, A.; Raczyński, P. Antropogeniczne Zmiany Rzeźby Na Terenach Górniczych Starego Zagłębia Miedziowego (Synklinorium Północnosudeckie) w Świetle Analiz Geomorfometrycznych NMT LiDAR i Danych Archiwalnych. Biul. Państwowego Inst. Geol. 2017, 469, 177–200. [Google Scholar]
- Maksymowicz, A. Nowa szansa Starego Zagłębia Miedziowego. Przegląd Geol. 2016, 64, 312–314. [Google Scholar]
- Głowacki, T.; Milczarek, W. Surface deformation of the secondary former mining areas. Min. Sci. 2013, 20, 39–55. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- The Polish Central Office of Geodesy and Cartography. Integrated Copies of Databases of Topographic Objects BDOT10k. Available online: https://www.gov.pl/web/gugik/dane-pzgik4 (accessed on 14 August 2025).
- The Polish Central Office of Geodesy and Cartography. Digital Elevation Model. Available online: https://www.gov.pl/web/gugik/dane-pzgik4 (accessed on 14 August 2025).
- Pesaresi, M.; Politis, P. GHS-BUILT-C R2023A—GHS Settlement Characteristics, Derived from Sentinel2 Composite (2018) and Other GHS R2023A Data, European Commission, Joint Research Centre (JRC), 2023. [CrossRef]
- The Polish Geological Institute—National Research Institute Raw Materials-Mining Areas. Available online: https://dm.pgi.gov.pl/ (accessed on 14 August 2025).
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [PubMed]
- Seifert, K. Geoenvironmental Map of Poland 1: 50 000, Board A, Sheet 721 (Bolesławiec); Polish Geological Institute—National Research Institute: Warsaw, Poland, 2015. [Google Scholar]
- Seifert, K. Geoenvironmental Map of Poland 1: 50 000, Board A, Sheet 722 (Chojnów); Polish Geological Institute—National Research Institute: Warsaw, Poland, 2015. [Google Scholar]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens. Environ. 1999, 70, 191–207. [Google Scholar] [CrossRef]
- Yunjun, Z.; Fattahi, H.; Amelung, F. Small Baseline InSAR Time Series Analysis: Unwrapping Error Correction and Noise Reduction. Comput. Geosci. 2019, 133, 104331. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Two-Dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear Optimization. J. Opt. Soc. Am. A JOSAA 2001, 18, 338–351. [Google Scholar] [CrossRef]
- ESRI How Emerging Hot Spot Analysis Works—ArcGIS Pro | Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm (accessed on 17 December 2024).
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Xu, B.; Qi, B.; Ji, K.; Liu, Z.; Deng, L.; Jiang, L. Emerging Hot Spot Analysis and the Spatial–Temporal Trends of NDVI in the Jing River Basin of China. Environ. Earth Sci. 2022, 81, 55. [Google Scholar] [CrossRef]
- Hossain, M.d.F. Chapter Six-Water. In Sustainable Design and Build; Hossain, M.d.F., Ed.; Butterworth-Heinemann: Oxford, UK, 2019; pp. 301–418. ISBN 978-0-12-816722-9. [Google Scholar]
- Kriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and Their Effects on Multispectral Recognition. Remote Sens. Environ. 1969, VI, 97–132. [Google Scholar]
- Pazdro, Z.; Kozerski, B. Hydrogeologia Ogólna; Wydawnictwa Geologiczne: Warsaw, Poland, 1990; ISBN 83-220-0357-9. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Fawagreh, K.; Gaber, M.M.; Elyan, E. Random Forests: From Early Developments to Recent Advancements. Syst. Sci. Control Eng. 2014, 2, 602–609. [Google Scholar] [CrossRef]
- Parmar, A.; Katariya, R.; Patel, V. A Review on Random Forest: An Ensemble Classifier. In Proceedings of the International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018, Coimbatore, India, 7–8 August 2018; Hemanth, J., Fernando, X., Lafata, P., Baig, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 758–763. [Google Scholar]
- Borup, D.; Christensen, B.J.; Mühlbach, N.S.; Nielsen, M.S. Targeting Predictors in Random Forest Regression. Int. J. Forecast. 2023, 39, 841–868. [Google Scholar] [CrossRef]
- Charlton, M.; Fotheringham, A.S. Geographically Weighted Regression. White Paper; National Centre for Geocomputation, National University of Ireland Maynooth: Maynooth, Ireland, 2009. [Google Scholar]
- Szymanowski, M.; Kryza, M. Zastosowanie regresji wagowanej geograficznie do modelowania miejskiej wyspy ciepła we Wrocławiu. Arch. Fotogram. Kartogr. I Teledetekcji 2009, 20, 407–419. [Google Scholar]
- Brundson, C.; Charlton, M.; Fotheringham, S. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Fotheringham, S.; Brundson, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; Wiley: Hoboken, NJ, USA, 2002; ISBN 978-0-471-49616-8. [Google Scholar]
- ESRI How Geographically Weighted Regression Works. Available online: https://pro.arcgis.com/en/pro-app/3.4/tool-reference/spatial-statistics/how-geographicallyweightedregression-works.htm (accessed on 5 August 2025).
