A Spectral Mode Reconstruction Method for Floating Target Detection Under Strong Sea Clutter Conditions
Abstract
Highlights
- A spectral mode reconstruction method is proposed that identifies target modes using an adaptive selection criterion based on the target Doppler shift and the statistical spectral characteristics of sea clutter.
- Relative feature gain is proposed as an evaluation method to select effective features in reconstructed signals.
- The proposed method overcomes the limitations of conventional methods that struggle with accurate mode identification and selection.
- It provides a solution for detecting low-speed floating targets under strong sea clutter by effectively suppressing sea clutter and enhancing target components.
Abstract
1. Introduction
2. Application Scenario and Theoretical Foundation
2.1. Low-Speed Buoy Targets in Strong Sea Clutter
2.2. Principle of Variational Mode Decomposition
2.3. Multi-Domain Feature Extraction Methods
3. Spectral Mode Reconstruction Method and Evaluation Framework
3.1. Adaptive Selection Criterion for Target Frequency Intervals
3.2. Relative Feature Gain and Feature Detection Evaluation
4. Experimental Data Sources and Parameter Settings
5. Experimental Results and Analysis
5.1. Results and Analysis of Mode Decomposition and Reconstruction
5.2. Feature Extraction and Selection for Reconstructed Signals
5.3. Determining the Optimal Processing Segment Length
5.4. Feature Detection Results and Evaluation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Serafino, F.; Bianco, A. X-Band Radar Detection of Small Garbage Islands in Different Sea State Conditions. Remote Sens. 2024, 16, 2101. [Google Scholar] [CrossRef]
- Feintuch, S.; Permuter, H.H.; Bilik, I.; Tabrikian, J. Neural network-based multitarget detection within correlated heavy-tailed clutter. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 5684–5698. [Google Scholar] [CrossRef]
- Wu, H.; Guo, H.; Wang, Z.; He, Z. Rao and Wald tests in nonzero-mean non-Gaussian sea clutter. Remote Sens. 2025, 17, 1696. [Google Scholar] [CrossRef]
- Wen, B.; Lu, Z.; Zhou, B.; Mao, Y. Background clutter modeling of spatio-temporal sea clutter suppression for low grazing angle X-Band marine radar. In Proceedings of the OCEANS 2024, Halifax, NS, Canada, 23–26 September 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Wen, B.; Wei, Y.; Lu, Z. Sea clutter suppression and target detection algorithm of marine radar image sequence based on spatio-temporal domain joint filtering. Entropy 2022, 24, 250. [Google Scholar] [CrossRef]
- Huang, P.; Yang, H.; Xia, X.-G.; Zou, Z.; Liu, X.; Liao, G. A novel sea clutter rejection algorithm for spaceborne multichannel radar systems. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5117422. [Google Scholar] [CrossRef]
