Assessing the Impacts of Marine Ranching Construction on Water Quality and Fishery Resources in Adjacent Coastal Waters
Abstract
Highlights
- By integrating satellite remote sensing data with in-situ water quality sampling data, this study conducted water quality parameter retrieval before and after the construction of the marine ranch. The SVR model exhibited relatively superior inversion performance. SHAP analysis revealed that the contribution pathways of optical and non-optical sensitive parameters differed significantly.
- This study quantified the impact of artificial reef deployment on surrounding fishery resources and water quality parameters. Following the placement of 38,048 m3 of artificial reefs near Wailingding Island in Zhuhai, fishery resources increased by 318 kg/km2 in spring and 660 kg/km2 in autumn. Moreover, the deployment may have influenced concentrations of Chla, DO, COD, and PO4-P in surface waters within a radius of approximately 10 km.
- This study identified the optimal model and key spectral bands for water quality parameter inversion in the waters adjacent to Wailingding Island’s marine ranch. These findings provide a scientific reference for the future optimization and upgrading of remote sensing models for water quality assessment, as well as for ecological environment monitoring and fishery resource prediction in related regions.
- The results offer essential data support for calculating the input-output ratio of marine ranches. This contributes to a scientific evaluation of the economic and ecological benefits of marine ranch construction, helping managers avoid blind planning caused by uncertainties in the extent and degree of environmental impacts, and laying a foundation for environmentally sustainable marine ranch management.
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Processing
2.2. Data Analysis
3. Results
3.1. In-Site Survey Results
3.2. Statistical Analysis of Survey Results and Satellite Bands
3.3. Establishment of Water Quality Parameter Inversion Model
3.4. Water Quality Evaluation Analysis Based on SHAP Decision Plots
3.5. Application of the Optimized Water Quality Parameter Evaluation Model
3.6. Fishery Resources Assessment Based on Water Quality Parameters
4. Discussion
4.1. Evaluation of Water Quality Parameter Assessment Models
4.2. Changes in Fishery Resources and Water Quality Parameters Before and After Reef Deployment
4.3. Decision Making for Artificial Reef Deployment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiao, M.; Yue, W.; Suo, A.; Zhang, L.; Li, H.; Xu, P.; Ding, D. Construction and influencing factors of an early warning system for marine ranching ecological security: Experience from China’s coastal areas. J. Environ. Manag. 2023, 335, 117515. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, X.; Zhang, S.; Lin, J. Marine Ranching Construction and Management in East China Sea: Programs for Sustainable Fishery and Aquaculture. Water 2019, 11, 1237. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, L. Evolution of marine ranching policies in China: Review, performance and prospects. Sci. Total Environ. 2020, 737, 139782. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, X.; Zeng, C.; Frankstone, T.; Cao, L. Characterizing the development of Sea ranching in China. Rev. Fish Biol. Fish. 2022, 32, 783–803. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W. Maximum sustainable yield estimation of enhancement species with the characteristics of movement inside and outside marine ranching. J. Ocean Limnol. 2021, 39, 2380–2387. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Cao, Y.; Sun, J.; Wen, B.; Gao, X.; Wang, G.; Gong, L.; Liu, H.; Li, Q.; et al. Marine ranching enhances ecosystem stability and biological carbon sequestration potential: Insights from Ecopath with Ecosim model simulation of 30-year ecological path of a national marine ranching in China. Front. Mar. Sci. 2025, 12, 1583896. [Google Scholar] [CrossRef]
