Seasonal Effects of Urban Morphology on the Thermal Environment Based on Automated Machine Learning: A Case Study of Beijing
Abstract
Highlights
- Explainable analysis identifies NDVI as the most influential indicator of LST variations, followed by BH with a cooling effect and BCR with a positive impact.
- 3D indicators exert stronger direct and total effects than 2D indicators within the causal pathways, except in winter.
- Study provides an AutoML-SHAP framework with structural equation modeling for investigating nonlinear relationships.
- These results offer seasonally adaptive strategies for surface UHI mitigation.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. LST Data
2.2.2. Urban Morphology Indicators
2.2.3. Other Data
2.3. Method
2.3.1. Constructing an AutoML Model to Select the Optimal Scale
2.3.2. Quantifying the Contributions of Urban Morphology Based on SHAP
2.3.3. Quantifying Marginal Effects Between LST and Urban Morphology Indicators
2.3.4. Quantification of the Direct and Indirect Causal Relationships
3. Results
3.1. Spatial Patterns of Urban Morphology Indicators
3.2. Spatial Patterns of LST Across Four Seasons
3.3. The Optimal Model and Scale for Urban Morphology in Modeling LST
3.4. Contributions of Urban Morphology Indicators to LST
3.5. The Seasonal Sensitivity of UHI to Urban Morphology Indicators
3.6. The Seasonal Influencing Pathways of Urban Morphology Indicators on LST
4. Discussion
4.1. Influencing Mechanism Across Seasons
4.2. Implications for Urban Planning
4.3. Uncertainties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
AutoML | Automated machine learning |
BCR | Building coverage ratio |
BH | Building height |
BN | Building number |
BV | Building volume |
CFI | Comparative Fit Index |
DL | Deep Learning |
DRF | Distributed Random Forests |
ESA | European Space Agency |
FAI | Frontal area index |
GBM | Gradient Boosting Machines |
GEE | Google Earth Engine |
GFI | Goodness of Fit Index |
GLM | Generalized Linear Models |
IPCC | Intergovernmental Panel on Climate Change |
ISA | Impervious surface area |
LST | Land surface temperature |
MBV | Mean building volume |
ML | Machine learning |
MSE | Mean Squared Error |
NDVI | Normalized Difference Vegetation Index |
NIR | Near-infrared band |
OLS | Ordinary Least Squares |
PDA | Partial Dependence Analysis |
R | Red band |
R2 | Coefficient of Determination |
RMSE | Root Mean Square Error |
RMSEA | Root Mean Square Error of Approximation |
SEM | Structural equation modeling |
SHAP | SHapley Additive exPlanations |
SVF | Sky view factor |
UHI | Urban heat island |
VIF | Variance Inflation Factor |
XGBoost | Extreme Gradient Boosting |
XRT | Extreme Random Trees |
References
- Cao, C.; Lee, X.; Liu, S.; Schultz, N.; Xiao, W.; Zhang, M.; Zhao, L. Urban heat islands in China enhanced by haze pollution. Nat. Commun. 2016, 7, 12509. [Google Scholar] [CrossRef]
- Chakraborty, T.; Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 269–280. [Google Scholar] [CrossRef]
- Kotharkar, R.; Dongarsane, P.; Keskar, R. Determining influence of urban morphology on air temperature and heat index with hourly emphasis. Build. Environ. 2023, 233, 110044. [Google Scholar] [CrossRef]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Zhou, D.; Sun, S.; Li, Y.; Zhang, L.; Huang, L. A multi-perspective study of atmospheric urban heat island effect in China based on national meteorological observations: Facts and uncertainties. Sci. Total Environ. 2023, 854, 158638. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021–The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [CrossRef]
