RUSH: Rapid Remote Sensing Updates of Land Cover for Storm and Hurricane Forecast Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Developing the Vegetation Classification Model
2.2.1. Land Cover Classes
2.2.2. Planet Satellite Imagery
2.2.3. Reference Data
2.2.4. Model Training and Testing
2.2.5. Random Forest Model Description
2.2.6. Building a Year-Round Model
2.2.7. Model Selection by Region and Season
2.3. Software Components
2.4. Hurricane Impact Case Study
3. Results
3.1. Model Accuracy and Variable Importance Assessments
3.2. Final Map Products
3.3. Hurricane Impact Case Study
4. Discussion
4.1. Remote Sensing Model Performance
4.2. Software Development Road Map and Next Steps
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RUSH | Rapid Remote Sensing Updates of Land Cover for Storm and Hurricane Forecasts |
GUI | Graphical User Interface |
MHHW | Mean Higher High Water Level |
Hs | Significant Wave Height |
NOAA | National Oceanographic and Atmospheric Administration |
C-CAP | Coastal Change Analysis Program |
COAWST | Coupled-Ocean-Atmosphere-Wave-Sediment Transport Modeling System |
SFINCS | Super-Fast INundation of CoastS |
NLCD | National Land Cover Database |
NAIP | Agriculture’s National Agriculture Imagery Program |
AOI | Area of Interest |
PSB.SD | Planetscope SuperDove |
NIR | Near-Infrared |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
WDRVI2 | Wide Dynamic Range Vegetation Index |
WDRVI5 | Wide Dynamic Range Vegetation Index |
SR | Simple Ratio |
DVI | Difference Vegetation Index |
GDVI | Green Difference Vegetation Index |
GNDVI | Green Normalized Difference Vegetation Index |
GRVI | Green Ratio Vegetation Index |
IPVI | Infrared Percentage Vegetation Index |
TBVI81 | Two-Band Vegetation Index (band 8, band 1) |
TBVI82 | Two-Band Vegetation Index (band 8, band 2) |
TBVI41 | Two-Band Vegetation Index (band 4, band 1) |
TBVI64 | Two-Band Vegetation Index (band 6, band 4) |
NDCI | Normalized Difference Chlorophyll Index |
GEE | Google Earth Engine |
AWS | Amazon Web Services |
UX | User Experience |
NOPP | National Oceanographic Partnership Program |
NHCI | Hurricane Coastal Impacts |
CRS | Coordinate Reference System |
COG | Cloud-Optimized GeoTIFF |
Appendix A. Developing a Flexible Software Interface
Appendix B. RUSH Tool Modules
Appendix C. Regional Accuracy Assessment Tables
Florida Warm Season Model Accuracy | Open Water | Emergent Wetlands | Dune Grass | Woody Wetlands | Bare Ground | ||
Prediction/truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 50 | 0 | 0 | 0 | 0 | 50 | 100% |
2 | 0 | 25 | 4 | 2 | 0 | 31 | 81% |
3 | 0 | 0 | 25 | 0 | 1 | 26 | 96% |
4 | 0 | 1 | 0 | 40 | 0 | 41 | 98% |
5 | 0 | 0 | 0 | 0 | 31 | 31 | 100% |
Total | 50 | 26 | 29 | 42 | 32 | 179 | |
Producer’s accuracy | 100% | 96% | 86% | 95% | 97% | Overall Accuracy 96% |
Florida Cool Season Model Accuracy | Open Water | Emergent Wetlands | Dune Grass | Woody Wetlands | Bare Ground | ||
Prediction/truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 49 | 0 | 0 | 0 | 0 | 49 | 100% |
2 | 0 | 27 | 1 | 3 | 0 | 31 | 87% |
3 | 1 | 9 | 29 | 0 | 1 | 40 | 73% |
4 | 0 | 0 | 0 | 42 | 0 | 42 | 100% |