- Wang, X.; Ren, J.S.; Zhong, Y.; Wu, W.; Liu, Y.; Jiang, Y.; Zhang, J. A dynamic energy budget model for black rockfish Sebastes schlegelii: Parameterization and application in marine ranching areas, Yellow Sea, China. Ocean Coast. Manag. 2023, 245, 106852. [Google Scholar] [CrossRef]
- Qin, M.; Wang, X.; Du, Y. Factors affecting marine ranching risk in China and their hierarchical relationships based on DEMATEL, ISM, and BN. Aquaculture 2022, 549, 737802. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, M.; Yin, Z.; Niu, K.; Li, Y.; Zhi, K.; Huang, S.; Yang, J.; Xu, M. Tripartite evolutionary game analysis and simulation research on zero-carbon production supervision of marine ranching against a carbon-neutral background. Front. Ecol. Evol. 2023, 11, 1119048. [Google Scholar] [CrossRef]
- Le, C.Y.; Feng, J.C.; Sun, L.; Yuan, W.; Wu, G.; Zhang, S.; Yang, Z. Co-benefits of carbon sink and low carbon food supply via shellfish and algae farming in China from 2003 to 2020. J. Clean. Prod. 2023, 414, 137436. [Google Scholar] [CrossRef]
- Yu, L.; Zhu, J.; Guan, X.; Zhai, L.; Zhao, Z.; Mu, Y.; Liu, T. Carbon sink efficiency of Chinese mollusk mariculture. Aquaculture 2025, 596, 741781. [Google Scholar] [CrossRef]
- Zhang, Y.; Ou, Z.; Tweedley, J.R.; Loneragan, N.R.; Zhang, X.; Tian, T.; Wu, Z. Evaluating the effectiveness of baited video and traps for quantifying the mobile fauna on artificial reefs in northern China. J. Exp. Mar. Biol. Ecol. 2024, 573, 152001. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Z.; Zhang, S.; Cai, P.; Mao, J.; Li, J. Nursing Effects of Large-Scale Floating Raft Aquaculture Habitats on Conger myriaster: A Perspective from Marine Ranching. Water 2025, 17, 431. [Google Scholar] [CrossRef]
- Tang, S.; Xu, P.; Zhang, S.; Yin, Y.; Liang, J.; Jiang, Y.; Xu, K.; Li, J.; Feng, J.; Gao, J. An idea for marine ranching planning based on ocean currents and its practice in Zhongjieshan Archipelago National Marine Ranching, China. Aquaculture 2025, 596, 741780. [Google Scholar] [CrossRef]
- Fang, G.; Yu, H.; Sheng, H.; Tang, Y.; Liang, Z. Comparative analysis of microbial communities between water and sediment in Laoshan Bay marine ranching with varied aquaculture activities. Mar. Pollut. Bull. 2021, 173 Pt A, 112990. [Google Scholar] [CrossRef]
- Qin, C.; Chen, P.; Zhang, A.; Feng, X.; Yuan, H.; Li, X.; Yu, J.; Leber, K.M. Impacts of marine ranching construction on sediment pore water characteristic and nutrient flux across the sediment-water interface in a subtropical marine ranching (Zhelin Bay, China). Appl. Ecol. Environ. Res. 2018, 16, 163–179. [Google Scholar] [CrossRef]
- Lee, S.I.; Zhang, C.I. Evaluation of the Effect of Marine Ranching Activities on the Tongyeong Marine Ecosystem. Ocean Sci. J. 2018, 53, 557–582. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, Z.; Zhang, S.; Zhao, X.; Lin, J.; Huang, H.; Chen, Y.; Zou, Q. Analysis of short-term and local scale variations in fish community structure in Dachen Island waters. Front. Mar. Sci. 2023, 10, 1199524. [Google Scholar] [CrossRef]
- Lee, J.; Nam, J. Lessons and Outcomes from the Marine Ranching Program in Korea. J. Korean Isl. 2020, 32, 179–199. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, X.; Wang, K.; Li, J.; Zhao, J.; Zhao, X.; Guo, Y.; Liu, S.; Cheng, X. Review of marine livestock ecological urbanization hypothesis and marine ranching construction key-technology against blue growth background. J. Fish. China 2019, 43, 81–96. [Google Scholar]
- Du, Y.-W.; Jiang, J.; Li, C.-H. Ecological efficiency evaluation of marine ranching based on the Super-SBM model: A case study of Shandong. Ecol. Indic. 2021, 131, 108174. [Google Scholar] [CrossRef]
- Seaman, W. Artificial habitats and the restoration of degraded marine ecosystems and fisheries. Hydrobiologia 2007, 580, 143–155. [Google Scholar] [CrossRef]
- United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- State Council of the People’s Republic of China. Outline of the Fourteenth Five—Year Plan for National Economic and Social Development of the People’s Republic of China and the Vision for 2035; The State Council of the People’s Republic of China: Beijing, China, 2021.
