Identifying and Characterizing Dust-Induced Cirrus Clouds by Synergic Use of Satellite Data
Abstract
Highlights
- An algorithm was developed to identify dust-induced cirrus clouds using long-term observational data from the CALIPSO satellite. This method provides a systematic way to identify occurrences of these clouds.
- Dust-induced cirrus clouds are thicker, form at higher altitudes, and are more frequent in the studied regions of the Aral Sea and the Iberian Peninsula. Their prevalence in the Aral Sea peaks in spring, correlating with high dust concentrations.
- The research provides methodological advancements for detecting dust-induced cirrus clouds and offers a statistical basis for understanding how mineral dust influences their formation and frequency.
- The findings enhance our understanding of the interaction between mineral dust and cloud microphysics, which has important implications for improving global climate modeling and weather forecasting by integrating a dust–cloud feedback mechanism.
Abstract
1. Introduction
2. Materials and Methods
2.1. Datasets
2.1.1. CALIOP
2.1.2. DARDAR-Nice
2.2. Analysis Method
- Horizontal threshold: we tested a “low-restricted” scenario requiring only one adjacent dust cell (1 km) and a “restricted” scenario requiring four adjacent cells (4 km) compared to the original two-cell (2 km) requirement.
- Vertical threshold: we tested a “low-restricted” scenario of 10 adjacent cells (~0.6 km) and a “restricted” scenario of 34 cells (~2 km) compared to the original 17-cell (~1 km) requirement.
2.2.1. Analyzing Cloud Properties
2.3. Case Studies
2.3.1. Central Asia—Aral Sea Region
Process of Cross-Validation
- (1)
- (2)
- (3)
2.3.2. Iberian Peninsula
3. Results
3.1. Aral Sea
3.2. Iberian Peninsula
3.2.1. Sensitivity Analysis
3.2.2. Different Properties of Dust-Induced and Normal Cirrus Clouds
3.2.3. Statistical Comparison of Cirrus Cloud Properties
4. Discussion
4.1. Prevalence and Regionality of Dust-Induced Cirrus Clouds
4.2. Different Properties of Two Types of Cirrus Clouds
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Josset, D.; Pelon, J.; Garnier, A.; Hu, Y.; Vaughan, M.; Zhai, P.; Kuehn, R.; Lucker, P. Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo. J. Geophys. Res. Atmos. 2012, 117, 5207. [Google Scholar] [CrossRef]
- Liou, K.-N. Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective. Mon. Weather. Rev. 1986, 114, 1167–1199. [Google Scholar] [CrossRef]
- Yu, P.; Froyd, K.D.; Portmann, R.W.; Toon, O.B.; Freitas, S.R.; Bardeen, C.G.; Brock, C.; Fan, T.; Gao, R.; Katich, J.M.; et al. Efficient In-Cloud Removal of Aerosols by Deep Convection. Geophys. Res. Lett. 2019, 46, 1061–1069. [Google Scholar] [CrossRef]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817–9854. [Google Scholar] [CrossRef]
- Kärcher, B.; Lohmann, U. A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res. Atmos. 2002, 107, AAC 4-1–AAC 4-10. [Google Scholar] [CrossRef]
- Jensen, E.J.; Lawson, R.P.; Bergman, J.W.; Pfister, L.; Bui, T.P.; Schmitt, C.G. Physical processes controlling ice concentrations in synoptically forced, midlatitude cirrus. J. Geophys. Res. Atmos. 2013, 118, 5348–5360. [Google Scholar] [CrossRef]
- Hendricks, J.; KäRcher, B.; Lohmann, U.; Hendricks, J.; KäRcher, B.; Lohmann, U. Effects of ice nuclei on cirrus clouds in a global climate model. JGRD 2011, 116, D18206. [Google Scholar] [CrossRef]
- Kärcher, B.; DeMott, P.J.; Jensen, E.J.; Harrington, J.Y. Studies on the Competition Between Homogeneous and Heterogeneous Ice Nucleation in Cirrus Formation. J. Geophys. Res. Atmos. 2022, 127, e2021JD035805. [Google Scholar] [CrossRef]
- Spichtinger, P.; Cziczo, D.J. Impact of heterogeneous ice nuclei on homogeneous freezing events in cirrus clouds. J. Geophys. Res. Atmos. 2010, 115, 14208. [Google Scholar] [CrossRef]