5 | 0 | 0 | 0 | 0 | 38 | 38 | 100% |
Total | 50 | 36 | 30 | 45 | 39 | 200 | |
Producer’s accuracy | 98% | 75% | 97% | 93% | 97% | Overall Accuracy 93% |
Louisiana Warm Season Model Accuracy | Open Water | Emergent Wetlands | Dune Grass | Woody Wetlands | Bare Ground | ||
Prediction/truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 52 | 0 | 0 | 0 | 0 | 52 | 100% |
2 | 1 | 51 | 0 | 3 | 0 | 55 | 93% |
3 | 0 | 0 | 24 | 0 | 5 | 29 | 83% |
4 | 0 | 5 | 0 | 28 | 0 | 33 | 85% |
5 | 1 | 0 | 5 | 1 | 31 | 38 | 82% |
Total | 54 | 56 | 29 | 32 | 36 | 207 | |
Producer’s accuracy | 96% | 91% | 83% | 88% | 86% | Overall Accuracy 90% |
Louisiana Cool Season Model Accuracy | Open Water | Emergent Wetlands | Dune Grass | Woody Wetlands | Bare Ground | ||
Prediction/truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 56 | 0 | 0 | 0 | 2 | 58 | 97% |
2 | 0 | 59 | 0 | 2 | 0 | 61 | 97% |
3 | 1 | 2 | 29 | 0 | 0 | 32.0 | 91% |
4 | 0 | 7 | 0 | 31 | 0 | 38 | 82% |
5 | 1 | 0 | 0 | 0 | 41 | 42 | 98% |
Total | 58.0 | 68.0 | 29.0 | 33.0 | 43.0 | 231 | |
Producer’s accuracy | 97% | 87% | 100% | 94% | 95% | Overall Accuracy: 94% |
North Carolina Warm Season Model Accuracy | Open Water | Emergent Wetlands | Dune Grass | Woody Wetlands | Bare Ground | ||
Prediction/truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 45 | 0 | 0 | 0 | 0 | 45 | 100% |
2 | 0 | 20 | 1 | 1 | 0 | 22 | 91% |
3 | 0 | 0 | 60 | 0 | 0 | 60 | 100% |
4 | 0 | 3 | 0 | 42 | 0 | 45 | 93% |
5 | 0 | 0 | 4 | 0 | 33 | 37 | 89% |
Total | 45 | 23 | 65 | 43 | 33 | 209 | |
Producer’s accuracy | 100% | 87% | 92% | 98% | 100% | Overall Accuracy 96% |
North Carolina Cool Season Model Accuracy | Open Water | Emergent Wetlands | Dune Grass | Woody Wetlands | Bare Ground | ||
Prediction/truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 48 | 2 | 0 | 0 | 3 | 53 | 91% |
2 | 1 | 22 | 0 | 2 | 0 | 25 | 88% |
3 | 0 | 0 | 68 | 0 | 2 | 70 | 97% |
4 | 0 | 3 | 0 | 42 | 0 | 45 | 93% |
5 | 0 | 0 | 7 | 0 | 35 | 42 | 83% |
Total | 49 | 27 | 75 | 44 | 40 | 235 | |
Producer’s accuracy | 98% | 81% | 91% | 95% | 88% | Overall Accuracy 91% | |
Appendix C. Cool Season and Warm Season models’ regional confusion matrices with user’s accuracy and producer’s accuracy for the state areas of interest in Florida, Louisiana, and North Carolina. |
References
- Radfar, S.; Moftakhari, H.; Moradkhani, H. Rapid Intensification of Tropical Cyclones in the Gulf of Mexico Is More Likely during Marine Heatwaves. Commun. Earth Environ. 2024, 5, 421. [Google Scholar] [CrossRef]
- Hagen, A.B.; Cangialosi, J.P.; Chenard, M.; Alaka, L.; Delgado, S. National Hurricane Center Tropical Cyclone Report; National Hurricane Center: Miami, FL, USA, 2024. [Google Scholar]
- Hegermiller, C.A.; Warner, J.C.; Olabarrieta, M.; Sherwood, C.R.; Kalra, T.S. Modeling of Barrier Breaching During Hurricanes Sandy and Matthew. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006307. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration National Centers for Environmental Information. Hurricane Costs. Available online: https://coast.noaa.gov/states/fast-facts/hurricane-costs.html (accessed on 8 September 2025).