- Du, Y.-W.; Huang, Y.-N. Evaluation of marine ranching socio-ecological system resilience in China. Reg. Stud. Mar. Sci. 2024, 77, 103658. [Google Scholar] [CrossRef]
- Kitada, S. Economic, ecological and genetic impacts of marine stock enhancement and sea ranching: A systematic review. Fish Fish. 2018, 19, 511–532. [Google Scholar] [CrossRef]
- Zeng, L.; Tang, Z.; Chen, P.; Yu, J.; Chen, G. Optimization of fishery resources assessment methods and ecological effects evaluation of artificial reefs. Mar. Biol. Res. 2021, 17, 72–85. [Google Scholar] [CrossRef]
- Rizzi, J.; Torresan, S.; Critto, A.; Zabeo, A.; Brigolin, D.; Carniel, S.; Pastres, R.; Marcomini, A. Climate change impacts on marine water quality: The case study of the Northern Adriatic sea. Mar. Pollut. Bull. 2016, 102, 271–282. [Google Scholar] [CrossRef]
- Leftheriotis, G.A.; Sibetheros, I.A.; Dimas, A.A. Large-eddy simulation of the turbulent oscillatory flow around an artificial reef. Ocean Eng. 2025, 318, 120142. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, S.; Feng, Z.; Lu, J.; Fu, G.; Yu, W. The ecological risk and fate of microplastics in the environmental matrices of marine ranching area in coastal water. J. Hazard. Mater. 2024, 473, 134570. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, L.; Liang, Z.; Sun, L.; Nie, Z.; Wang, J.; Xie, W.; Jiang, Z. Numerical Study of Efficiency Indices to Evaluate the Effect of Layout Mode of Artificial Reef Unit on Flow Field. J. Mar. Sci. Eng. 2021, 9, 770. [Google Scholar] [CrossRef]
- Inoue, N.; Nambu, R.; Kuwahara, H.; Kuwamoto, J.; Yokoyama, J.; Kanaiwa, M. The present situation of utilization and the effects of artificial reefs on the resource density of Japanese butterfish Hyperoglyphe japonica and red seabream Pagrus major in the waters of the Iki Islands, Nagasaki, Japan. Nippon Suisan Gakkaishi 2018, 84, 1010–1016. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, P.; Ding, D.; Suo, A.; Xie, M.; Zhang, L.; Yue, W.; He, W. Trophic structure of fishes and macroinvertebrates in relation to environmental indicators in artificial reef ecosystems of Pearl River Estuary. Ecol. Indic. 2022, 138, 108823. [Google Scholar] [CrossRef]
- Meshesha, T.W.; Wang, J.; Melaku, N.D. Modelling spatiotemporal patterns of water quality and its impacts on aquatic ecosystem in the cold climate region of Alberta, Canada. J. Hydrol. 2020, 587, 124952. [Google Scholar] [CrossRef]
- Scapin, L.; Zucchetta, M.; Pranovi, F.; Franzoi, P. Influence of Seascape on Coastal Lagoon Fisheries: The Role of Habitat Mosaic in the Venice Lagoon. Estuaries Coasts 2022, 45, 793–811. [Google Scholar]
- Harris, J.M.; Vinobaba, P.; Kularatne, R.K.A.; Khan, S.A. Fish diversity and assemblage in the Batticaloa lagoon, Sri Lanka. J. Fish. Biol. 2023, 102, 773–793. [Google Scholar] [CrossRef]
- GB17378-2007; The Specification for Marine Monitoring. Standards Press of China: Beijing, China, 2007.