- Kanji, Z.A.; Ladino, L.A.; Wex, H.; Boose, Y.; Burkert-Kohn, M.; Cziczo, D.J.; Krämer, M. Overview of Ice Nucleating Particles. Meteorol. Monogr. 2017, 58, 1.1–1.33. [Google Scholar] [CrossRef]
- Froyd, K.D.; Yu, P.; Schill, G.P.; Brock, C.A.; Kupc, A.; Williamson, C.J.; Jensen, E.J.; Ray, E.; Rosenlof, K.H.; Bian, H.; et al. Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements. Nat. Geosci. 2022, 15, 177–183. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, Y.; Midgley, P.M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1–1535. ISBN 978-1-107-05799-1. [Google Scholar]
- Cziczo, D.J.; Froyd, K.D.; Hoose, C.; Jensen, E.J.; Diao, M.; Zondlo, M.A.; Smith, J.B.; Twohy, C.H.; Murphy, D.M. Clarifying the dominant sources and mechanisms of cirrus cloud formation. Science 2013, 340, 1320–1324. [Google Scholar] [CrossRef]
- Twohy, C.H. Measurements of Saharan Dust in Convective Clouds over the Tropical Eastern Atlantic Ocean. J. Atmos. Sci. 2015, 72, 75–81. [Google Scholar] [CrossRef]
- Voudouri, K.A.; Giannakaki, E.; Komppula, M.; Balis, D. Variability in cirrus cloud properties using a PollyXT Raman lidar over high and tropical latitudes. Atmos. Chem. Phys. 2020, 20, 4427–4444. [Google Scholar] [CrossRef]
- Weger, M.; Heinold, B.; Engler, C.; Schumann, U.; Seifert, A.; Fößig, R.; Voigt, C.; Baars, H.; Blahak, U.; Borrmann, S.; et al. The impact of mineral dust on cloud formation during the Saharan dust event in April 2014 over Europe. Atmos. Chem. Phys. 2018, 18, 17545–17572. [Google Scholar] [CrossRef]
- Hermes, K.; Quinting, J.; Grams, C.M.; Hoose, C.; Hoshyaripour, G.A. Impact of Saharan dust outbreaks on short-range weather forecast errors in Europe. Q. J. R. Meteorol. Soc. 2024, 150, 1704–1723. [Google Scholar] [CrossRef]
- Seifert, A.; Bachmann, V.; Filipitsch, F.; Förstner, J.; Grams, C.; Hoshyaripour, G.A.; Quinting, J.; Rohde, A.; Vogel, H.; Wagner, A.; et al. Aerosol-cloud-radiation interaction during Saharan dust episodes: The dusty cirrus puzzle. Atmos. Chem. Phys. 2023, 23, 6409–6430. [Google Scholar] [CrossRef]
- Huck, R.; Bryant, R.G.; King, J. The (mis)identification of high-latitude dust events using remote sensing methods in the Yukon, Canada: A sub-daily variability analysis. Atmos. Chem. Phys. 2023, 23, 6299–6318. [Google Scholar] [CrossRef]
- Delanoë, J.; Hogan, R.J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds. J. Geophys. Res. Atmos. 2010, 115, D00H29. [Google Scholar] [CrossRef]
- Sourdeval, O.; Gryspeerdt, E.; Krämer, M.; Goren, T.; Delanoë, J.; Afchine, A.; Hemmer, F.; Quaas, J. Ice crystal number concentration estimates from lidar-radar satellite remote sensing—Part 1: Method and evaluation. Atmos. Chem. Phys. 2018, 18, 14327–14350. [Google Scholar] [CrossRef]
- Young, S.A.; Vaughan, M.A. The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder satellite observations (CALIPSO) data: Algorithm description. J. Atmos. Ocean. Technol. 2009, 26, 1105–1119. [Google Scholar] [CrossRef]
- Ansmann, A.; Mamouri, R.-E.; Bühl, J.; Seifert, P.; Engelmann, R.; Hofer, J.; Nisantzi, A.; Atkinson, J.D.; Kanji, Z.A.; Sierau, B.; et al. Ice-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust:a closure study. Atmos. Chem. Phys. 2019, 19, 15087–15115. [Google Scholar] [CrossRef]
- He, Y.; Yin, Z.; Liu, F.; Yi, F. Technical note: Identification of two ice-nucleating regimes for dust-related cirrus clouds based on the relationship between number concentrations of ice-nucleating particles and ice crystals. Atmos. Chem. Phys. 2022, 22, 13067–13085. [Google Scholar] [CrossRef]
- He, Y.; Yi, F.; Liu, F.; Yin, Z.; Zhou, J. Ice Nucleation of Cirrus Clouds Related to the Transported Dust Layer Observed by Ground-Based Lidars over Wuhan, China. Adv. Atmos. Sci. 2022, 39, 2071–2086. [Google Scholar] [CrossRef]