- Passeri, D.L.; Long, J.W.; Plant, N.G.; Bilskie, M.V.; Hagen, S.C. The Influence of Bed Friction Variability Due to Land Cover on Storm-Driven Barrier Island Morphodynamics. Coast. Eng. 2018, 132, 82–94. [Google Scholar] [CrossRef]
- Schambach, L.; Grilli, A.R.; Grilli, S.T.; Hashemi, M.R.; King, J.W. Assessing the Impact of Extreme Storms on Barrier Beaches along the Atlantic Coastline: Application to the Southern Rhode Island Coast. Coast. Eng. 2018, 133, 26–42. [Google Scholar] [CrossRef]
- Zhu, Z.; Vuik, V.; Visser, P.J.; Soens, T.; Van Wesenbeeck, B.; Van De Koppel, J.; Jonkman, S.N.; Temmerman, S.; Bouma, T.J. Historic Storms and the Hidden Value of Coastal Wetlands for Nature-Based Flood Defence. Nat. Sustain. 2020, 3, 853–862. [Google Scholar] [CrossRef]
- Sherwood, C.R.; Van Dongeren, A.; Doyle, J.; Hegermiller, C.A.; Hsu, T.-J.; Kalra, T.S.; Olabarrieta, M.; Penko, A.M.; Rafati, Y.; Roelvink, D.; et al. Modeling the Morphodynamics of Coastal Responses to Extreme Events: What Shape Are We In? Annu. Rev. Mar. Sci. 2022, 14, 457–492. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration Coastal Land Cover Change Summary Report. 2024. Available online: https://Coast.Noaa.Gov/Data/Digitalcoast/Pdf/Landcover-Report-West-Coast.Pdf (accessed on 31 July 2025).
- De Vet, P.L.M.; Mccall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M. Modelling Dune Erosion, Overwash And Breaching At Fire Island (NY) During Hurricane Sandy. In The Proceedings of the Coastal Sediments 2015; World Scientific: San Diego, CA, USA, 2015. [Google Scholar]
- Mattocks, C.; Forbes, C. A Real-Time, Event-Triggered Storm Surge Forecasting System for the State of North Carolina. Ocean Model. 2008, 25, 95–119. [Google Scholar] [CrossRef]
- Van Der Lugt, M.A.; Quataert, E.; Van Dongeren, A.; Van Ormondt, M.; Sherwood, C.R. Morphodynamic Modeling of the Response of Two Barrier Islands to Atlantic Hurricane Forcing. Estuar. Coast. Shelf Sci. 2019, 229, 106404. [Google Scholar] [CrossRef]
- Wamsley, T.V.; Cialone, M.A.; Smith, J.M.; Atkinson, J.H.; Rosati, J.D. The Potential of Wetlands in Reducing Storm Surge. Ocean Eng. 2010, 37, 59–68. [Google Scholar] [CrossRef]
- Warner, J.C.; Armstrong, B.; He, R.; Zambon, J.B. Development of a Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) Modeling System. Ocean Model. 2010, 35, 230–244. [Google Scholar] [CrossRef]
- Roelvink, J.A.; van Banning, K.F.M. Design and Development of DELFT3D and Application to Coastal Morphodynamics. Oceanogr. Lit. Rev. 1994, 94, 451–456. [Google Scholar]
- Roelvink, D.; Reniers, A.; Van Dongeren, A.; van Thiel de Vries, J.; Lescinski, J.; McCall, R. XBeach Model Description and Manual; Unesco-IHE Institute for Water Education, Deltares and Delft University of Technology: Delft, The Netherlands, June 2010; Volume 21, p. 2. [Google Scholar]
- Leijnse, T.; Van Ormondt, M.; Nederhoff, K.; Van Dongeren, A. Modeling Compound Flooding in Coastal Systems Using a Computationally Efficient Reduced—Physics Solver: Including Fluvial, Pluvial, Tidal, Wind—And Wave-Driven Processes. Coast. Eng. 2021, 163, 103796. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration Digital Coast Announcing High-Resolution Land Cover for the Coast. Available online: https://Coast.Noaa.Gov/Data/Digitalcoast/Pdf/Ccap-Highres-Products-Explained.Pdf (accessed on 6 November 2024).