- Randall, R.B.; Antoni, J. Why EMD and Similar Decompositions Are of Little Benefit for Bearing Diagnostics. Mech. Syst. Signal Process. 2023, 192, 110207–110227. [Google Scholar] [CrossRef]
- Shamaee, Z.; Mivehchy, M. Dominant noise-aided EMD (DEMD): Extending empirical mode decomposition for noise reduction by incorporating dominant noise and deep classification. Biomed. Signal Process. Control 2023, 80, 104218–104230. [Google Scholar] [CrossRef]
- Khaled, M.L.; Tarhini, A.A.; Forsyth, P.A.; Smalley, I.; Piña, Y. Leptomeningeal Disease (LMD) in Patients with Melanoma Metastases. Cancers 2023, 15, 1884. [Google Scholar] [CrossRef]
- Zhang, K.; He, W.; Liu, L.; Gao, K. Sea clutter denoising based on complete ensemble empirical mode decomoposition. In Proceedings of the 2022 4th International Conference on Natural Language Processing (ICNLP), Xi’an, China, 25–27 March 2022; pp. 282–286. [Google Scholar] [CrossRef]
- Ahmadi, F.; Tohidi, M.; Sadrianzade, M. Streamflow prediction using a hybrid methodology based on variational mode decomposition (VMD) and machine learning approaches. Appl. Water Sci. 2023, 13, 135–152. [Google Scholar] [CrossRef]
- Qin, C.; Huang, G.; Yu, H.; Zhang, Z.; Tao, J.; Liu, C. Adaptive VMD and multi-stage stabilized transformer-based long-distance forecasting for multiple shield machine tunneling parameters. Autom. Constr. 2024, 165, 105563–105583. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Z.; Qu, L.; Zhang, J.; Teng, B. A hybrid VMD-LSTM/GRU model to predict non-stationary and irregular waves on the east coast of China. Ocean Eng. 2023, 276, 114136–114153. [Google Scholar] [CrossRef]
- Jiang, S.; Xing, H.; Wu, J. Distributed sea clutter denoising algorithm based on variational mode decomposition. Instrumentation 2020, 7, 23–32. [Google Scholar]
- Nie, T.; Li, J.; Ding, Y.; Zhang, Z.; Li, B.; Dong, W. Fast extraction for Brillouin frequency shift in BOTDA system. Opt. Quant. Electron. 2021, 53, 73–81. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, Y.; Hu, X.; Botta, N.; Ionescu, C.; Chen, G.H. ECOD: Unsupervised outlier detection using empirical cumulative distribution functions. IEEE Trans. Knowl. Data Eng. 2023, 35, 12181–12193. [Google Scholar] [CrossRef]
- Liao, X.; Xie, J.; Zhou, J. Compound Gaussian radar clutter model with positive tempered alpha-stable texture. arXiv 2024, arXiv:2412.05174. [Google Scholar] [CrossRef]
- Zhu, M.-X.; Shao, Y.-H. Classification by estimating the cumulative distribution function for small data. IEEE Access 2023, 11, 41142–41157. [Google Scholar] [CrossRef]
- Sørensen, K.A.; Heiselberg, P.; Heiselberg, H. Unified detection and feature extraction of ships in satellite images. Remote Sens. 2024, 16, 4719. [Google Scholar] [CrossRef]