- Marinou, E.; Tesche, M.; Nenes, A.; Ansmann, A.; Schrod, J.; Mamali, D.; Tsekeri, A.; Pikridas, M.; Baars, H.; Engelmann, R.; et al. Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements. Atmos. Chem. Phys. 2019, 19, 11315–11342. [Google Scholar] [CrossRef]
- He, Y.; Yi, F.; Yi, Y.; Liu, F.; Zhang, Y. Heterogeneous Nucleation of Midlevel Cloud Layer Influenced by Transported Asian Dust Over Wuhan (30.5°N, 114.4°E), China. J. Geophys. Res. Atmos. 2021, 126, e2020JD033394. [Google Scholar] [CrossRef]
- Jeggle, K.; Neubauer, D.; Camps-Valls, G.; Lohmann, U. Understanding cirrus clouds using explainable machine learning. Environ. Data Sci. 2023, 2, e19. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, UK, 2020. [Google Scholar]
- Hollander, E.C.; Myles, H.; Wolfe, D.A. Nonparametric Statistical Methods, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; Volume 11, pp. 1–14. [Google Scholar]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 2-1–2-31. [Google Scholar] [CrossRef]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 1–36. [Google Scholar] [CrossRef]
- Ge, Y.; Wu, N.; Abuduwaili, J.; Kulmatov, R.; Issanova, G.; Saparov, G. Identifying Seasonal and Diurnal Variations and the Most Frequently Impacted Zone of Aerosols in the Aral Sea Region. Int. J. Environ. Res. Public Health 2022, 19, 14144. [Google Scholar] [CrossRef]
- Moradikian, S.; Moghim, S.; Hoshyaripour, G.A. Development of a dusty cirrus calendar based on satellite data. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Córdoba-Jabonero, C.; Lopes, F.J.; Landulfo, E.; Cuevas, E.; Ochoa, H.; Gil-Ojeda, M. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements. Atmos. Res. 2017, 183, 151–165. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Krämer, M.; Luebke, A.; Brown, P.; Cziczo, D.J.; Franklin, C.; Lawson, P.; Lohmann, U.; Mcfarquhar, G.; Mcfarquhar, Z.; et al. Chapter 2 Cirrus Clouds. Meteorol. Monogr. 2017, 58, 2.1–2.26. [Google Scholar] [CrossRef]
- Yorks, J.E.; Hlavka, D.L.; Hart, W.D.; Mcgill, M.J. Statistics of Cloud Optical Properties from Airborne Lidar Measurements. J. Atmos. Ocean. Technol. 2011, 28, 869–883. [Google Scholar] [CrossRef]
- Holton, J.R.; Curry, J.A.; Pyle, J.A. Encyclopedia of Atmospheric Sciences. Atmos. Res. 2003, 66, 315–319. [Google Scholar]
- Nellore, M.K.; Kannan, V.; Vellaisamy, A.L.R. A statistical method for determining optical and geometrical characteristics of cirrus clouds. Climate 2019, 7, 72. [Google Scholar] [CrossRef]
- Stull, R. Meteorology for Scientists and Engineers; The University of British Columbia: Vancouver, BC, Canada, 2005. [Google Scholar]
- Zhao, T.X.P.; Ackerman, S.; Guo, W. Dust and smoke detection for multi-channel imagers. Remote Sens. 2010, 2, 2347–2368. [Google Scholar] [CrossRef]
- Li, J.; Ge, X.; He, Q.; Abbas, A. Aerosol optical depth (AOD): Spatial and temporal variations and association with meteorological covariates in Taklimakan desert, China. PeerJ 2021, 9, e10542. [Google Scholar] [CrossRef]
- Payra, S.; Sharma, A.; Mishra, M.K.; Verma, S. Performance evaluation of MODIS and VIIRS satellite AOD products over the Indian subcontinent. Front. Environ. Sci. 2023, 11, 1158641. [Google Scholar] [CrossRef]
- Guerrero-Rascado, J.L.; Ruiz, B.; Alados-Arboledas, L. Multi-spectral Lidar characterization of the vertical structure of Saharan dust aerosol over southern Spain. Atmos. Environ. 2008, 42, 2668–2681. [Google Scholar] [CrossRef]
- Lyamani, H.; Olmo, F.J.; Alados-Arboledas, L. Saharan dust outbreak over southeastern Spain as detected by sun photometer. Atmos. Environ. 2005, 39, 7276–7284. [Google Scholar] [CrossRef]
- Córdoba-Jabonero, C.; Sorribas, M.; Guerrero-Rascado, J.L.; Adame, J.A.; Hernández, Y.; Lyamani, H.; Cachorro, V.; Gil, M.; Alados-Arboledas, L.; Cuevas, E.; et al. Synergetic monitoring of Saharan dust plumes and potential impact on surface: A case study of dust transport from Canary Islands to Iberian Peninsula. Atmos. Chem. Phys. 2011, 11, 3067–3091. [Google Scholar] [CrossRef]
