TransMambaCNN: A Spatiotemporal Transformer Network Fusing State-Space Models and CNNs for Short-Term Precipitation Forecasting
Abstract
Highlights
- We propose TransMambaCNN, a novel spatiotemporal model designed for short-term precipitation forecasting. It effectively integrates a Convolutional State-Space Module (C-SSM) to capture global dependencies with multi-scale Inception modules for local feature extraction, leading to significant improvements in multivariate precipitation forecasting capability.
- It demonstrated superior performance over classical models on two benchmark datasets, with notable improvements in forecasting accuracy for challenging heavy rainfall events.
- The dual-branch architecture with learnable parameters enables adaptation to diverse meteorological regions (coastal vs. plateau), significantly improving generalization in regional precipitation forecasting.
- Multivariate analysis confirms the synergistic effects of integrating temperature, humidity, and wind speed data, advancing physically informed precipitation prediction methodologies.
Abstract
1. Introduction
- In this paper, the Convolutional State-Space Module (C-SSM) module is used for precipitation forecasting to leverage its global information modeling capability in order to address the need to capture the spatial and temporal correlations of large-scale meteorological systems in precipitation forecasting, as well as to significantly enhance the model’s ability to capture the spatial and temporal correlation features of the large-scale meteorological systems that drive the evolution of precipitation.
- This paper proposes a unique two-branch structure. One branch utilizes C-SSM to capture long-range spatiotemporal dependence and global patterns; the other branch adopts the Inception structure of SimVP to extract multi-scale local detailed features. Learning parameters are introduced to dynamically adjust and fuse the two-branch features so that the model can adapt to the unique meteorological characteristics of different regions (e.g., coastal vs. plateau), significantly improving the ability of the generalized characterization of regional precipitation patterns.
- Additionally, we conducted experimental analysis on multiple variables in the dataset. This included investigating their relative importance through the permutation importance method, as well as using the stepwise addition of variables to assess the impact of synergistic effects among multiple variables on precipitation forecast accuracy.
2. Methodology
2.1. TransMambaCNN
2.2. Spatiotemporal Feature Fusion Module
2.3. Convolutional State-Space Module
Attentive State-Space Module
2.4. Inception Module
2.5. SFT Layer
3. Experiments
3.1. Datasets
3.2. Experimental Setup
3.3. Experimental Results and Analysis
4. Ablation Study
4.1. Effect of C-SSM
4.2. Effect of the Dual-Branch Structure
4.2.1. Effect of the
4.2.2. Effect of the Stacking Integration Unit
5. Discussion
- There are significant regional differences in the criticality of meteorological variables in short-term precipitation forecasting.
- A reasonable selection of meteorological variables from different altitude layers to be used together in short-term precipitation forecasting increases the performance of precipitation forecasting.