- Zhao, L.; Oleson, K.; Bou-Zeid, E.; Krayenhoff, E.S.; Bray, A.; Zhu, Q.; Zheng, Z.; Chen, C.; Oppenheimer, M. Global multi-model projections of local urban climates. Nat. Clim. Change 2021, 11, 152–157. [Google Scholar] [CrossRef]
- Yang, M.; Ren, C.; Wang, H.; Wang, J.; Feng, Z.; Kumar, P.; Haghighat, F.; Cao, S.-J. Mitigating Urban Heat Island through Neighboring Rural Land Cover. Nat. Cities. 2024, 1, 522–532. [Google Scholar] [CrossRef]
- Zhao, L.; Lee, X.; Smith, R.B.; Oleson, K. Strong contributions of local background climate to urban heat islands. Nature 2014, 511, 216–219. [Google Scholar] [CrossRef]
- Dev Roy, S.; Kuffer, M.; Wang, J. Exploring the Influence of Building Morphology on Surface Temperatures: A Multi-City Analysis in Europe. Build. Environ. 2025, 282, 113274. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhao, L.; Oleson, K.W. Large model structural uncertainty in global projections of urban heat waves. Nat. Commun. 2021, 12, 3736. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sodoudi, S.; Liu, J.; Tao, W. Temporal variation of urban aerosol pollution island and its relationship with urban heat island. Atmos. Res. 2020, 241, 104957. [Google Scholar] [CrossRef]
- Massaro, E.; Schifanella, R.; Piccardo, M.; Caporaso, L.; Taubenböck, H.; Cescatti, A.; Duveiller, G. Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes. Nat. Commun. 2023, 14, 2903. [Google Scholar] [CrossRef]
- Yang, Y.; Guangrong, S.; Chen, Z.; Hao, S.; Zhouyiling, Z.; Shan, Y. Quantitative analysis and prediction of urban heat island intensity on urban-rural gradient: A case study of Shanghai. Sci. Total Environ. 2022, 829, 154264. [Google Scholar] [CrossRef]
- Dai, Z.; Guldmann, J.-M.; Hu, Y. Thermal impacts of greenery, water, and impervious structures in Beijing’s Olympic area: A spatial regression approach. Ecol. Indic. 2019, 97, 77–88. [Google Scholar] [CrossRef]
- Wang, Y.; He, Z.; Zhai, W.; Wang, S.; Zhao, C. How Do the 3D Urban Morphological Characteristics Spatiotemporally Affect the Urban Thermal Environment? A Case Study of San Antonio. Build. Environ. 2024, 261, 111738. [Google Scholar] [CrossRef]
- Schwaab, J.; Meier, R.; Mussetti, G.; Seneviratne, S.; Bürgi, C.; Davin, E.L. The role of urban trees in reducing land surface temperatures in European cities. Nat. Commun. 2021, 12, 6763. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Dong, Y.; Zhang, P.; Guo, Y.; Wang, W.; Bao, G. Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban For. Urban Green. 2022, 74, 127635. [Google Scholar] [CrossRef]
- Han, D.; An, H.; Wang, F.; Xu, X.; Qiao, Z.; Wang, M.; Sui, X.; Liang, S.; Hou, X.; Cai, H.; et al. Understanding seasonal contributions of urban morphology to thermal environment based on boosted regression tree approach. Build. Environ. 2022, 226, 109770. [Google Scholar] [CrossRef]
- Wu, W.-B.; Yu, Z.-W.; Ma, J.; Zhao, B. Quantifying the influence of 2D and 3D urban morphology on the thermal environment across climatic zones. Landsc. Urban Plan. 2022, 226, 104499. [Google Scholar] [CrossRef]
- Chen, C.; Bagan, H.; Yoshida, T.; Borjigin, H.; Gao, J. Quantitative analysis of the building-level relationship between building form and land surface temperature using airborne LiDAR and thermal infrared data. Urban Clim. 2022, 45, 101248. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, X.; Liao, W.; Chen, G.; Luo, M.; Liu, X. Contrasting 2D/3D Urban Morphology Drivers of Surface and Canopy Temperatures under Different Spatial Scales. Build. Environ. 2025, 283, 113389. [Google Scholar] [CrossRef]
- Cao, S.; Cai, Y.; Du, M.; Weng, Q.; Lu, L. Seasonal and diurnal surface urban heat islands in China: An investigation of driving factors with three-dimensional urban morphological parameters. GIScience Remote Sens. 2022, 59, 1121–1142. [Google Scholar] [CrossRef]