- Xiong, G.; Wang, L.; Yu, W. Radar sea clutter reconstruction based on statistical singularity power spectrum and instantaneous singularity exponents distribution. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5687–5697. [Google Scholar] [CrossRef]
- Xie, J.; Xu, X. Phase-feature-based detection of small targets in sea clutter. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3507405. [Google Scholar] [CrossRef]
- Guo, Z.-X.; Shui, P.-L.; Bai, X.-H. Small target detection in sea clutter using all-dimensional Hurst exponents of complex time sequence. Digit. Signal Process. 2020, 101, 102707–102715. [Google Scholar] [CrossRef]
- Fan, S.; Zhang, B.; Kudryavtsev, V. Comprehensive assessment of ocean surface current retrievals using SAR Doppler shift and drifting buoy observations. Remote Sens. 2025, 17, 2007. [Google Scholar] [CrossRef]
- Yang, D.; Guo, C.; Persico, R.; Liu, Y.; Liu, H.; Bai, C.; Lian, C.; Zhao, Q. Adaptive variational mode decomposition and principal component analysis-based denoising scheme for borehole radar data. Remote Sens. 2025, 17, 525. [Google Scholar] [CrossRef]
- Shui, P.-L.; Li, D.-C.; Xu, S.-W. Tri-feature-based detection of floating small targets in sea clutter. IEEE Trans. Aerosp. Electron. Syst. 2014, 50, 1416–1430. [Google Scholar] [CrossRef]
- Yu, W.; Yang, G.; Zhao, H. A new method for ship length estimation based on Doppler spectrum analysis. Radar Sci. Technol. 2015, 13, 522–526. [Google Scholar]
- Guan, J.; Jiang, X.; Liu, N.; Ding, H.; Dong, Y.; Liu, T. Target detection in sea clutter based on feature re-expression using Spearman’s correlation. IEEE Sens. J. 2024, 24, 30435–30450. [Google Scholar] [CrossRef]
- Wu, X.-J.; Ding, H.; Liu, N.-B.; Guan, J. A method for detecting small targets in sea surface based on ridges-Radon transform. J. Signal Process. 2021, 37, 1599–1611. [Google Scholar]
- Wen, C.; Huang, Y.; Davidson, T.N. Efficient transceiver design for MIMO dual-function radar-communication systems. IEEE Trans. Signal Process. 2023, 71, 1786–1801. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Zheng, L.; Liu, W.; Davidson, T.N. Transmit waveform design for dual-function radar-communication systems via hybrid linear-nonlinear precoding. IEEE Trans. Signal Process. 2023, 71, 2130–2145. [Google Scholar] [CrossRef]
- Wen, C.; Huang, Y.; Peng, J.; Wu, J.; Zheng, G.; Zhang, Y. Slow-time FDA-MIMO technique with application to STAP radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 58, 74–95. [Google Scholar] [CrossRef]
- Wen, C.; Chen, Y.; Huang, Y.; Davidson, T.N. Reduced-Complexity CRB Optimization for Dual-Function Radar-Communication Systems using Hybrid Linear-Nonlinear Precoding. IEEE Trans. Signal Process. 2025, 73, 2123–2138. [Google Scholar] [CrossRef]
- Liu, C.; Li, P.; Liu, L.; Li, Q.; Liu, Y. Multi-Strategy Constant False Alarm Rate Detector in Complex Backgrounds. In Electronic Engineering and Informatics; Advances in Transdisciplinary Engineering; IOS Press: Amsterdam, The Netherlands, 2024; Volume 51, pp. 77–85. [Google Scholar] [CrossRef]