- Brown, C.F.; Brumby, S.P.; Guzder-Williams, B.; Birch, T.; Hyde, S.B.; Mazzariello, J.; Czerwinski, W.; Pasquarella, V.J.; Haertel, R.; Ilyushchenko, S.; et al. Dynamic World, Near Real-Time Global 10 m Land Use Land Cover Mapping. Sci. Data 2022, 9, 251. [Google Scholar] [CrossRef]
- Enwright, N.M.; SooHoo, W.M.; Dugas, J.L.; Conzelmann, C.P.; Laurenzano, C.; Lee, D.M.; Mouton, K.; Stelly, S.J. Louisiana Barrier Island Comprehensive Monitoring Program: Mapping Habitats in Beach, Dune, and Intertidal Environments Along the Louisiana Gulf of Mexico Shoreline, 2008 and 2015–16; Open-File Report; US Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Planet Labs Planet Imagery Product Specifications. 2023. Available online: https://Pubs.Usgs.Gov/of/2021/1030/f/Ofr20211030f.Pdf (accessed on 24 March 2025).
- Louisiana Coastal Protection and Restoration Authority Coastal Information Management System (CIMS). Available online: https://Cims.Coastal.Louisiana.Gov/ (accessed on 24 March 2025).
- Ritchie, A.C.; Over, J.R.; Kranenburg, C.J.; Brown, J.A.; Buscombe, D.D.; Sherwood, C.R.; Warrick, J.A.; Wernette, P.A. Aerial Photogrammetry Data and Products of the North Carolina Coast. 2022. Available online: https://www.Usgs.Gov/Data/Aerial-Photogrammetry-Data-and-Products-North-Carolina-Coast (accessed on 28 August 2023).
- Nyman, J.A.; Reid, C.S.; Sasser, C.E.; Linscombe, J.; Hartley, S.B.; Couvillion, B.R.; Villani, R.K. Vegetation Types in Coastal Louisiana in 2021 (Ver. 2.0, April 2023); US Geological Survey: Reston, VA, USA, 2022. [Google Scholar]
- Couvillion, B.R.; Beck, H.; Schoolmaster, D.; Fischer, M. Land Area Change in Coastal Louisiana (1932 to 2016); Scientific Investigations Map; US Geological Survey: Reston, VA, USA, 2017. [Google Scholar]
- Byrne, M.J. Monitoring Storm Tide from Hurricane Michael along the Northwest Coast of Florida, October 2018; Open-File Report; US Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Nifosi, J.M. Sand-Flower. Available online: https://www.usgs.gov/media/images/sand-flower (accessed on 6 August 2025).
- U.S. Geological Survey Coastal Wetlands Near Port Fourchon, La., Northern Gulf of Mexico. Available online: https://www.usgs.gov/media/images/coastal-wetlands-near-port-fourchon-la-northern-gulf-mexico (accessed on 6 August 2025).
- Vargas-Babilonia, P. Elevation Data Collected on a Beach. Available online: https://www.usgs.gov/media/images/elevation-data-collected-a-beach (accessed on 6 August 2025).
- Sutton-Grier, A.E. Coastal Marsh in Louisiana. Available online: https://www.usgs.gov/media/images/coastal-marsh-louisiana (accessed on 6 August 2025).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS Symposium; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Gao, B. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Jackson, T. Vegetation Water Content Mapping Using Landsat Data Derived Normalized Difference Water Index for Corn and Soybeans. Remote Sens. Environ. 2004, 92, 475–482. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Sripada, R.P. Determining In-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography. Ph.D. Thesis, North Carolina State University, Raleigh, NC, USA, 2005. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N. Remote Sensing of Chlorophyll Concentration in Higher Plant Leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Sripada, R.P.; Heiniger, R.W.; White, J.G.; Meijer, A.D. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Crippen, R. Calculating the Vegetation Index Faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Van Der Meer, B. Accuracy Assessments of Hyperspectral Waveband Performance for Vegetation Analysis Applications. Remote Sens. Environ. 2004, 91, 354–376. [Google Scholar] [CrossRef]
- Pandala, S.R. Lazypredict. 2019. Available online: https://Lazypredict.Readthedocs.Io/En/Latest/ (accessed on 7 March 2025).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Varoquaux, G. Joblib. 2009. Available online: https://Joblib.Readthedocs.Io/En/Stable/ (accessed on 7 March 2025).