- Ding, L.; Xiao, X.; Wang, H. Temporal and Spatial Variations of Urban Surface Temperature and Correlation Study of Influencing Factors. Sci. Rep. 2025, 15, 914. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Tang, G.; Du, X.; Wang, S. Impact Mechanisms of 2D and 3D Spatial Morphologies on Urban Thermal Environment in High-Density Urban Blocks: A Case Study of Beijing’s Core Area. Sustain. Cities Soc. 2025, 123, 106285. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, R.; Yu, Y. The Impact of Urban Morphology on Land Surface Temperature under Seasonal and Diurnal Variations: Marginal and Interaction Effects. Build. Environ. 2025, 272, 112673. [Google Scholar] [CrossRef]
- Luo, P.; Yu, B.; Li, P.; Liang, P.; Liang, Y.; Yang, L. How 2D and 3D built environments impact urban surface temperature under extreme heat: A study in Chengdu, China. Build. Environ. 2023, 231, 110035. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, W.; Shao, Y.; Wang, N.; Yu, Z.; Li, H.; Hu, Q. The Impacts and Thresholds Detection of 2D/3D Urban Morphology on the Heat Island Effects at the Functional Zone in Megacity during Heatwave Event. Sustain. Cities Soc. 2025, 118, 106002. [Google Scholar] [CrossRef]
- Chen, J.; Zhan, W.; Du, P.; Li, L.; Li, J.; Liu, Z.; Huang, F.; Lai, J.; Xia, J. Seasonally disparate responses of surface thermal environment to 2D/3D urban morphology. Build. Environ. 2022, 214, 108928. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, W.; Sun, J.; Xu, X.; Wang, R.; Lu, Y.; Zhang, S.; Zhou, W. Assessing the effects of 2D/3D urban morphology on the 3D urban thermal environment by using multi-source remote sensing data and UAV measurements: A case study of the snow-climate city of Changchun, China. J. Clean. Prod. 2021, 321, 128956. [Google Scholar] [CrossRef]
- Martinelli, L.; Matzarakis, A. Influence of height/width proportions on the thermal comfort of courtyard typology for Italian climate zones. Sustain. Cities Soc. 2017, 29, 97–106. [Google Scholar] [CrossRef]
- Han, S.; Hou, H.; Estoque, R.C.; Zheng, Y.; Shen, C.; Murayama, Y.; Pan, J.; Wang, B.; Hu, T. Seasonal effects of urban morphology on land surface temperature in a three-dimensional perspective: A case study in Hangzhou, China. Build. Environ. 2023, 228, 109913. [Google Scholar] [CrossRef]
- Azhdari, A.; Soltani, A.; Alidadi, M. Urban morphology and landscape structure effect on land surface temperature: Evidence from Shiraz, a semi-arid city. Sustain. Cities Soc. 2018, 41, 853–864. [Google Scholar] [CrossRef]
- Hou, L.; Yue, W.; Liu, X. Spatiotemporal patterns and drivers of summer heat island in Beijing-Tianjin-Hebei Urban Agglomeration, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7516–7527. [Google Scholar] [CrossRef]
- Gu, X.; Wu, Z.; Liu, X.; Qiao, R.; Jiang, Q. Exploring the nonlinear interplay between urban morphology and nighttime thermal environment. Sustain. Cities Soc. 2024, 101, 105176. [Google Scholar] [CrossRef]
- Tanoori, G.; Soltani, A.; Modiri, A. Machine learning for urban heat island (UHI) analysis: Predicting land surface temperature (LST) in urban environments. Urban Clim. 2024, 55, 101962. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Liu, W.; Tan, Z.; Hu, S.; Ao, Z.; Li, J.; Xing, H. Exploring the Seasonal Effects of Urban Morphology on Land Surface Temperature in Urban Functional Zones. Sustain. Cities Soc. 2024, 103, 105268. [Google Scholar] [CrossRef]