- GB/T 12763.6-2007; General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, & Standardization Administration of the People’s Republic of China. Specifications for Oceanographic Survey Part 6: Marine Biological Survey (S). Standards Press of China: Beijing, China, 2007.
- Chen, J.; Wang, K.; Li, X.; Zhao, X.; Cheng, X.; Liu, Z.; Zhang, J.; Zhang, S. Remote sensing inversion of water quality parameters (TSM, Chl-a, and CDOM) in subtidal seaweed beds and surrounding waters. Ecol. Indic. 2024, 167, 112716. [Google Scholar] [CrossRef]
- Banse, K.; Naqvi, S.W.A.; Narvekar, P.V.; Postel, J.R.; Jayakumar, D.A. Oxygen minimum zone of the open Arabian Sea: Variability of oxygen and nitrite from daily to decadal timescales. Biogeosciences 2014, 11, 2237–2261. [Google Scholar] [CrossRef]
- Fujimori, K.; Ma, W.; Moriuchi-Kawakami, T.; Shibutani, Y.; Takenaka, N.; Bandow, H.; Maeda, Y. Chemiluminescence Method with Potassium Permanganate for the Determination of Organic Pollutants in Seawater. Anal. Sci. 2001, 17, 975–978. [Google Scholar] [CrossRef] [PubMed]
- Altahan, M.F.; Esposito, M.; Achterberg, E.P. Improvement of On-Site Sensor for Simultaneous Determination of Phosphate, Silicic Acid, Nitrate plus Nitrite in Seawater. Sensors 2022, 22, 3479. [Google Scholar] [CrossRef] [PubMed]
- Kronbak, L.G.; Nielsen, J.R.; Jørgensen, O.A.; Vestergaard, N. Bio-economic evaluation of implementing trawl fishing gear with different selectivity. J. Environ. Manag. 2009, 90, 3665–3674. [Google Scholar] [CrossRef]
- Frazier, A.E.; Hemingway, B.L. A Technical Review of Planet Smallsat Data: Practical Considerations for Processing and Using PlanetScope Imagery. Remote Sens. 2001, 13, 3930. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, C.K.; Wang, Z.; Wang, J.; Gu, Y.; Xie, J.; Law, Y.K.; Song, G.; Bonebrake, T.C.; Yang, X.; et al. Evaluating fine-scale phenology from PlanetScope satellites with ground observations across temperate forests in eastern North America. Remote Sens. Environ. 2022, 283, 113310. [Google Scholar] [CrossRef]
- Roy, D.P.; Huang, H.; Houborg, R.; Martins, V.S. A global analysis of the temporal availability of PlanetScope high spatial resolution multi-spectral imagery. Remote Sens. Environ. 2021, 264, 112586. [Google Scholar] [CrossRef]
- Zhu, L.; Cui, T.; Runa, A.; Pan, X.; Zhao, W.; Xiang, J.; Cao, M. Robust remote sensing retrieval of key eutrophication indicators in coastal waters based on explainable machine learning. ISPRS J. Photogramm. Remote Sens. 2024, 211, 262–280. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Wu, D.; Xu, D.; Meng, Q.; Zhou, F.; Zheng, M.; Zheng, H. Subsurface hypoxia observation in the Changjiang estuary based on a wave-driven profiler, satellite data, and machine learning. J. Geophys. Res. Ocean. 2025, 130, e2024JC022142. [Google Scholar] [CrossRef]
- Qin, T.; Liang, T.; Fan, D.; He, H.; Lan, G.; Fu, B. A novel hybrid machine learning approach for accurate retrieval of ocean surface chlorophyll-a across oligotrophic to eutrophic waters. Environ. Res. 2025, 279 Pt 2, 121864. [Google Scholar] [CrossRef]
- Kalu, I.; Ndehedehe, C.E.; Okwuashi, O.; Eyoh, A.E.; Ferreira, V.G. Reconstructing terrestrial water storage anomalies using convolution-based support vector machine. J. Hydrol. Reg. Stud. 2023, 46, 101326. [Google Scholar] [CrossRef]