- Constructing models based on multiple atmospheric state variables may be more effective than relying on historical precipitation itself.
- There are correlations between meteorological variables in short-term precipitation forecasting, and adding meteorological variables does not necessarily lead to improved model performance; a reasonable selection of meteorological variables is beneficial to precipitation forecasting.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Z.; Zhang, H.; Liu, J. MM-RNN: A multimodal RNN for precipitation nowcasting. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4101914. [Google Scholar] [CrossRef]
- Cheng, Y.; Qu, H.; Wang, J.; Qian, K.; Li, W.; Yang, L.; Han, X.; Liu, M. A radar echo extrapolation model based on a dual-branch encoder–decoder and spatiotemporal GRU. Atmosphere 2024, 15, 104. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, J.; Pan, X.; Gong, Z.; Liang, J. Postrainbench: A comprehensive benchmark and a new model for precipitation forecasting. arXiv 2023, arXiv:2310.02676. [Google Scholar]
- Grönquist, P.; Yao, C.; Ben-Nun, T.; Dryden, N.; Dueben, P.; Li, S.; Hoefler, T. Deep learning for post-processing ensemble weather forecasts. Philos. Trans. R. Soc. A 2021, 379, 20200092. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Che, Y.; Chang, J. A novel approach to improve numerical weather prediction skills by using anomaly integration and historical data. J. Geophys. Res. Atmos. 2013, 118, 8814–8826. [Google Scholar] [CrossRef]
- Agrawal, S.; Barrington, L.; Bromberg, C.; Burge, J.; Gazen, C.; Hickey, J. Machine learning for precipitation nowcasting from radar images. arXiv 2019, arXiv:1912.12132. [Google Scholar] [CrossRef]
- Chen, L.; Cao, Y.; Ma, L.; Zhang, J. A deep learning-based methodology for precipitation nowcasting with radar. Earth Space Sci. 2020, 7, e2019EA000812. [Google Scholar] [CrossRef]
- Li, D.; Min, X.; Xu, J.; Xue, J.; Shi, Z. Assessment of three gridded satellite-based precipitation products and their performance variabilities during typhoons over Zhejiang, southeastern China. J. Hydrol. 2022, 610, 127985. [Google Scholar] [CrossRef]
- Xian, D.; Zhang, P.; Gao, L.; Sun, R.; Zhang, H.; Jia, X. Fengyun meteorological satellite products for earth system science applications. Adv. Atmos. Sci. 2021, 38, 1267–1284. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, X.; Xiao, X.; Wang, Y.; Meng, G.; Xiang, S.; Pan, C. Spatiotemporal inference network for precipitation nowcasting with multimodal fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1299–1314. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Woo, W.C.; Wong, W.K. Operational application of optical flow techniques to radar-based rainfall nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef]
- Hu, J.; Yin, B.; Guo, C. METEO-DLNet: Quantitative precipitation nowcasting net based on meteorological features and deep learning. Remote Sens. 2024, 16, 1063. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Chen, Y. An investigation of convective features and ZR relationships for a local extreme precipitation event. Atmos. Res. 2021, 250, 105372. [Google Scholar] [CrossRef]
- Choi, Y.; Cha, K.; Back, M.; Choi, H.; Jeon, T. RAIN-F+: The data-driven precipitation prediction model for integrated weather observations. Remote Sens. 2021, 13, 3627. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 1. [Google Scholar]