- Shen, Y.; Kong, W.; Fei, F.; Chen, X.; Xu, Y.; Huang, C.; Yao, J. Stereoscopic Urban Morphology Metrics Enhance the Nonlinear Scale Heterogeneity Modeling of UHI with Explainable AI. Urban Clim. 2024, 56, 102006. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Zhou, Y.; Liu, D.; Wang, H. The dominant factors and influence of urban characteristics on land surface temperature using random forest algorithm. Sustain. Cities Soc. 2022, 79, 103722. [Google Scholar] [CrossRef]
- Zheng, Z.; Fiore, A.M.; Westervelt, D.M.; Milly, G.P.; Goldsmith, J.; Karambelas, A.; Curci, G.; Randles, C.A.; Paiva, A.R.; Wang, C.; et al. Automated machine learning to evaluate the information content of tropospheric trace gas columns for fine particle estimates over India: A modeling testbed. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003099. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, Z.; Feng, Y.; Chen, S.; Li, Y.; Han, Y.; Feng, L.; Pan, J.; Mazarji, M.; Zhou, H.; et al. Using Automated Machine Learning Techniques to Explore Key Factors in Anaerobic Digestion: At the Environmental Factor, Microorganisms and System Levels. Chem. Eng. J. 2023, 475, 146069. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, D.; Qie, K.; Wang, J. Analysis of Land Surface Temperature Drivers in Beijing’s Central Urban Area across Multiple Spatial Scales: An Explainable Ensemble Learning Approach. Energy Build. 2025, 338, 115704. [Google Scholar] [CrossRef]
- Foroutan, E.; Hu, T.; Li, Z. Revealing Key Factors of Heat-Related Illnesses Using Geospatial Explainable AI Model: A Case Study in Texas, USA. Sustain. Cities Soc. 2025, 122, 106243. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, R.; Rui, J.; Yu, Y. Revealing the Impact of Urban Spatial Morphology on Land Surface Temperature in Plain and Plateau Cities Using Explainable Machine Learning. Sustain. Cities Soc. 2025, 118, 106046. [Google Scholar] [CrossRef]
- Yin, S.; Shi, R.; Wu, N.; Yang, J. Measuring the Impact of Technological Innovation on Urban Resilience through Explainable Machine Learning: A Case Study of the Yangtze River Delta Region, China. Sustain. Cities Soc. 2025, 127, 106457. [Google Scholar] [CrossRef]
- Zeng, J.; Cai, Y.; Yang, C.; Liu, Y.; Liu, W.; Xing, H. Revealing the Impact Patterns of Urban Morphology on Land Surface Temperature in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Cities 2025, 165, 106147. [Google Scholar] [CrossRef]
- Zhu, S.; Yan, Y.; Zhao, B.; Wang, H. Assessing the Impact of Adjacent Urban Morphology on Street Temperature: A Multisource Analysis Using Random Forest and SHAP. Build. Environ. 2025, 267, 112326. [Google Scholar] [CrossRef]
- Yuan, B.; Zhou, L.; Hu, F.; Wei, C. Effects of 2D/3D Urban Morphology on Land Surface Temperature: Contribution, Response, and Interaction. Urban Clim. 2024, 53, 101791. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Meng, Y.; Zhou, Y.; Wang, H. Exploring the impact of urban features on the spatial variation of land surface temperature within the diurnal cycle. Sustain. Cities Soc. 2023, 91, 104432. [Google Scholar] [CrossRef]
- Li, Z.; Hu, D. Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China. Sustain. Cities Soc. 2022, 78, 103392. [Google Scholar] [CrossRef]
- Guo, A.; Yue, W.; Yang, J.; He, T.; Zhang, M.; Li, M. Divergent impact of urban 2D/3D morphology on thermal environment along urban gradients. Urban Clim. 2022, 45, 101278. [Google Scholar] [CrossRef]
- Niu, J.; Chen, J.; Zang, Y.; Wang, K.; Ni, D.; Xu, Z.; Wang, P. Deciphering the Roles of 2-D and 3-D Urban Landscape Metrics in Diurnal Surface Thermal Environment Along Urban Gradients. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2024, 17, 16449–16466. [Google Scholar] [CrossRef]