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Mo, Y.; Momen, B.; Kearney, M.S. Quantifying Moderate Resolution Remote Sensing Phenology of Louisiana Coastal Marshes. Ecol. Model. 2015, 312, 191–199. [Google Scholar] [CrossRef]
- Stagg, C.L.; Schoolmaster, D.R.; Piazza, S.C.; Snedden, G.; Steyer, G.D.; Fischenich, C.J.; McComas, R.W. A Landscape-Scale Assessment of Above- and Belowground Primary Production in Coastal Wetlands: Implications for Climate Change-Induced Community Shifts. Estuaries Coasts 2017, 40, 856–879. [Google Scholar] [CrossRef]
- Van Rossum, G.; Drake, F.L. Python Reference Manual; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Kluyver, T.; Ragan-Kelley, B.; Perez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. A Publishing Format for Reproducible Computational Workflows. In Positioning and Power in Academic Publishing: Players, Agents and Agendas; IOS Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Chak, W.C.; Kristin, B.B.; Nicholas, M.E.; Daniel, D.B.; Dean, B.G. RUSH: Rapid Remote Sensing Updates of Landcover for Storm and Hurricane Forecasts (Version 1.0.0); U.S. Geological Survey: Moffett Field, CA, USA, 2024. [Google Scholar]
- Lundh, F. An Introduction to Tkinter. 1999. Available online: https://Docs.Python.Org/3/Library/Tkinter.Html (accessed on 7 March 2025).
- Shen, J.; Murray-Tuite, P.; Wernstedt, K.; Guikema, S. Estimating Pre-Impact and Post-Impact Evacuation Behaviors—An Empirical Study of Hurricane Ida in Coastal Louisiana and Mississippi. J. Transp. Geogr. 2024, 118, 103925. [Google Scholar] [CrossRef]
- Yao, Q.; Cohen, M.C.L.; Liu, K.; De Souza, A.V.; Rodrigues, E. Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta. Remote Sens. 2022, 14, 2598. [Google Scholar] [CrossRef]
- Oades, E.M.; Mulligan, R.P.; Palmsten, M.L. Evaluation of Nearshore Bathymetric Inversion Algorithms Using Camera Observations and Synthetic Numerical Input of Surface Waves during Storms. Coast. Eng. 2023, 184, 104338. [Google Scholar] [CrossRef]
- Stockdonf, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A. Estimation of Shoreline Position and Change Using Airborne Topographic Lidar Data. J. Coast. Res. 2002, 18, 502–513. [Google Scholar]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The Future of Coastal Monitoring through Satellite Remote Sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
- Miller, G.J.; Dronova, I.; Oikawa, P.Y.; Knox, S.H.; Windham-Myers, L.; Shahan, J.; Stuart-Haëntjens, E. The Potential of Satellite Remote Sensing Time Series to Uncover Wetland Phenology under Unique Challenges of Tidal Setting. Remote Sens. 2021, 13, 3589. [Google Scholar] [CrossRef]