- Emmert-Streib, F.; Dehmer, M. Evaluation of Regression Models: Model Assessment, Model Selection and Generalization Error. Mach. Learn. Knowl. Extr. 2019, 1, 521–551. [Google Scholar] [CrossRef]
- Owczarz, K.; Blachowski, J. Random Forest—Based Identification of Factors Influencing Ground Deformation Due to Mining Seismicity. Remote Sens. 2024, 16, 2742. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Gui, B.; Bhardwaj, A.; Sam, L. Revealing the Evolution of Spatiotemporal Patterns of Urban Expansion Using Mathematical Modelling and Emerging Hotspot Analysis. J. Environ. Manag. 2024, 364, 121477. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar] [CrossRef]
Data Type | Name | Data Characteristics | Data Format | Source |
---|---|---|---|---|
Satellite imagery | Landsat-8/9 satellite imagery | Satellite imagery acquired between 2015 and 2024 over the study area (between April and October), displaying surface reflectance (Level-2 product) | GeoTIFF | [56] |
Sentinel-1 SAR imagery | Satellite SAR imagery acquired between 2015 and 2024 over the study area, representing radar backscatter values (Ground Range Detected, GRD) and complex phase values (Single Look Complex, SLC) | GeoTIFF | ||
Topographic data | Surface water system | Vector data with locations of water streams and lakes in the study area | Shapefile | [57] |
Absolute elevation | 3D points obtained with Aerial Laser Scanning in 2020, with spatial resolution of 5 m | ASCII | [58] | |
Built-up areas | 10 m resolution raster data with locations of built-up areas within the study area (data validity: 2018) | GeoTIFF | [56,59] | |
Mining data | Tailing dams | Vector data representing locations of tailing dams over the study area, obtained through map digitization | Shapefile | [53] |
Former copper mining | Vector data representing the extent of mining workings related to copper ore extraction. Data obtained through map digitization | Shapefile | [55] | |
Active mining | Vector data representing the extent of currently active mining areas, associated with anhydrite, stone, limestone, marl, sand and gravel. | Shapefile | [60] | |
Meteorological data | Precipitation | Raster data (0.5° resolution) representing selected meteorological data (including precipitation levels) in the study area, acquired for years 2015–2024 | GeoTIFF | [56,61] |
Geological and hydrogeological data | First aquifer | Hydrogeological map of Poland (scale 1:50,000) from year 2018 | JPEG | [47,48] |
Geology | Detailed geological map of Poland (scale 1:50,000) from 1995 and 2005 | JPEG | [44,45] | |
Faults | Generalized geological map of the border region between Poland, Germany and the Czech Republic (excluding Quaternary deposits) from 2011 (scale 1:1,000,000) | [46] | ||
Groundwater extraction wells | Geo-environmental map of Poland from 2015 (scale 1:50,000) | JPEG | [62,63] |
Dependent Variable | Metric | ||
---|---|---|---|
R2 [%] | RMSE | MAE | |
SurfaceWater | 78.6 | 0.679 | 0.490 |
LeafWaterContent | 87.3 | 0.442 | 0.301 |
SoilMoisture | 74.7 | 0.645 | 0.437 |