- Kuang, C.; Wang, C.; Wen, B.; Hou, Y.; Lai, Y. An improved CA-CFAR method for ship target detection in strong clutter using UHF radar. IEEE Signal Process. Lett. 2020, 27, 1445–1449. [Google Scholar] [CrossRef]
- Ge, Y.; Huang, Z.-Z.; Liu, Q.; Lan, Q. Fast implementation of CA-CFAR algorithm based on FFT. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021; pp. 2494–2498. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N.; Wang, G.; Ding, H.; Dong, Y.; Huang, Y.; Tian, K.; Zhang, M. Sea-detecting radar experiment and target feature data acquisition for dual polarization multistate scattering dataset of marine targets. J. Radars 2023, 12, 456–469. [Google Scholar] [CrossRef]
- Liu, N.; Ding, H.; Huang, Y.; Dong, Y.; Wang, G.; Dong, K. Annual progress of the sea-detecting X-band radar and data acquisition program. J. Radars 2021, 10, 173–182. [Google Scholar] [CrossRef]
- Liu, N.; Dong, Y.; Wang, G.; Ding, H.; Huang, Y.; Guan, J.; Chen, X.; He, Y. Sea-detecting X-band radar and data acquisition program. J. Radars 2019, 8, 656–667. [Google Scholar] [CrossRef]
- Liu, N.; Li, J.; Wang, G.; Chen, B.; Cao, Z.; Dong, Y.; Guan, J.; Jiang, X.; Zhang, Z.; Xue, W. Sea-detecting radar experiment and target feature data acquisition for multisource observation dataset of maritime targets. J. Radars 2025, 14, 754–780. [Google Scholar] [CrossRef]
Category | Parameter/Information | Value/Description |
---|---|---|
Experimental Conditions | Experiment Location | Yantai First, Seaside Bathing Beach Test Site |
Maximum Wave Height | 2.8 m | |
Maximum Wind Speed | 16.7 m/s | |
Radar Model | SPPR50P | Solid-State Amplification Monitoring/Navigation Radar |
Polarization states | HH/VV | Horizontal–Horizontal/Vertical–Vertical Polarization |
Radar Parameters | Operation Mode | Staring/Scanning |
Frequency Band | X Band | |
Working Frequency | 9.3 GHz–9.5 GHz | |
Pulse Duration | 40 ns–100 s | |
Transmission Power | 100 W | |
Range Resolution | 6 m | |
Pulse Repetition Frequency | 2000 Hz | |
Target Type | Light Buoys | Red Cylindrical Buoy 1, Green Cylindrical Buoy 2 |
Buoy Location | Distance to Buoy 1 | 2.97 nautical miles |
Distance to Buoy 2 | 3.19 nautical miles |
Data | Sea | Polarization | Effective Wave | Wave | Collection | Range Dimension | Target | Target | Pulse |
---|---|---|---|---|---|---|---|---|---|
Group | State | Mode | Height (m) | Direction | Duration (s) | Sample Count | Range Cell | Count | |
1 | 5 | VV | 2.7 | North– | 65.5 | 1000 | Buoy 1 | 494–506 | 67,584 |
Northwest | Buoy 2 | 663–676 | |||||||
2 | 5 | HH | 2.7 | North– | 65.5 | 1000 | Buoy 1 | 496–508 | 67,584 |
Northwest | |||||||||
3 | 4 | VV | 2.3 | North– | 65.5 | 1000 | Buoy 1 | 492–502 | 131,072 |
Northeast | Buoy 2 | 663–674 | |||||||