- Ren, Z.; Li, C.; Fu, B.; Wang, S.; Stringer, L.C. Effects of Aridification on Soil Total Carbon Pools in China’s Drylands. Glob. Change Biol. 2024, 30, e17091. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, R.; Wu, Y.; Wang, W. Estimation of Surface Soil Moisture by Combining a Structural Equation Model and an Artificial Neural Network (SEM-ANN). Sci. Total Environ. 2023, 876, 162558. [Google Scholar] [CrossRef]
- Wang, Y.; Xie, X.; Zhao, X.; Liang, S.; Zhu, B.; Tursun, A.; Jiang, F.; Liu, Y.; Zhang, X. Four-decade response of land surface temperature to urban expansion in Beijing. Agric. For. Meteorol. 2023, 341, 109653. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Yue, W.; Li, X.; Liu, Y.; Lu, D. Spatiotemporal patterns of summer urban heat island in Beijing, China using an improved land surface temperature. J. Clean. Prod. 2020, 257, 120529. [Google Scholar] [CrossRef]
- Lemoine-Rodríguez, R.; Inostroza, L.; Zepp, H. Does urban climate follow urban form? Analysing intraurban LST trajectories versus urban form trends in 3 cities with different background climates. Sci. Total Environ. 2022, 830, 154570. [Google Scholar] [CrossRef]
- Cook, M.; Schott, J.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Zhang, H.; Xue, B.; Li, W. Urban morphology in China: Dataset development and spatial pattern characterization. Sustain. Cities Soc. 2021, 71, 102981. [Google Scholar] [CrossRef]
- Li, H.; Yuan, F.; Shen, L.; Liu, Y.; Zheng, Z.; Zhou, X. Improving the WRF/urban modeling system in China by developing a national urban dataset. Geosci. Front. 2022, 13, 101385. [Google Scholar] [CrossRef]
- Akinwande, M.O.; Dikko, H.G.; Samson, A. Variance inflation factor: As a condition for the inclusion of suppressor variable(s) in regression analysis. Open J. Stat. 2015, 5, 754–767. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100 [Dataset]. Zenodo; The European Space Agency: Paris, France, 2021. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, B.; Yang, L.; Chen, X.; Zhuang, J. Predicting bacterial transport through saturated porous media using an automated machine learning model. Front. Microbiol. 2023, 14, 1152059. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wu, S.; Chen, B.; Bell, M.L. Unraveling near real-time spatial dynamics of population using geographical ensemble learning. Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103882. [Google Scholar] [CrossRef]
- Ren, H.; Zhang, L.; Yan, M.; Chen, B.; Yang, Z.; Ruan, L. Spatiotemporal assessment of forest fire vulnerability in China using automated machine learning. Remote Sens. 2022, 14, 5965. [Google Scholar] [CrossRef]
- Li, K.-Y.; Burnside, N.G.; de Lima, R.S.; Peciña, M.V.; Sepp, K.; Cabral Pinheiro, V.H.; de Lima, B.R.C.A.; Yang, M.-D.; Vain, A.; Sepp, K. An automated machine learning framework in unmanned aircraft systems: New insights into agricultural management practices recognition approaches. Remote Sens. 2021, 13, 3190. [Google Scholar] [CrossRef]
- Adams, M.D.; Massey, F.; Chastko, K.; Cupini, C. Spatial modelling of particulate matter air pollution sensor measurements collected by community scientists while cycling, land use regression with spatial cross-validation, and applications of machine learning for data correction. Atmos. Environ. 2020, 230, 117479. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Z.; Li, P.; Zhou, Z.; Li, W.; Zheng, T.; Liu, J.; Wu, W.; Shi, Z.; Liu, J. Prediction of rural domestic water and sewage production based on automated machine learning in northern China. J. Clean. Prod. 2024, 434, 140016. [Google Scholar] [CrossRef]