- Stagg, C.L.; Osland, M.J.; Moon, J.A.; Hall, C.T.; Feher, L.C.; Jones, W.R.; Couvillion, B.R.; Hartley, S.B.; Vervaeke, W.C. Quantifying Hydrologic Controls on Local- and Landscape-Scale Indicators of Coastal Wetland Loss. Ann. Bot. 2019, 2, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-Enabled Python Toolkit to Extract Shorelines from Publicly Available Satellite Imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Fitzpatrick, S.; Buscombe, D.; Warrick, J.A.; Lundine, M.A.; Vos, K. CoastSeg: An Accessible and Extendable Hub Forsatellite-Derived-Shoreline (SDS) Detection and Mapping. J. Open Source Softw. 2024, 9, 6683. [Google Scholar] [CrossRef]
- Graffin, M.; Taherkhani, M.; Leung, M.; Vitousek, S.; Kaminsky, G.; Ruggiero, P. Monitoring Interdecadal Coastal Change along Dissipative Beaches via Satellite Imagery at Regional Scale. Camb. Prism. Coast. Futures 2023, 1, e42. [Google Scholar] [CrossRef]
- Byrd, K.B.; Ballanti, L.; Thomas, N.; Nguyen, D.; Holmquist, J.R.; Simard, M.; Windham-Myers, L. A Remote Sensing-Based Model of Tidal Marsh Aboveground Carbon Stocks for the Conterminous United States. ISPRS J. Photogramm. Remote Sens. 2018, 139, 255–271, Erratum in ISPRS J. Photogramm. Remote Sens. 2020, 166, 63–67. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Biging, G.S.; Larrieu, M.R. Estimation of Forest Leaf Area Index Using Vegetation Indices Derived from Hyperion Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef]
- Holman, F.; Riche, A.; Michalski, A.; Castle, M.; Wooster, M.; Hawkesford, M. High Throughput Field Phenotyping of Wheat Plant Height and Growth Rate in Field Plot Trials Using UAV Based Remote Sensing. Remote Sens. 2016, 8, 1031. [Google Scholar] [CrossRef]
- Coffer, M.M.; Schaeffer, B.A.; Zimmerman, R.C.; Hill, V.; Li, J.; Islam, K.A.; Whitman, P.J. Performance across WorldView-2 and RapidEye for Reproducible Seagrass Mapping. Remote Sens. Environ. 2020, 250, 112036. [Google Scholar] [CrossRef]
- Islam, K.A.; Hill, V.; Schaeffer, B.; Zimmerman, R.; Li, J. Semi-Supervised Adversarial Domain Adaptation for Seagrass Detection Using Multispectral Images in Coastal Areas. Data Sci. Eng. 2020, 5, 111–125. [Google Scholar] [CrossRef]
- Arribas-Bel, D. Contextily 2016. Available online: https://github.com/geopandas/contextily (accessed on 7 March 2025).
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Gillies, S. Shapely: Manipulation and Analysis of Geometric Objects. 2007. Available online: https://Github.Com/Toblerity/Shapely (accessed on 7 March 2025).
- Jordahl, K.; Van den Bossche, J.; Fleischmann, M.; Wasserman, J.; McBride, J.; Gerard, J.; Tratner, J.; Perry, M.; Badaracco, A.G.; Farmer, C.; et al. Geopandas. 2014. Available online: https://zenodo.org/records/3946761 (accessed on 7 March 2025).
- Alireza, J. Area 2015. Available online: https://github.com/scisco/area (accessed on 7 March 2025).