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Deep learning for precipitation nowcasting: A benchmark and a new model. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal lstms. Adv. Neural Inf. Process. Syst. 2017, 30. [Google Scholar]
- Wang, Y.; Gao, Z.; Long, M.; Wang, J.; Yu, P.S. Predrnn++: Towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning. In Proceedings of the International Conference on Machine Learning—PMLR 2018, Stockholm, Sweden, 10–15 July 2018; pp. 5123–5132. [Google Scholar]
- Wang, Y.; Zhang, J.; Zhu, H.; Long, M.; Wang, J.; Yu, P.S. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9154–9162. [Google Scholar]
- She, L.; Zhang, C.; Man, X.; Luo, X.; Shao, J. A self-attention causal lstm model for precipitation nowcasting. In Proceedings of the 2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Brisbane, Australia, 10–14 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 470–473. [Google Scholar]
- Patel, V.; Degadwala, S. Deployment of 3D-Conv-LSTM for Precipitation Nowcast via Satellite Data. In Proceedings of the 2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN), Salem, India, 3–4 May 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 984–988. [Google Scholar]
- He, G.; Wu, W.; Han, J.; Luo, J.; Lei, L. EOST-LSTM: Long Short-Term Memory Model Combined with Attention Module and Full-Dimensional Dynamic Convolution Module. Remote Sens. 2025, 17, 1103. [Google Scholar] [CrossRef]
- Wu, H.; Yao, Z.; Wang, J.; Long, M. MotionRNN: A flexible model for video prediction with spacetime-varying motions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 15435–15444. [Google Scholar]
- Zheng, C.; Tao, Y.; Zhang, J.; Xun, L.; Li, T.; Yan, Q. TISE-LSTM: A LSTM model for precipitation nowcasting with temporal interactions and spatial extract blocks. Neurocomputing 2024, 590, 127700. [Google Scholar] [CrossRef]
- Hong, L.; Modirrousta, M.H.; Hossein Nasirpour, M.; Mirshekari Chargari, M.; Mohammadi, F.; Moravvej, S.V.; Rezvanishad, L.; Rezvanishad, M.; Bakhshayeshi, I.; Alizadehsani, R.; et al. GAN-LSTM-3D: An efficient method for lung tumour 3D reconstruction enhanced by attention-based LSTM. CAAI Trans. Intell. Technol. 2023. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, H.; Liu, J. DB-RNN: An RNN for precipitation nowcasting deblurring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5026–5041. [Google Scholar] [CrossRef]
- Gao, Z.; Tan, C.; Wu, L.; Li, S.Z. Simvp: Simpler yet better video prediction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 3170–3180. [Google Scholar]
- Han, L.; Liang, H.; Chen, H.; Zhang, W.; Ge, Y. Convective precipitation nowcasting using U-Net model. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4103508. [Google Scholar] [CrossRef]
- Deng, Q.; Lu, P.; Zhao, S.; Yuan, N. U-Net: A deep-learning method for improving summer precipitation forecasts in China. Atmos. Ocean. Sci. Lett. 2023, 16, 100322. [Google Scholar] [CrossRef]
- Fernández, J.G.; Mehrkanoon, S. Broad-UNet: Multi-scale feature learning for nowcasting tasks. Neural Netw. 2021, 144, 419–427. [Google Scholar] [CrossRef]
- Ayzel, G.; Scheffer, T.; Heistermann, M.I. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev. 2020, 13, 2631–2644. [Google Scholar] [CrossRef]