4 | 4 | HH | 1.8 | North– | 65.5 | 1000 | Buoy 1 | 498–506 | 131,072 |
Northwest | Buoy 2 | 666–674 |
Data | Center | Boundary | Reference Clutter | Clutter Spectral | Clutter 3 dB | Reconstructed |
---|---|---|---|---|---|---|
Group | Range Cell | Range Cell | Range Cell | Centroid (Hz) | Bandwidth (Hz) | Threshold (Hz) |
1 | 670 | 676 | 691 | 123.27 | 98.10 | 74.22 |
2 | 502 | 508 | 523 | 171.19 | 109.85 | 116.27 |
3 | 669 | 674 | 689 | 117.15 | 70.67 | 81.82 |
4 | 670 | 674 | 689 | 145.77 | 90.27 | 100.64 |
IMF | Center Frequency (Hz) | Bandwidth (Hz) | Target IMF |
---|---|---|---|
1 | 11.17 | 32.47 | Yes |
2 | 29.69 | 31.73 | Yes |
3 | 47.90 | 21.07 | Yes |
4 | 69.32 | 24.45 | Yes |
5 | 92.81 | 23.14 | No |
6 | 118.12 | 24.14 | No |
7 | 147.96 | 29.25 | No |
8 | 178.63 | 34.30 | No |
9 | 229.87 | 61.96 | No |
10 | 605.18 | 84.48 | No |
11 | 799.71 | 130.68 | No |
12 | −185.94 | 956.11 | No |
13 | −789.43 | 118.24 | No |
14 | −577.32 | 73.87 | No |
15 | −366.40 | 51.83 | No |
16 | −281.36 | 67.79 | No |
17 | −218.55 | 50.79 | No |
18 | −178.43 | 41.73 | No |
19 | −149.86 | 38.59 | No |
20 | −121.90 | 35.38 | No |
21 | −97.27 | 29.74 | No |
22 | −72.01 | 23.55 | Yes |
23 | −48.93 | 25.45 | Yes |
24 | −29.90 | 24.43 | Yes |
25 | −9.42 | 22.70 | Yes |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 2.180 | 1.044 | |||
PH | 1.539 | 1.201 | |||
TEM | 3.390 | 3.354 | 3.354 | 1.011 | 1.000 |
SOTE | 1.160 | 0.919 | |||
DPH | 1.060 | 0.731 | |||
VE | 0.975 | 0.999 | |||
SOFE | 1.050 | 0.937 | |||
RI | 3.484 | 1.151 | |||
NR | 0.703 | 0.960 | |||
MS | 1.012 | 1.012 | |||
RRT_BW | 0.487 | 0.864 | |||
RRT_MV | 0.822 | 0.947 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 6.586 | 0.843 | |||
PH | 3.540 | 0.621 | |||
TEM | 3.422 | 3.400 | 3.413 | 1.003 | 0.996 |
SOTE | 1.188 | 1.315 | |||
DPH | 2.622 | 0.753 | |||
VE | 1.086 | 1.025 | |||
SOFE | 1.072 | 1.332 | |||
RI | 37.596 | 0.744 | |||
NR | 1.092 | 0.988 | |||
MS | 1.000 | 1.000 | |||
RRT_BW | 0.445 | 0.856 | |||
RRT_MV | 0.511 | 0.849 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 1.240 | 1.127 | |||
PH | 0.776 | 0.749 | |||
TEM | 3.366 | 3.361 | 3.358 | 1.003 | 1.001 |
SOTE | 0.852 | 0.844 | |||
DPH | 0.873 | 0.765 | |||
VE | 1.001 | 1.002 | |||
SOFE | 0.907 | 0.901 | |||
RI | 1.279 | 1.115 | |||
NR | 0.978 | 0.974 | |||
MS | 0.996 | 0.968 | |||
RRT_BW | 1.074 | 0.963 | |||
RRT_MV | 0.697 | 0.737 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 1.591 | 0.961 | |||
PH | 1.408 | 0.722 | |||
TEM | 3.379 | 3.389 | 3.382 | 0.999 | 1.002 |
SOTE | 0.680 | 0.728 | |||
DPH | 2.079 | 1.079 | |||
VE | 1.005 | 0.972 | |||
SOFE | 1.479 | 1.688 | |||
RI | 2.274 | 0.753 | |||
NR | 0.568 | 0.518 | |||
MS | 1.000 | 1.000 | |||
RRT_BW | 0.299 | 0.423 | |||
RRT_MV | 0.274 | 0.437 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 2.080 | 0.943 | |||