- Maciel, F.V.; Diao, M.; Patnaude, R. Examination of aerosol indirect effects during cirrus cloud evolution. Atmos. Chem. Phys. 2023, 23, 1103–1129. [Google Scholar] [CrossRef]
- Wang, W.; Yi, F.; Liu, F.; Zhang, Y.; Yu, C.; Yin, Z. Characteristics and seasonal variations of cirrus clouds from polarization lidar observations at a 30◦N plain site. Remote Sens. 2020, 12, 3998. [Google Scholar] [CrossRef]
- Krämer, M.; Rolf, C.; Team, C.G.I. A microphysics guide to cirrus—Part 2: Climatologies of clouds and humidity from observations. Atmos. Chem. Phys. 2020, 20, 12569–12608. [Google Scholar] [CrossRef]
- Diaz, J.P.; González, A.; Expósito, F.J.; Pérez, J.C.; Fernández, J.; García-Díez, M.; Taima, D. WRF multi-physics simulation of clouds in the African region. Q. J. R. Meteorol. Soc. 2015, 141, 2737–2749. [Google Scholar] [CrossRef]
- Mace, G.G.; Zhang, Q.; Vaughan, M.; Marchand, R.; Stephens, G.; Trepte, C.; Winker, D. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data. J. Geophys. Res. Atmos. 2009, 114, D00A26. [Google Scholar] [CrossRef]
- Gasparini, B.; Lohmann, U. Why cirrus cloud seeding cannot substantially cool the planet. J. Geophys. Res. 2016, 121, 4877–4893. [Google Scholar] [CrossRef]
- DeMott, P.J.; Prenni, A.J.; Liu, X.; Kreidenweis, S.M.; Petters, M.D.; Twohy, C.H.; Richardson, M.S.; Eidhammer, T.; Rogers, D.C. Predicting global atmospheric ice nuclei distributions and their impacts on climate. Proc. Natl. Acad. Sci. USA 2010, 107, 11217–11222. [Google Scholar] [CrossRef] [PubMed]
Year | Number of Cirrus Cloud Events in Calendar | Number of Cirrus Events in the Jeggle Dataset | Number of Events in Common |
---|---|---|---|
2007 | 133 | 117 | 114 |
2008 | 135 | 113 | 109 |
2009 | 124 | 97 | 92 |
Summation | 392 | 327 | 315 |
Scenario | Threshold | 2007 | 2008 | 2009 | Total Number of Dust-Induced Cirrus Clouds | Fraction of Dust-Induced Cirrus Clouds to Total Number of Cirrus Cloud Cases (For All Three Years) |
---|---|---|---|---|---|---|
Original | 2 km horizontal/1 km vertical | 86 | 87 | 73 | 246 | 62.80% |
Horizontal change | Low-restricted: 1 km horizontal/1 km vertical | 104 | 107 | 93 | 304 | 77.60% |
Restricted: 4 km horizontal/ 1 km vertical | 84 | 87 | 72 | 243 | 62.00% | |
Vertical change | Low-restricted: 2 km horizontal/~0.6 km vertical | 95 | 96 | 81 | 272 | 69.40% |
Restricted: 2 km horizontal/ ~2 km vertical | 82 | 75 | 65 | 222 | 56.60% |
Variable | Cloud Thickness | Distance from Cloud Top | Altitude of Cloud Layer | Cloud Cover Fraction | Ice Water Content (IWC) | Ice Crystal Number Concentration (>5 µm) | Effective Radius |
---|---|---|---|---|---|---|---|
p-value | <0.001 | <0.001 | 0.003 | <0.001 | 0.253 | 0.66 | 0.435 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradikian, S.; Moghim, S.; Hoshyaripour, G.A. Identifying and Characterizing Dust-Induced Cirrus Clouds by Synergic Use of Satellite Data. Remote Sens. 2025, 17, 3176. https://doi.org/10.3390/rs17183176
Moradikian S, Moghim S, Hoshyaripour GA. Identifying and Characterizing Dust-Induced Cirrus Clouds by Synergic Use of Satellite Data. Remote Sensing. 2025; 17(18):3176. https://doi.org/10.3390/rs17183176
Chicago/Turabian StyleMoradikian, Samaneh, Sanaz Moghim, and Gholam Ali Hoshyaripour. 2025. "Identifying and Characterizing Dust-Induced Cirrus Clouds by Synergic Use of Satellite Data" Remote Sensing 17, no. 18: 3176. https://doi.org/10.3390/rs17183176
APA StyleMoradikian, S., Moghim, S., & Hoshyaripour, G. A. (2025). Identifying and Characterizing Dust-Induced Cirrus Clouds by Synergic Use of Satellite Data. Remote Sensing, 17(18), 3176. https://doi.org/10.3390/rs17183176