- Poursaeid, M.; Poursaeed, A.H.; Shabanlou, S. Water Resources Quality Indicators Monitoring by Nonlinear Programming and Simulated Annealing Optimization with Ensemble Learning Approaches. Water Resour. Manag. 2025, 39, 1073–1087. [Google Scholar] [CrossRef]
- Zhou, F.; Lu, X.; Chen, F.; Zhu, Q.; Meng, Y.; Chen, C.; Lao, Q.; Zhang, S. Spatial-Monthly Variations and Influencing Factors of Dissolved Oxygen in Surface Water of Zhanjiang Bay, China. J. Mar. Sci. Eng. 2020, 8, 403. [Google Scholar] [CrossRef]
- Omoni, V.T.; Bankole, P.O.; Omoche, O.; Obida, C.; Igben, C.; Stephen, O.E.; Ogwo, E.I.; Torjir, D.N. Evaluation of the effects of abattoir effluent on the physicochemical and bacteriological quality of River Benue, Nigeria. Environ. Monit. Assess. 2023, 195, 146. [Google Scholar] [CrossRef]
- Azizpour, J.; Manbohi, A.; Rahnama, R.; Hamzepour, A.; Bastami, K.D.; Bagheri, H.; Taheri, M.; Farjami, H.; Mehdinia, A. Environmental impacts of fish cage cultures in the southern Caspian Sea. Environ. Res. 2025, 266, 120574. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Feng, Y.; He, H.; Wang, L.; Ji, Y.; Wang, B.; Chen, B.; He, S.; Feng, Y.; Xue, L.; Xing, B. Hydrothermal carbonization aqueous phase applied to the rice paddy: Interaction between soil DOM and bacterial community on runoff water quality. Chem. Eng. J. 2025, 512, 162495. [Google Scholar] [CrossRef]
- Majnooni, S.; Fooladi, M.; Nikoo, M.R.; Al-Rawas, G.; Haghighi, A.T.; Nazari, R.; Al-Wardy, M.; Gandomi, A.H. Smarter water quality monitoring in reservoirs using interpretable deep learning models and feature importance analysis. J. Water Process Eng. 2024, 60, 105187. [Google Scholar] [CrossRef]
- Zhang, S.; Li, M.; Zhu, J.; Xu, S.; Chen, Z. Diversity in habitat use by the East Asian fourfinger threadfin Eleutheronema rhadinum revealed by otolith Sr:Ca and Ba:Ca profiles. Aquat. Biol. 2022, 31, 89–97. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, J.; Chen, J.; Zeng, J.; Hu, Y.; Wang, K.; Zhang, S. The impact of dissolved oxygen and sediments on the decomposition of Sargassum thunbergii. Mar. Biol. 2025, 172, 28. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Y.; Tang, H.; Zhang, Q.; Cui, C.; Qin, B. Water quality improvements and ecological inertia: A basin-wide assessment of ecosystem recovery in the Yangtze River system (2005–2022). Ecol. Indic. 2025, 176, 113700. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, C.; Xian, W.; Pauly, D. Drivers of spatiotemporal community variations in estuarine ecosystems: A case study of the waters adjacent to the Yangtze Estuary. Mar. Pollut. Bull. 2025, 217, 118078. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.; Haniffa, M.A.; Arunachalam, M. Abundance and diversity of macroinvertebrates and fish in the Tamiraparani river, South India. Hydrobiologia 2000, 430, 59–75. [Google Scholar] [CrossRef]