- Kaparakis, C.; Mehrkanoon, S. Wf-unet: Weather fusion unet for precipitation nowcasting. arXiv 2023, arXiv:2302.04102. [Google Scholar] [CrossRef]
- Zhu, K.; Chen, H.; Han, L. Mct u-net: A deep learning nowcasting method using dual-polarization radar observations. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 4665–4668. [Google Scholar]
- Zhang, Z.; Luo, C.; Feng, S.; Ye, R.; Ye, Y.; Li, X. RAP-Net: Region attention predictive network for precipitation nowcasting. Geosci. Model Dev. Discuss. 2022, 2022, 1–19. [Google Scholar] [CrossRef]
- Tang, S.; Li, C.; Zhang, P.; Tang, R. Swinlstm: Improving spatiotemporal prediction accuracy using swin transformer and lstm. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 13470–13479. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Ma, Z.; Zhang, H.; Liu, J. Preciplstm: A meteorological spatiotemporal lstm for precipitation nowcasting. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4109108. [Google Scholar] [CrossRef]
- Civitarese, D.S.; Szwarcman, D.; Zadrozny, B.; Watson, C. Extreme precipitation seasonal forecast using a transformer neural network. arXiv 2021, arXiv:2107.06846. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Z.; Liu, X.; Jing, P. Monthly-scale hydro-climatic forecasting and climate change impact evaluation based on a novel DCNN-Transformer network. Environ. Res. 2023, 236, 116821. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Guo, Z.; Zhang, X.; Chen, J.; Zhang, Y. RR-Former: Rainfall-runoff modeling based on Transformer. J. Hydrol. 2022, 609, 127781. [Google Scholar] [CrossRef]
- Jiang, M.; Weng, B.; Chen, J.; Huang, T.; Ye, F.; You, L. Transformer-enhanced spatiotemporal neural network for post-processing of precipitation forecasts. J. Hydrol. 2024, 630, 130720. [Google Scholar] [CrossRef]
- Wang, Z.; Kong, F.; Feng, S.; Wang, M.; Yang, X.; Zhao, H.; Wang, D.; Zhang, Y. Is mamba effective for time series forecasting? Neurocomputing 2025, 619, 129178. [Google Scholar] [CrossRef]
- Guo, H.; Guo, Y.; Zha, Y.; Zhang, Y.; Li, W.; Dai, T.; Xia, S.T.; Li, Y. Mambairv2: Attentive state space restoration. In Proceedings of the Computer Vision and Pattern Recognition Conference, Nashville, TN, USA, 10–17 June 2025; pp. 28124–28133. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Wang, X.; Yu, K.; Dong, C.; Loy, C.C. Recovering realistic texture in image super-resolution by deep spatial feature transform. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 606–615. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Soci, C.; Hersbach, H.; Simmons, A.; Poli, P.; Bell, B.; Berrisford, P.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Radu, R.; et al. The ERA5 global reanalysis from 1940 to 2022. Q. J. R. Meteorol. Soc. 2024, 150, 4014–4048. [Google Scholar] [CrossRef]
- Tan, C.; Gao, Z.; Wu, L.; Xu, Y.; Xia, J.; Li, S.; Li, S.Z. Temporal attention unit: Towards efficient spatiotemporal predictive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 18770–18782. [Google Scholar]
- Tang, Y.; Qi, L.; Xie, F.; Li, X.; Ma, C.; Yang, M.H. PredFormer: Transformers are effective spatial-temporal predictive learners. In Proceedings of the ICLR 2025, Singapore, 24–28 April 2025. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rasp, S.; Lerch, S. Neural networks for postprocessing ensemble weather forecasts. Mon. Weather. Rev. 2018, 146, 3885–3900. [Google Scholar] [CrossRef]