- Pande, C.B.; Egbueri, J.C.; Costache, R.; Sidek, L.M.; Wang, Q.; Alshehri, F.; Din, N.M.; Gautam, V.K.; Chandra Pal, S. Predictive modeling of land surface temperature (LST) based on Landsat-8 satellite data and machine learning models for sustainable development. J. Clean. Prod. 2024, 444, 141035. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. arXiv. 2017. [Google Scholar] [CrossRef]
- Fu, X.; Wang, M.; Zhang, D.; Chen, F.; Peng, X.; Wang, L.; Tan, S.K. An XGBoost-SHAP Framework for Identifying Key Drivers of Urban Flooding and Developing Targeted Mitigation Strategies. Ecol. Indic. 2025, 175, 113579. [Google Scholar] [CrossRef]
- LeDell, E.; Poirier, S. H2O AutoML: Scalable automatic machine learning. In Proceedings of the 7th ICML Workshop on Automated Machine Learning (AutoML 2020), Vienna, Austria, 17–18 July 2020. [Google Scholar]
- Bansal, P.; Quan, S.J. Examining Temporally Varying Nonlinear Effects of Urban Form on Urban Heat Island Using Explainable Machine Learning: A Case of Seoul. Build. Environ. 2024, 247, 110957. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, W.; Zheng, Z.; Jiao, M.; Qian, Y. Interactions among spatial configuration aspects of urban tree canopy significantly affect its cooling effects. Sci. Total Environ. 2023, 864, 160929. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Chen, J.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Xie, M.; Chen, J.; Zhang, Q.; Li, H.; Fu, M.; Breuste, J. Dominant landscape indicators and their dominant areas influencing urban thermal environment based on structural equation model. Ecol. Indic. 2020, 111, 105992. [Google Scholar] [CrossRef]
- Li, C.; Fu, B.; Wang, S.; Stringer, L.C.; Wang, Y.; Li, Z.; Liu, Y.; Zhou, W. Drivers and impacts of changes in China’s drylands. Nat. Rev. Earth Environ. 2021, 2, 858–873. [Google Scholar] [CrossRef]
- Wu, W.; Li, L.; Li, C. Seasonal variation in the effects of urban environmental factors on land surface temperature in a winter city. J. Clean. Prod. 2021, 299, 126897. [Google Scholar] [CrossRef]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Cao, Q.; Luan, Q.; Liu, Y.; Wang, R. The effects of 2D and 3D building morphology on urban environments: A multi-scale analysis in the Beijing metropolitan region. Build. Environ. 2021, 192, 107635. [Google Scholar] [CrossRef]
- Scarano, M.; Mancini, F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution. Int. J. Remote Sens. 2017, 38, 6910–6929. [Google Scholar] [CrossRef]
- Li, H.; Zhou, Y.; Jia, G.; Zhao, K.; Dong, J. Quantifying the response of surface urban heat island to urbanization using the annual temperature cycle model. Geosci. Front. 2022, 13, 101141. [Google Scholar] [CrossRef]
- Li, H.; Wolter, M.; Wang, X.; Sodoudi, S. Impact of land cover data on the simulation of urban heat island for Berlin using WRF coupled with bulk approach of Noah-LSM. Theor. Appl. Climatol. 2018, 134, 67–81. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Zhang, G.J.; Gong, P.; Wei, L.; He, Y.; Li, L.; Wang, B. Effects of urbanization in China on the east Asian summer monsoon as revealed by two global climate models. J. Geophys. Res. Atmos. 2024, 129, e2023JD039737. [Google Scholar] [CrossRef]
- Lu, H.; Li, F.; Yang, G.; Sun, W. Multi-scale impacts of 2D/3D urban building pattern in intra-annual thermal environment of Hangzhou, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102558. [Google Scholar] [CrossRef]
- Chakraborty, T.; Venter, Z.S.; Qian, Y.; Lee, X. Lower urban humidity moderates outdoor heat stress. AGU Adv. 2022, 3, e2022AV000729. [Google Scholar] [CrossRef]
- He, B.-J.; Fu, X.; Zhao, Z.; Chen, P.; Sharifi, A.; Li, H. Capability of LCZ Scheme to Differentiate Urban Thermal Environments in Five Megacities of China: Implications for Integrating LCZ System into Heat-Resilient Planning and Design. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 18800–18817. [Google Scholar] [CrossRef]