PH | 1.134 | 0.925 | |||
TEM | 3.397 | 3.361 | 3.361 | 1.011 | 1.000 |
SOTE | 1.122 | 0.899 | |||
DPH | 1.316 | 0.648 | |||
VE | 0.972 | 1.010 | |||
SOFE | 1.472 | 0.818 | |||
RI | 2.885 | 0.804 | |||
NR | 0.766 | 0.965 | |||
MS | 1.000 | 0.996 | |||
RRT_BW | 1.163 | 0.825 | |||
RRT_MV | 1.326 | 0.889 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 5.291 | 0.909 | |||
PH | 2.723 | 0.618 | |||
TEM | 3.432 | 3.398 | 3.393 | 1.011 | 1.001 |
SOTE | 0.922 | 1.232 | |||
DPH | 1.325 | 0.557 | |||
VE | 1.044 | 1.044 | |||
SOFE | 2.096 | 1.625 | |||
RI | 18.148 | 0.753 | |||
NR | 0.844 | 0.966 | |||
MS | 1.000 | 1.000 | |||
RRT_BW | 1.195 | 1.190 | |||
RRT_MV | 1.145 | 1.147 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 4.403 | 1.204 | |||
PH | 2.849 | 0.988 | |||
TEM | 3.413 | 3.357 | 3.358 | 1.016 | 1.000 |
SOTE | 1.079 | 0.949 | |||
DPH | 5.569 | 0.989 | |||
VE | 0.960 | 0.997 | |||
SOFE | 2.858 | 1.008 | |||
RI | 13.736 | 1.526 | |||
NR | 0.626 | 0.883 | |||
MS | 1.033 | 1.024 | |||
RRT_BW | 1.823 | 0.579 | |||
RRT_MV | 1.944 | 0.764 |
Feature | Strong Target Range Cell | Weak Target Range Cell | Clutter Range Cell | Relative Value (Strong Target Cell) | Relative Value (Weak Target Cell) |
---|---|---|---|---|---|
AA | 12.745 | 0.901 | |||
PH | 13.191 | 1.448 | |||
TEM | 3.438 | 3.412 | 3.403 | 1.010 | 1.003 |
SOTE | 0.865 | 1.374 | |||
DPH | 9.464 | 0.744 | |||
VE | 1.036 | 1.039 | |||
SOFE | 3.991 | 1.620 | |||
RI | 122.448 | 0.722 | |||
NR | 0.905 | 1.177 | |||
MS | 1.000 | 1.000 | |||
RRT_BW | 1.163 | 0.930 | |||
RRT_MV | 1.160 | 0.904 |
Feature | Computational | Execution |
---|---|---|
Complexity | Time (s) | |
AA | ||
PH | ||
DPH | ||
RI | 4.77 |
Data Index | Signal | RX | All Pulses | 32 Pulses | 64 Pulses | 128 Pulses | 256 Pulses | 512 Pulses | 1024 Pulses | 2048 Pulses | 4096 Pulses | 8192 Pulses | 16,384 Pulses |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Original Signal | RAA | 1.0441 | 1.6469 | 1.6172 | 1.5979 | 1.5868 | 1.5818 | 1.5671 | 1.5339 | 1.3902 | 1.0526 | 1.0161 |
RPH | 1.2005 | 1.4817 | 1.4833 | 1.4842 | 1.4974 | 1.5228 | 1.4886 | 1.4450 | 1.3750 | 1.0820 | 0.9839 | ||
RDPH | 0.7306 | 2.0641 | 2.0694 | 2.0579 | 2.0213 | 1.9939 | 1.8557 | 1.7482 | 1.2779 | 1.0076 | 0.9041 | ||
Reconstructed Signal | RAA | 0.8430 | 1.7426 | 1.9129 | 2.0896 | 2.2199 | 1.8608 | 1.5651 | 1.3970 | 1.3024 | 1.3958 | 2.2609 | |
RPH | 0.6211 | 2.4223 | 2.3804 | 2.3316 | 2.2961 | 2.3084 | 2.2756 | 2.2134 | 2.2310 | 2.7399 | 2.8035 | ||
RDPH | 0.7530 | 2.9436 | 2.7843 | 2.8225 | 2.8940 | 2.8151 | 2.4223 | 2.1480 | 1.7028 | 1.5431 | 1.1476 | ||
2 | Original Signal | RAA | 1.1267 | 2.2439 | 2.1900 | 2.1581 | 2.1401 | 2.1222 | 2.0951 | 2.0360 | 1.9043 | 1.5131 | 1.1469 |
RPH | 0.7488 | 1.9605 | 1.9238 | 1.8895 | 1.8427 | 1.7873 | 1.6531 | 1.5369 | 1.4838 | 1.2403 | 1.0053 | ||