- Li, W.; Pan, B.; Xia, J.; Duan, Q. Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. J. Hydrol. 2022, 605, 127301. [Google Scholar] [CrossRef]
- Zhou, K.; Sun, J.; Zheng, Y.; Zhang, Y. Quantitative precipitation forecast experiment based on basic NWP variables using deep learning. Adv. Atmos. Sci. 2022, 39, 1472–1486. [Google Scholar] [CrossRef]
Dataset | Meteorological Element | Levels | Abbreviation |
---|---|---|---|
Dataset 1 | Total precipitation | Surface | TP |
Humidity | 200/500/700/850 hPa | R_humidity_200 hPa/R_humidity_500 hPa | |
R_humidity_700 hPa/R_humidity_850 hPa | |||
Temperature | 200/500/700/850 hPa | Temp_200 hPa/Temp_500 hPa | |
Temp_700 hPa/Temp_850 hPa | |||
U-wind component | 200/500/700/850 hPa | U-Wind_200 hPa/U-Wind_500 hPa | |
U-Wind_700 hPa/U-Wind_850 hPa | |||
V-wind component | 200/500/700/850 hPa | V-Wind_200 hPa/V-Wind_500 hPa | |
V-Wind_700 hPa/V-Wind_850 hPa | |||
Dataset 2 | Total precipitation | Surface | TP |
Humidity | 200/300/400/500/600 hPa | R_humidity_200 hPa/R_humidity_300 hPa | |
R_humidity_400 hPa/R_humidity_500 hPa | |||
R_humidity_600 hPa | |||
Temperature | 200/300/400/500/600 hPa | Temp_200 hPa/Temp_300 hPa | |
Temp_400 hPa/Temp_500 hPa | |||
Temp_600 hPa | |||
U-wind component | 200/300/400/500/600 hPa | U-Wind_200 hPa/U-Wind_300 hPa | |
U-Wind_400 hPa/U-Wind_500 hPa | |||
U-Wind_600 hPa | |||
V-wind component | 200/300/400/500/600 hPa | V-Wind_200 hPa/V-Wind_300 hPa | |
V-Wind_400 hPa/V-Wind_500 hPa | |||
V-Wind_600 hPa |
Observation | |||
---|---|---|---|
0 | 1 | ||
Forecast | 0 | correct negatives (CN) | misses (M) |
1 | false alarms (FA) | hits (H) |
Region | Data | Precipitation Categories (mm) | ||||
---|---|---|---|---|---|---|
<0.1 | 0.1–10 | 10–25 | 25–50 | ≥50 | ||
Sanjiangyuan Region (Qinghai, western China) | Training | 0.4206 | 0.5478 | 0.0309 | 0.0007 | 0.0000 |
Validation | 0.4164 | 0.5481 | 0.0347 | 0.0008 | 0.0000 | |
Test | 0.4431 | 0.5346 | 0.0314 | 0.0008 | 0.0000 | |
Southeastern China and Marine Areas | Training | 0.2766 | 0.5424 | 0.1226 | 0.0444 | 0.0140 |
Validation | 0.2779 | 0.5390 | 0.1250 | 0.0448 | 0.0132 | |
Test | 0.3061 | 0.5238 | 0.1151 | 0.0425 | 0.0125 |
Region | Model | Paras (M) | Flops (T) | SSIM ↑ | MSE ↓ | MAE ↓ | TS Score (↑) | |||
---|---|---|---|---|---|---|---|---|---|---|
≥0.1 | ≥10 | ≥25 | ≥50 | |||||||
Southeastern China and Marine Areas | PredRNN [18] | 23.859 | 16.491 | 0.4393 | 71.3980 | 4.1062 | 0.7177 | 0.4595 | 0.2719 | 0.1185 |
ConvLSTM [16] | 15.094 | 8.078 | 0.3710 | 75.9776 | 4.4554 | 0.6950 | 0.4511 | 0.2556 | 0.0940 | |
MIM [20] | 45.769 | 25.551 | 0.4213 | 76.3462 | 4.2786 | 0.7144 | 0.4397 | 0.2492 | 0.0910 | |
PredRNN++ [19] | 38.605 | 24.419 | 0.3822 | 75.4762 | 4.3130 | 0.6944 | 0.4518 | 0.2254 | 0.0503 | |
SimVP [28] | 22.45 | 0.233 | 0.3806 | 71.6207 | 4.3681 | 0.7056 | 0.4662 | 0.2653 | 0.0875 | |
ViT [45] | 52.179 | 0.439 | 0.3932 | 76.0649 | 4.2698 | 0.7051 | 0.4117 | 0.2115 | 0.1108 | |
TAU [49] | 50.058 | 0.423 | 0.3554 | 75.0830 | 4.5516 | 0.7013 | 0.4170 | 0.2404 | 0.1056 | |
PredFormer [50] | 25.393 | 1.162 | 0.3470 | 74.0522 | 4.5427 | 0.6986 | 0.4543 | 0.2805 | 0.1304 | |
TransMambaCNN | 26.932 | 0.406 | 0.4323 | 70.2023 | 4.2595 | 0.7131 | 0.4675 | 0.3083 | 0.1750 | |