- Santos, M.N.; Monteiro, C.C. A fourteen-year overview of the fish assemblages and yield of the two oldest Algarve artificial reefs (southern Portugal). Hydrobiologia 2007, 580, 225–231. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, L.; Yu, J.; Chen, P.; Li, Z.; Yang, W. Evaluation of the ecological carrying capacity of Wailingding marine ranching in Zhuhai, China by high-resolution remote sensing. Front. Mar. Sci. 2024, 11, 1354407. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Yin, Z.; Si, Z.; Li, Q.; Saitoh, S.-I. Evaluation of the Pacific oyster marine aquaculture suitability in Shandong, China based on GIS and remote sensing. Front. Mar. Sci. 2024, 11, 1402528. [Google Scholar] [CrossRef]
- Layman, C.A.; Allgeier, J.E.; Yeager, L.A.; Stoner, E.W. Thresholds of ecosystem response to nutrient enrichment from fish aggregations. Ecology 2013, 94, 530–536. [Google Scholar] [CrossRef]
- Hylkema, A.; Debrot, A.O.; Osinga, R.; Bron, P.S.; Heesink, D.B.; Izioka, A.K.; Reid, C.B.; Rippen, J.C.; Treibitz, T.; Yuval, M.; et al. Fish assemblages of three common artificial reef designs during early colonization. Ecol. Eng. 2020, 157, 105994. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, P.; Meng, F.; Yang, X.; Xu, J.; Cui, Y. Estimation algorithm for chlorophyll-a concentrations in water from hyperspectral images based on feature derivation and ensemble learning. Ecol. Inform. 2022, 71, 101783. [Google Scholar] [CrossRef]
- Yang, J.; Deng, R.; Ma, Y.; Li, J.; Guo, Y.; Lei, C. Satellite Retrieval and Spatiotemporal Variability in Chlorophyll-a for Marine Ranching: An Example from Daya Bay, Guangdong Province, China. Water 2025, 17, 780. [Google Scholar] [CrossRef]
Species | Resource Density (kg/km2) | Resource Density of Bycatch (ind/km2) | ||||
---|---|---|---|---|---|---|
Constructed Area | Control Area | Constructed Area | Control Area | Constructed Area | Control Area | |
202004 | 12 | 19 | 181.310 | 212.265 | 12,994.6 | 12,816.6 |
202404 | 29 | 54 | 499.252 | 169.511 | 11,408.1 | 5596.4 |
202009 | 18 | 16 | 275.185 | 255.412 | 24,169.5 | 16,391.5 |
202411 | 34 | 26 | 935.522 | 456.385 | 38,615.6 | 13,742.8 |
Variable | VIF |
---|---|
Chla | 15.93 |
DO | 19.07 |
COD | 6.18 |
PO4-P | 7.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Feng, X.; Guo, C.; Chen, Y.; Tong, F.; Zhang, L.; Liu, Z.; Zhang, J.; Yuan, H.; Chen, P. Assessing the Impacts of Marine Ranching Construction on Water Quality and Fishery Resources in Adjacent Coastal Waters. Remote Sens. 2025, 17, 3140. https://doi.org/10.3390/rs17183140
Chen J, Feng X, Guo C, Chen Y, Tong F, Zhang L, Liu Z, Zhang J, Yuan H, Chen P. Assessing the Impacts of Marine Ranching Construction on Water Quality and Fishery Resources in Adjacent Coastal Waters. Remote Sensing. 2025; 17(18):3140. https://doi.org/10.3390/rs17183140
Chicago/Turabian StyleChen, Jianqu, Xue Feng, Chunya Guo, Yuxiang Chen, Fei Tong, Lei Zhang, Zhangbin Liu, Jian Zhang, Huanrong Yuan, and Pimao Chen. 2025. "Assessing the Impacts of Marine Ranching Construction on Water Quality and Fishery Resources in Adjacent Coastal Waters" Remote Sensing 17, no. 18: 3140. https://doi.org/10.3390/rs17183140
APA StyleChen, J., Feng, X., Guo, C., Chen, Y., Tong, F., Zhang, L., Liu, Z., Zhang, J., Yuan, H., & Chen, P. (2025). Assessing the Impacts of Marine Ranching Construction on Water Quality and Fishery Resources in Adjacent Coastal Waters. Remote Sensing, 17(18), 3140. https://doi.org/10.3390/rs17183140