RDPH | 0.7652 | 2.6322 | 2.6231 | 2.5507 | 2.4345 | 2.3650 | 2.1955 | 2.0704 | 1.7767 | 1.4310 | 0.9677 | ||
Reconstructed Signal | RAA | 0.9609 | 2.7250 | 2.4557 | 2.3807 | 2.4392 | 2.3696 | 2.2385 | 2.1011 | 2.0686 | 1.4439 | 1.0647 | |
RPH | 0.7216 | 2.8144 | 2.4067 | 2.3006 | 2.4538 | 2.4172 | 2.3321 | 2.2448 | 2.1429 | 1.4745 | 0.8907 | ||
RDPH | 1.0791 | 2.7347 | 2.5867 | 2.6722 | 2.7439 | 2.7503 | 2.4057 | 2.2146 | 2.0266 | 1.5850 | 1.1447 | ||
3 | Original Signal | RAA | 0.9432 | 1.3561 | 1.3219 | 1.2993 | 1.2855 | 1.2733 | 1.2618 | 1.2383 | 1.1702 | 1.0651 | 0.9857 |
RPH | 0.9248 | 1.2400 | 1.2331 | 1.2233 | 1.2224 | 1.2281 | 1.2214 | 1.2311 | 1.1714 | 1.0351 | 0.8966 | ||
RDPH | 0.6480 | 1.6035 | 1.5616 | 1.4993 | 1.4491 | 1.3524 | 1.2068 | 1.1492 | 0.9552 | 0.8342 | 0.7050 | ||
Reconstructed Signal | RAA | 0.9088 | 1.5716 | 1.5748 | 1.6095 | 1.6368 | 1.8903 | 1.4280 | 1.2773 | 1.3178 | 1.2822 | 1.2437 | |
RPH | 0.6179 | 1.7011 | 1.6962 | 1.6632 | 1.6039 | 1.6580 | 1.4219 | 1.3283 | 1.2642 | 1.3178 | 1.1358 | ||
RDPH | 0.5568 | 1.5633 | 1.5628 | 1.5802 | 1.5974 | 1.5955 | 1.1329 | 0.8738 | 0.8216 | 0.7325 | 0.5884 | ||
4 | Original Signal | RAA | 1.2044 | 1.5276 | 1.4872 | 1.4580 | 1.4388 | 1.4267 | 1.4137 | 1.3916 | 1.3572 | 1.3180 | 1.2937 |
RPH | 0.9878 | 1.4311 | 1.4176 | 1.3863 | 1.3610 | 1.3426 | 1.3118 | 1.2884 | 1.2290 | 1.2714 | 1.3689 | ||
RDPH | 0.9893 | 1.7545 | 1.6890 | 1.6773 | 1.5960 | 1.5817 | 1.5115 | 1.4473 | 1.4323 | 1.3581 | 1.2852 | ||
Reconstructed Signal | RAA | 0.9011 | 2.0513 | 1.8175 | 1.7215 | 1.6689 | 1.6411 | 1.6210 | 1.5999 | 1.5729 | 1.5675 | 1.5666 | |
RPH | 1.4481 | 2.1405 | 1.9797 | 1.8931 | 1.7764 | 1.6427 | 1.6510 | 1.6014 | 1.7605 | 1.8690 | 1.9817 | ||
RDPH | 0.7435 | 2.0972 | 2.0309 | 2.2421 | 2.3279 | 2.2284 | 2.0923 | 1.7978 | 1.6813 | 1.6200 | 1.4278 |
Data Index | All Pulses | 32 Pulses | 64 Pulses | 128 Pulses | 256 Pulses | 512 Pulses | 1024 Pulses | 2048 Pulses | 4096 Pulses | 8192 Pulses | 16,384 Pulses | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −1.8583 | 0.4906 | 1.4586 | 2.3303 | 2.9162 | 1.4110 | −0.0111 | −0.8120 | −0.5667 | 2.4512 | 6.9469 | |
−5.7240 | 4.2694 | 4.1084 | 3.9232 | 3.7131 | 3.6134 | 3.6864 | 3.7038 | 4.2039 | 8.0701 | 9.0950 | ||
0.2623 | 3.0830 | 2.5774 | 2.7442 | 3.1174 | 2.9958 | 2.3144 | 1.7889 | 2.4933 | 3.7021 | 2.0715 | ||
2 | −1.3826 | 1.6873 | 0.9946 | 0.8527 | 1.1363 | 0.9578 | 0.5750 | 0.2734 | 0.7188 | −0.4066 | −0.6460 | |
−0.3214 | 3.1404 | 1.9452 | 1.7099 | 2.4877 | 2.6223 | 2.9890 | 3.2906 | 3.1925 | 1.5024 | −1.0513 | ||
2.9857 | 0.3318 | −0.1214 | 0.4042 | 1.0392 | 1.3110 | 0.7942 | 0.5848 | 1.1431 | 0.8878 | 1.4590 | ||
3 | −0.3227 | 1.2810 | 1.5205 | 1.8596 | 2.0985 | 3.4320 | 1.0748 | 0.2693 | 1.0318 | 1.6113 | 2.0194 | |
−3.5026 | 2.7462 | 2.7696 | 2.6682 | 2.3593 | 2.6070 | 1.3202 | 0.6601 | 0.6622 | 2.0973 | 2.0541 | ||