Sanjiangyuan Region (Qinghai, western China) | PredRNN [18] | 23.949 | 9.27 | 0.3507 | 4.5245 | 1.0543 | 0.6604 | 0.1673 | 0.0000 | – |
ConvLSTM [16] | 15.146 | 4.543 | 0.3300 | 4.8843 | 1.0950 | 0.6665 | 0.1747 | 0.0000 | – | |
MIM [20] | 42.209 | 14.343 | 0.3331 | 4.4083 | 1.0440 | 0.6454 | 0.1883 | 0.0000 | – | |
PredRNN++ [19] | 38.694 | 13.709 | 0.3622 | 4.5204 | 1.0420 | 0.7025 | 0.1807 | 0.0000 | – | |
SimVP [28] | 22.452 | 0.131 | 0.3376 | 4.3580 | 1.0315 | 0.6811 | 0.2143 | 0.0015 | – | |
ViT [45] | 52.181 | 0.247 | 0.2983 | 4.8069 | 1.1513 | 0.6202 | 0.1533 | 0.0000 | – | |
TAU [49] | 50.061 | 0.238 | 0.3403 | 4.9105 | 1.0652 | 0.6212 | 0.1417 | 0.0000 | – | |
PredFormer [50] | 25.426 | 0.637 | 0.3284 | 4.1968 | 1.0336 | 0.6481 | 0.2427 | 0.0031 | – | |
TransMambaCNN | 26.935 | 0.229 | 0.3935 | 4.3214 | 0.9896 | 0.6898 | 0.2149 | 0.0193 | – |
Region | Model | POD ↑ | FAR ↓ | ||||
---|---|---|---|---|---|---|---|
≥10 | ≥25 | ≥50 | ≥10 | ≥25 | ≥50 | ||
Southeastern China and Marine Areas | PredRNN [18] | 0.6265 | 0.3427 | 0.1350 | 0.3671 | 0.4317 | 0.5082 |
ConvLSTM [16] | 0.6410 | 0.3303 | 0.1040 | 0.3964 | 0.4697 | 0.5065 | |
MIM [20] | 0.6175 | 0.3085 | 0.1004 | 0.3957 | 0.4356 | 0.5087 | |
PredRNN++ [19] | 0.6285 | 0.2659 | 0.0523 | 0.3835 | 0.4035 | 0.4350 | |
SimVP [28] | 0.6452 | 0.3343 | 0.0957 | 0.3731 | 0.4376 | 0.4945 | |
ViT [45] | 0.5277 | 0.2443 | 0.1210 | 0.3481 | 0.3886 | 0.4307 | |
TAU [49] | 0.6243 | 0.2730 | 0.0985 | 0.3856 | 0.4042 | 0.4704 | |
PredFormer [50] | 0.6306 | 0.3712 | 0.1569 | 0.3810 | 0.4655 | 0.5642 | |
TransMambaCNN | 0.6566 | 0.4212 | 0.2199 | 0.3813 | 0.4651 | 0.5384 | |
Sanjiangyuan Region (Qinghai, China) | PredRNN [18] | 0.2011 | 0.0000 | – | 0.3272 | 0.0000 | – |
ConvLSTM [16] | 0.2279 | 0.0000 | – | 0.5719 | 1.0000 | – | |
MIM [20] | 0.2282 | 0.0000 | – | 0.4816 | 0.0000 | – | |
PredRNN++ [19] | 0.2215 | 0.0000 | – | 0.5046 | 0.0000 | – | |
SimVP [28] | 0.2756 | 0.0016 | – | 0.5092 | 0.9091 | – | |
ViT [45] | 0.1895 | 0.0000 | – | 0.5549 | 0.0000 | – | |
TAU [49] | 0.1617 | 0.0000 | – | 0.4661 | 0.0000 | – | |
PredFormer [50] | 0.3229 | 0.0031 | – | 0.5057 | 0.8000 | – | |
TransMambaCNN | 0.2796 | 0.0197 | – | 0.5184 | 0.4898 | – |
Region | Model | MSE ↓ | MAE ↓ | TS Score ↑ | POD ↑ | ||||
---|---|---|---|---|---|---|---|---|---|
≥10 | ≥25 | ≥50 | ≥10 | ≥25 | ≥50 | ||||
Southeastern China and Adjacent Marine Areas | ViT | 76.0649 | 4.2698 | 0.4117 | 0.2115 | 0.1108 | 0.5277 | 0.2443 | 0.1210 |
TransMamba | 70.6951 | 3.9924 | 0.4583 | 0.2945 | 0.1582 | 0.6056 | 0.3773 | 0.1945 | |
Sanjiangyuan Region (Qinghai, western China) | ViT | 4.8069 | 1.1513 | 0.1533 | 0.0000 | – | 0.1895 | 0.0000 | – |
TransMamba | 4.2796 | 1.0007 | 0.2137 | 0.0141 | – | 0.2780 | 0.0142 | – |
Region | Model | MSE ↓ | MAE ↓ | TS Score ↑ | POD ↑ | ||||
---|---|---|---|---|---|---|---|---|---|
≥10 | ≥25 | ≥50 | ≥10 | ≥25 | ≥50 | ||||
Southeastern China and Adjacent Marine Areas | TransMamba | 70.6951 | 3.9924 | 0.4583 | 0.2945 | 0.1582 | 0.6056 | 0.3773 | 0.1945 |
M-CNN | 73.0374 | 4.1179 | 0.4430 | 0.2246 | 0.1088 | 0.5770 | 0.2644 | 0.1199 | |
TransMambaCNN | 70.2023 | 4.2595 | 0.4675 | 0.3083 | 0.1750 | 0.6566 | 0.4212 | 0.2199 | |
Sanjiangyuan Region (Qinghai, western China) | TransMamba | 4.2796 | 1.0007 | 0.2137 | 0.0141 | – | 0.2780 | 0.0142 | – |