Dependent Variable | Metric | ||
---|---|---|---|
R2 [%] | AICc | Number of Neighbors | |
SurfaceWater | 75.9 | 96361.08 | 31 |
LeafWaterContent | 83.0 | 67616.91 | 31 |
SoilMoisture | 68.4 | 96295.63 | 31 |
Dependent Variable | Independent Variable | Diagnostic | Area of the Strongest Impact (|β| ≥ 1.5) | ||
---|---|---|---|---|---|
Min | Max | StDev | |||
SurfaceWater | DEM2020 | −4.00 | 2.40 | 0.25 | Wartowice tailings dam with its immediate surroundings, areas located east of Warta Bolesławiecka town, area of the Iwiny I flotation reservoir |
DistBuildings | −0.54 | 0.28 | 0.02 | not applicable | |
DistFault | −0.30 | 0.59 | 0.02 | not applicable | |
DistFlotation | −0.26 | 0.16 | 0.02 | not applicable | |
DistRivers | −0.21 | 0.26 | 0.02 | not applicable | |
LST | −2.39 | 2.54 | 0.48 | western part of Lubków town, eastern part of Warta Bolesławiecka, central, south-eastern and north-eastern part of study area | |
DisplacementTotal | −0.31 | 0.17 | 0.01 | n/a | |
LeafWaterContent | DEM2020 | −2.08 | 1.82 | 0.20 | the eastern part of Warta Bolesławiecka, Wartowice tailings dam, areas north-east of the Iwiny I reservoir |
DistBuildings | −0.21 | 0.19 | 0.01 | not applicable | |
DistFault | −0.20 | 0.24 | 0.01 | not applicable | |
DistFlotation | −0.18 | 0.22 | 0.01 | not applicable | |
DistRivers | −0.20 | 0.18 | 0.01 | not applicable | |
LST | −2.44 | 1.60 | 0.36 | southern and north-eastern parts of the study area | |
DisplacementTotal | −0.42 | 0.16 | 0.01 | not applicable | |
SoilMoisture | DEM2020 | −3.10 | 1.57 | 0.22 | Wartowice and Iwiny I tailings dams |
DistBuildings | −0.33 | 0.66 | 0.02 | not applicable | |
DistFault | −0.73 | 0.35 | 0.02 | not applicable | |
DistFlotation | −0.30 | 0.51 | 0.02 | not applicable | |
DistRivers | −0.46 | 0.30 | 0.02 | not applicable | |
LST | −2.45 | 2.16 | 0.43 | eastern part of the study area | |
DisplacementTotal | −0.22 | 0.11 | 0.01 | not applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buczyńska, A.; Głąbicki, D.; Kopeć, A.; Modlińska, P. Understanding Surface Water Dynamics in Post-Mining Area Through Multi-Source Remote Sensing and Spatial Regression Analysis. Remote Sens. 2025, 17, 3218. https://doi.org/10.3390/rs17183218
Buczyńska A, Głąbicki D, Kopeć A, Modlińska P. Understanding Surface Water Dynamics in Post-Mining Area Through Multi-Source Remote Sensing and Spatial Regression Analysis. Remote Sensing. 2025; 17(18):3218. https://doi.org/10.3390/rs17183218
Chicago/Turabian StyleBuczyńska, Anna, Dariusz Głąbicki, Anna Kopeć, and Paulina Modlińska. 2025. "Understanding Surface Water Dynamics in Post-Mining Area Through Multi-Source Remote Sensing and Spatial Regression Analysis" Remote Sensing 17, no. 18: 3218. https://doi.org/10.3390/rs17183218
APA StyleBuczyńska, A., Głąbicki, D., Kopeć, A., & Modlińska, P. (2025). Understanding Surface Water Dynamics in Post-Mining Area Through Multi-Source Remote Sensing and Spatial Regression Analysis. Remote Sensing, 17(18), 3218. https://doi.org/10.3390/rs17183218