−1.3175 | −0.2205 | 0.0067 | 0.4565 | 0.8463 | 1.4358 | −0.5489 | −2.3797 | −1.3087 | −1.1293 | −1.5703 | ||
4 | −2.5200 | 2.5604 | 1.7421 | 1.4430 | 1.2886 | 1.2160 | 1.1885 | 1.2116 | 1.2811 | 1.5058 | 1.6625 | |
3.3226 | 3.4969 | 2.9009 | 2.7063 | 2.3137 | 1.7522 | 1.9976 | 1.8890 | 3.1217 | 3.3465 | 3.2133 | ||
−2.4809 | 1.5497 | 1.6012 | 2.5209 | 3.2786 | 2.9774 | 2.8243 | 1.8837 | 1.3922 | 1.5317 | 0.9139 |
Data Index | Signal | RX | No Overlap | 25% Overlap | 50% Overlap | 75% Overlap |
---|---|---|---|---|---|---|
1 | Original Signal | RAA | 1.5868 | 1.5885 | 1.5879 | 1.5747 |
RPH | 1.4974 | 0.9839 | 0.9839 | 0.9839 | ||
RDPH | 2.0213 | 2.0287 | 2.0630 | 1.9762 | ||
Reconstructed Signal | RAA | 2.2199 | 2.2305 | 2.1924 | 2.0342 | |
RPH | 2.2961 | 0.9952 | 1.1006 | 1.0473 | ||
RDPH | 2.8940 | 2.1287 | 2.0614 | 2.0033 | ||
2 | Original Signal | RAA | 2.1401 | 2.1420 | 2.1406 | 2.1393 |
RPH | 1.8427 | 1.0053 | 1.0053 | 1.0053 | ||
RDPH | 2.4345 | 2.4664 | 2.4406 | 2.4688 | ||
Reconstructed Signal | RAA | 2.4392 | 2.3848 | 2.3859 | 2.3993 | |
RPH | 2.4538 | 1.3224 | 1.3342 | 1.2806 | ||
RDPH | 2.7439 | 2.6559 | 2.6845 | 2.7006 |
Data Index | No Overlap | 25% Overlap | 50% Overlap | 75% Overlap | |
---|---|---|---|---|---|
1 | 2.9162 | 2.9483 | 2.8019 | 2.2239 | |
3.7131 | 0.0992 | 0.9736 | 0.5424 | ||
3.1174 | 0.4179 | −0.0067 | 0.1183 | ||
2 | 1.1363 | 0.9326 | 0.9423 | 0.9963 | |
2.4877 | 2.3813 | 2.4585 | 2.1024 | ||
1.0392 | 0.6430 | 0.8273 | 0.7795 |
Detection Method | Original Signal | Reconstructed Signal | Improvement |
---|---|---|---|
AA Feature Detection | 0.5254 | 0.6661 | 26.78% |
PH Feature Detection | 0.4778 | 0.6583 | 37.78% |
DPH Feature Detection | 0.6020 | 0.6580 | 9.30% |
Coherent Integration Detection | 0.4037 | 0.6515 | 61.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, N.; Yang, H.; Wang, G.; Ding, H.; Dong, Y.; Xue, W. A Spectral Mode Reconstruction Method for Floating Target Detection Under Strong Sea Clutter Conditions. Remote Sens. 2025, 17, 3155. https://doi.org/10.3390/rs17183155
Liu N, Yang H, Wang G, Ding H, Dong Y, Xue W. A Spectral Mode Reconstruction Method for Floating Target Detection Under Strong Sea Clutter Conditions. Remote Sensing. 2025; 17(18):3155. https://doi.org/10.3390/rs17183155
Chicago/Turabian StyleLiu, Ningbo, Hankun Yang, Guoqing Wang, Hao Ding, Yunlong Dong, and Wei Xue. 2025. "A Spectral Mode Reconstruction Method for Floating Target Detection Under Strong Sea Clutter Conditions" Remote Sensing 17, no. 18: 3155. https://doi.org/10.3390/rs17183155
APA StyleLiu, N., Yang, H., Wang, G., Ding, H., Dong, Y., & Xue, W. (2025). A Spectral Mode Reconstruction Method for Floating Target Detection Under Strong Sea Clutter Conditions. Remote Sensing, 17(18), 3155. https://doi.org/10.3390/rs17183155