M-CNN | 4.3514 | 1.0325 | 0.2085 | 0.0085 | – | 0.2661 | 0.0087 | – | |
TransMambaCNN | 4.3214 | 0.9896 | 0.2149 | 0.0193 | – | 0.2796 | 0.0197 | – |
Region | TS ↑ | POD ↑ | |||||
---|---|---|---|---|---|---|---|
6 ≥ i ≥ 1 | ≥10 | ≥25 | ≥50 | ≥10 | ≥25 | ≥50 | |
Southeastern China and Marine Areas | 0.4594 | 0.2940 | 0.1608 | 0.6138 | 0.3795 | 0.1916 | |
0.4520 | 0.2451 | 0.1205 | 0.5952 | 0.2879 | 0.1328 | ||
0.4539 | 0.2576 | 0.1448 | 0.6017 | 0.3122 | 0.1640 | ||
0.4620 | 0.2781 | 0.1593 | 0.6121 | 0.3525 | 0.1915 | ||
0.4730 | 0.3079 | 0.1435 | 0.6596 | 0.3983 | 0.1652 | ||
0.4547 | 0.2646 | 0.1583 | 0.6056 | 0.3278 | 0.1854 | ||
0.4675 | 0.3083 | 0.1750 | 0.6566 | 0.4212 | 0.2199 | ||
0.4620 | 0.2937 | 0.1682 | 0.6197 | 0.3814 | 0.2017 | ||
0.4614 | 0.2943 | 0.1584 | 0.6193 | 0.3802 | 0.1900 | ||
0.4544 | 0.2793 | 0.1492 | 0.6064 | 0.3536 | 0.1754 | ||
0.4454 | 0.2301 | 0.1297 | 0.5764 | 0.2715 | 0.1443 | ||
Sanjiangyuan Region (Qinghai, China) | 0.2198 | 0.0084 | – | 0.2944 | 0.0087 | – | |
0.2104 | 0.0023 | – | 0.2736 | 0.0024 | – | ||
0.2149 | 0.0193 | – | 0.2796 | 0.0197 | – | ||
0.1979 | 0.0008 | – | 0.2493 | 0.0008 | – | ||
0.2137 | 0.0144 | – | 0.2809 | 0.0149 | – | ||
0.2033 | 0.0061 | – | 0.2644 | 0.0063 | – | ||
0.2103 | 0.0123 | – | 0.2698 | 0.0126 | – | ||
0.2134 | 0.0069 | – | 0.2780 | 0.0071 | – | ||
0.2110 | 0.0100 | – | 0.2724 | 0.0102 | – | ||
0.2110 | 0.0098 | – | 0.2778 | 0.0102 | – | ||
0.2125 | 0.0023 | – | 0.2792 | 0.0024 | – |
Region | Stacking Integration Unit = N | Parameters (M) | FLOPs (T) | TS ↑ | POD ↑ | ||||
---|---|---|---|---|---|---|---|---|---|
≥10 | ≥25 | ≥50 | ≥10 | ≥25 | ≥50 | ||||
Southeastern China and Marine Areas | N = 3 | 23.896 | 0.31 | 0.4592 | 0.2947 | 0.1523 | 0.6079 | 0.3762 | 0.1839 |
N = 4 | 25.414 | 0.358 | 0.4665 | 0.2850 | 0.1412 | 0.6376 | 0.3702 | 0.1652 | |
N = 5 | 26.932 | 0.406 | 0.4675 | 0.3083 | 0.1750 | 0.6566 | 0.4212 | 0.2199 | |
N = 6 | 28.45 | 0.455 | 0.4464 | 0.2590 | 0.1246 | 0.5904 | 0.3221 | 0.1414 | |
Sanjiangyuan Region (Qinghai, China) | N = 3 | 23.899 | 0.174 | 0.2135 | 0.0061 | – | 0.2776 | 0.0063 | – |
N = 4 | 25.417 | 0.202 | 0.1991 | 0.0062 | – | 0.2514 | 0.0063 | – | |
N = 5 | 26.935 | 0.229 | 0.2149 | 0.0193 | – | 0.2796 | 0.0197 | – | |
N = 6 | 28.452 | 0.256 | 0.2009 | 0.0250 | – | 0.2536 | 0.0260 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, K.; Zhang, G.; Wang, X. TransMambaCNN: A Spatiotemporal Transformer Network Fusing State-Space Models and CNNs for Short-Term Precipitation Forecasting. Remote Sens. 2025, 17, 3200. https://doi.org/10.3390/rs17183200
Zhang K, Zhang G, Wang X. TransMambaCNN: A Spatiotemporal Transformer Network Fusing State-Space Models and CNNs for Short-Term Precipitation Forecasting. Remote Sensing. 2025; 17(18):3200. https://doi.org/10.3390/rs17183200
Chicago/Turabian StyleZhang, Kai, Guojing Zhang, and Xiaoying Wang. 2025. "TransMambaCNN: A Spatiotemporal Transformer Network Fusing State-Space Models and CNNs for Short-Term Precipitation Forecasting" Remote Sensing 17, no. 18: 3200. https://doi.org/10.3390/rs17183200
APA StyleZhang, K., Zhang, G., & Wang, X. (2025). TransMambaCNN: A Spatiotemporal Transformer Network Fusing State-Space Models and CNNs for Short-Term Precipitation Forecasting. Remote Sensing, 17(18), 3200. https://doi.org/10.3390/rs17183200