NAIP | Planet SuperDove Cool Season Model | Planet SuperDove Warm Season Model | |
---|---|---|---|
North Carolina | 16 May 2020, 18 October 2020 | April 2020 to May 2020 | July 2020 to September 2020 |
Florida | 9 January 2022, 17 January 2022, 23 January 2022, 29 January 2022 | January 2022 | September 2022 |
Louisiana | 15 November 2021, 16 November 2021, 15 November 2021, 23 November 2021, 29 November 2021, 30 November 2021, 1 December 2021, 2 December 2021, 3 January 2022, 22 January 2022, 18 January 2022, 22 January 2022, 23 January 2022, 30 January 2022 | November 2021 | September 2022 |
Vegetation Index | Formula | References |
---|---|---|
NDVI (Normalized Difference Vegetation Index) | (B8 − B6)/(B8 + B6) | [31] |
NDWI (Normalized Difference Water Index) | (B4 − B8)/(B4 + B8) | [32,33] |
WDRVI2 (Wide Dynamic Range Vegetation Index) | (0.2 × B8 − B6)/(B8 + B6) | [34] |
WDRVI5 (Wide Dynamic Range Vegetation Index) | (0.5 × B8 − B6)/(B8 + B6) | [34] |
SR (Simple Ratio) | B8/B6 | [35] |
DVI (Difference Vegetation Index) | B8 − B6 | [36] |
GDVI (Green Difference Vegetation Index) | B8 − B4 | [37] |
GNDVI (Green Normalized Difference Vegetation Index) | (B8 − B4)/(B8 + B4) | [38] |
GRVI (Green Ratio Vegetation Index) | B8/B4 | [39] |
IPVI (Infrared Percentage Vegetation Index) | B8/(B8 + B6) | [40] |
TBVI81 (two-band vegetation index) | (B8 − B1)/(B8 + B1) | [41] |
TBVI82 (two-band vegetation index) | (B8 − B2)/B8 + B2) | [41] |
TBVI41 (two-band vegetation index) | (B4 − B1)/(B4 + B1) | [41] |
TBVI64 (two-band vegetation index) | (B6 − B4)/(B6 + B4) | [41] |
NDCI (Normalized Difference Chlorophyll Index) | (B7 − B6)/(B7 + B6) | [41] |
(a) | |||||||
Cool Season Model | Open Water | Emergent Wetlands | Dune Grass | Woody | Bare Ground | ||
Rows: Prediction/ Columns: truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 153 | 2 | 0 | 0 | 5 | 160 | 96% |
2 | 1 | 108 | 1 | 7 | 0 | 117 | 92% |
3 | 2 | 11 | 126 | 0 | 3 | 142 | 89% |
4 | 0 | 10 | 0 | 115 | 0 | 125 | 92% |
5 | 1 | 0 | 7 | 0 | 114 | 122 | 93% |
Total | 157 | 131 | 134 | 122 | 122 | 666 | |
Producer’s accuracy | 97% | 82% | 94% | 94% | 93% | Overall accuracy: 92% | |
(b) | |||||||
Warm Season Model | Open Water | Emergent Wetlands | Dune Grass | Woody | Bare Ground | ||
Rows: Prediction/ Columns: truth | 1 | 2 | 3 | 4 | 5 | Total | User’s accuracy |
1 | 147 | 0 | 0 | 0 | 0 | 147 | 100% |
2 | 1 | 96 | 5 | 6 | 0 | 108 | 89% |
3 | 0 | 0 | 109 | 0 | 6 | 115 | 95% |
4 | 0 | 9 | 0 | 110 | 0 | 119 | 92% |
5 | 1 | 0 | 9 | 1 | 95 | 106 | 90% |
Total | 149 | 105 | 123 | 117 | 101 | 595 | |
Producer’s accuracy | 99% | 91% | 89% | 94% | 94% | Overall accuracy: 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheang, C.W.; Byrd, K.B.; Enwright, N.M.; Buscombe, D.D.; Sherwood, C.R.; Gesch, D.B. RUSH: Rapid Remote Sensing Updates of Land Cover for Storm and Hurricane Forecast Models. Remote Sens. 2025, 17, 3165. https://doi.org/10.3390/rs17183165
Cheang CW, Byrd KB, Enwright NM, Buscombe DD, Sherwood CR, Gesch DB. RUSH: Rapid Remote Sensing Updates of Land Cover for Storm and Hurricane Forecast Models. Remote Sensing. 2025; 17(18):3165. https://doi.org/10.3390/rs17183165
Chicago/Turabian StyleCheang, Chak Wa (Winston), Kristin B. Byrd, Nicholas M. Enwright, Daniel D. Buscombe, Christopher R. Sherwood, and Dean B. Gesch. 2025. "RUSH: Rapid Remote Sensing Updates of Land Cover for Storm and Hurricane Forecast Models" Remote Sensing 17, no. 18: 3165. https://doi.org/10.3390/rs17183165
APA StyleCheang, C. W., Byrd, K. B., Enwright, N. M., Buscombe, D. D., Sherwood, C. R., & Gesch, D. B. (2025). RUSH: Rapid Remote Sensing Updates of Land Cover for Storm and Hurricane Forecast Models. Remote Sensing, 17(18), 3165. https://doi.org/10.3390/rs17183165