Category | Indicators | Description |
---|---|---|
2D | Impervious Surface Area (ISA) | Percentage of impervious surface |
Building coverage ratio (BCR) | Horizontal space of the building | |
Normalized Difference Vegetation Index (NDVI) | Quantifying the vegetation coverage and health status | |
3D | Building height (BH) | Mean height of the buildings |
Mean building volume (MBV) | Total building volume divided by its number | |
Frontal area index (FAI) | Frontal area per unit horizontal area per unit height increment | |
Sky view factor (SVF) | Fraction of the hemisphere occupied by sky |
Model_id | RMSE | MSE | Model_id | RMSE | MSE |
---|---|---|---|---|---|
Spring | Summer | ||||
GBM_1_AutoML | 1.323 | 1.752 | GBM_5_AutoML | 2.075 | 4.307 |
GBM_grid_1_AutoML_model_1 | 1.323 | 1.752 | GBM_2_AutoML | 2.079 | 4.325 |
GBM_2_AutoML | 1.324 | 1.753 | GBM_1_AutoML | 2.082 | 4.334 |
GBM_3_AutoML | 1.325 | 1.757 | GBM_grid_1_AutoML_model_1 | 2.085 | 4.349 |
GBM_grid_1_AutoML_model_3 | 1.326 | 1.758 | GBM_3_AutoML | 2.086 | 4.350 |
GBM_5_AutoML | 1.326 | 1.758 | GBM_grid_1_AutoML_model_3 | 2.091 | 4.376 |
GBM_4_AutoML | 1.335 | 1.783 | GBM_4_AutoML | 2.100 | 4.414 |
DRF_1_AutoML | 1.337 | 1.788 | GBM_grid_1_AutoML_model_2 | 2.102 | 4.419 |
XRT_1_AutoML | 1.338 | 1.792 | XRT_1_AutoML | 2.106 | 4.438 |
GBM_grid_1_AutoML_model_2 | 1.340 | 1.796 | DRF_1_AutoML | 2.112 | 4.463 |
Autumn | Winter | ||||
GBM_2_AutoML | 0.832 | 0.692 | GBM_5_AutoML | 0.979 | 0.959 |
GBM_5_AutoML | 0.833 | 0.694 | GBM_grid_1_AutoML_model_1 | 0.980 | 0.962 |
GBM_1_AutoML | 0.836 | 0.699 | GBM_3_AutoML | 0.981 | 0.963 |
GBM_grid_1_AutoML_model_1 | 0.836 | 0.699 | GBM_1_AutoML | 0.981 | 0.963 |
GBM_grid_1_AutoML_model_3 | 0.836 | 0.699 | GBM_2_AutoML | 0.982 | 0.964 |
GBM_3_AutoML | 0.837 | 0.700 | GBM_grid_1_AutoML_model_3 | 0.984 | 0.969 |
GBM_4_AutoML | 0.838 | 0.702 | GBM_4_AutoML | 0.986 | 0.974 |
XRT_1_AutoML | 0.839 | 0.704 | XRT_1_AutoML | 0.989 | 0.979 |
DRF_1_AutoML | 0.842 | 0.710 | DRF_1_AutoML | 0.992 | 0.985 |
GBM_grid_1_AutoML_model_2 | 0.851 | 0.724 | GBM_grid_1_AutoML_model_2 | 0.993 | 0.985 |
Seasons | AutoML (Best Model) | RF | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
Spring | 0.46 | 1.30 | 0.43 | 1.43 |
Summer | 0.52 | 2.10 | 0.47 | 2.28 |
Autumn | 0.40 | 1.08 | 0.38 | 1.10 |
Winter | 0.26 | 0.93 | 0.24 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Shen, L.; Fei, W.; Liu, Y.; Zhao, H.; Liu, L.; Wang, A.; He, B.-J. Seasonal Effects of Urban Morphology on the Thermal Environment Based on Automated Machine Learning: A Case Study of Beijing. Remote Sens. 2025, 17, 3150. https://doi.org/10.3390/rs17183150
Wang N, Shen L, Fei W, Liu Y, Zhao H, Liu L, Wang A, He B-J. Seasonal Effects of Urban Morphology on the Thermal Environment Based on Automated Machine Learning: A Case Study of Beijing. Remote Sensing. 2025; 17(18):3150. https://doi.org/10.3390/rs17183150
Chicago/Turabian StyleWang, Ni, Lidu Shen, Wenli Fei, Yage Liu, Hujia Zhao, Luyao Liu, Anzhi Wang, and Bao-Jie He. 2025. "Seasonal Effects of Urban Morphology on the Thermal Environment Based on Automated Machine Learning: A Case Study of Beijing" Remote Sensing 17, no. 18: 3150. https://doi.org/10.3390/rs17183150
APA StyleWang, N., Shen, L., Fei, W., Liu, Y., Zhao, H., Liu, L., Wang, A., & He, B.-J. (2025). Seasonal Effects of Urban Morphology on the Thermal Environment Based on Automated Machine Learning: A Case Study of Beijing. Remote Sensing, 17(18), 3150. https://doi.org/10.3390/rs17183150