Data-Driven Prediction of Deep-Sea Near-Seabed Currents: A Comparative Analysis of Machine Learning Algorithms
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methods
2.2.1. Autoregressive Integrated Moving Average Model, ARIMA
2.2.2. Long Short-Term Memory Network, LSTM
2.2.3. eXtreme Gradient Boosting, XGBoost
2.2.4. Support Vector Regression, SVR
2.2.5. Forecasting Methodology
- (1)
- Given initial sequence U0 = {u1, u2, …, un}, predict un+1;
- (2)
- For subsequent prediction un+2:
- (i)
- Replace un+1 with its observed value un+1 (true);
- (ii)
- Remove the oldest entry u1;
- (iii)
- Form updated sequence U1 = {u2, …, un+1 (true)};
- (3)
- Repeat iteratively to generate 96 predictions.
- (1)
- Using U0, predict three consecutive values (un+1, un+2, un+3);
- (2)
- Update sequence by
- (i)
- Replacing predictions with observed values (un+1 (true), un+2 (true), un+3 (true));
- (ii)
- Removing three oldest entries (u1, u2, u3);
- (iii)
- Forming U1 = {u4, …, un+1 (true), …, un+3 (true)};
- (3)
- Predict next three values (un+4, un+5, un+6) using U1;
- (4)
- Continue until 96 predictions are generated.
2.2.6. Evaluation Metrics
3. Results
3.1. Rolling Forecasts
3.2. Updating Forecasts
3.3. Data Updates Based on Lead Times
4. Discussion
- (1)
- Under the rolling forecast framework, LSTM achieves optimal zonal current prediction at 48 h windows. For meridional currents, models capture broad trends at 24 h or longer windows but exhibited intermittent current reversals.
- (2)
- LSTM and ARIMA models demonstrate superior predictive performance in near-seabed current forecasting compared to other approaches, highlighting LSTM’s capacity to capture long-term dependencies and process complex nonlinear patterns, while leveraging ARIMA’s parametric advantages in modeling univariate time series.
- (3)
- The 3 h ahead forecast optimally balances operational needs and error control, serving as the ideal solution for dynamic current management.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BPEA | Beijing Pioneer polymetallic nodule Exploration Area |
AIC | Akaike Information Criterion |
ANN | Artificial Neural Network |
AR | Autoregressive |
ARIMA | Autoregressive Integrated Moving Average Model |
GBDT | Gradient Boosting Decision Tree |
GEBCO | General Bathymetric Chart of the Oceans |
LSTM | Long Short-Term Memory Network |
MA | Moving average |
MAE | Mean absolute error |
MedAE | Median absolute error |
RMSE | Root mean squared error |
R2 | R-squared |
SSC-net | The Network for the Prediction of Sea Surface Currents |
SVM | Support Vector Machines |
SVR | Support Vector Regression |
XGBoost | eXtreme Gradient Boosting |
References
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-Ocean Mineral Deposits as a Source of Critical Metals for High- and Green-Technology Applications: Comparison with Land-Based Resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Ouillon, R.; Muñoz-Royo, C.; Alford, M.H.; Peacock, T. Advection-Diffusion-Settling of Deep-Sea Mining Sediment Plumes. Part 1: Midwater Plumes. Flow 2022, 2, E22. [Google Scholar] [CrossRef]
- Ouillon, R.; Muñoz-Royo, C.; Alford, M.H.; Peacock, T. Advection–Diffusion Settling of Deep-Sea Mining Sediment Plumes. Part 2. Collector Plumes. Flow 2022, 2, E23. [Google Scholar] [CrossRef]
- Washburn, T.W.; Turner, P.J.; Durden, J.M.; Jones, D.O.B.; Weaver, P.; Van Dover, C.L. Ecological Risk Assessment for Deep-Sea Mining. Ocean Coast. Manag. 2019, 176, 24–39. [Google Scholar] [CrossRef]
- Aleynik, D.; Inall, M.E.; Dale, A.; Vink, A. Impact of Remotely Generated Eddies on Plume Dispersion at Abyssal Mining Sites in the Pacific. Sci. Rep. 2017, 7, 16959. [Google Scholar] [CrossRef]
- Gillard, B.; Purkiani, K.; Chatzievangelou, D.; Vink, A.; Iversen, M.H.; Thomsen, L. Physical and Hydrodynamic Properties of Deep Sea Mining-Generated, Abyssal Sediment Plumes in the Clarion Clipperton Fracture Zone (Eastern-Central Pacific). Elem. Sci. Anthr. 2019, 7, 5. [Google Scholar] [CrossRef]
- Fuchida, S.; Yokoyama, A.; Fukuchi, R.; Ishibashi, J.; Kawagucci, S.; Kawachi, M.; Koshikawa, H. Leaching of Metals and Metalloids from Hydrothermal Ore Particulates and Their Effects on Marine Phytoplankton. ACS Omega 2017, 2, 3175–3182. [Google Scholar] [CrossRef]
- Hu, V.J.H. Ingestion of Deep-Sea Mining Discharge by Five Species of Tropical Copepods. Water Air Soil Pollut. 1981, 15, 433–440. [Google Scholar] [CrossRef]
- Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Arbizu, P.M.; et al. Biological Responses to Disturbance from Simulated Deep-Sea Polymetallic Nodule Mining. PLoS ONE 2017, 12, e0171750. [Google Scholar] [CrossRef]
- Robison, B.H. Conservation of Deep Pelagic Biodiversity. Conserv. Biol. 2009, 23, 847–858. [Google Scholar] [CrossRef]
- Wilber, D.H.; Clarke, D.G. Biological Effects of Suspended Sediments: A Review of Suspended Sediment Impacts on Fish and Shellfish with Relation to Dredging Activities in Estuaries. N. Am. J. Fish. Manag. 2001, 21, 855–875. [Google Scholar] [CrossRef]
- Ouillon, R.; Kakoutas, C.; Meiburg, E.; Peacock, T. Gravity Currents from Moving Sources. J. Fluid Mech. 2021, 924, A43. [Google Scholar] [CrossRef]
- Muñoz-Royo, C.; Ouillon, R.; El Mousadik, S.; Alford, M.H.; Peacock, T. An in Situ Study of Abyssal Turbidity-Current Sediment Plumes Generated by a Deep Seabed Polymetallic Nodule Mining Preprototype Collector Vehicle. Sci. Adv. 2022, 8, eabn1219. [Google Scholar] [CrossRef]
- Vendettuoli, D.; Clare, M.A.; Sumner, E.J.; Cartigny, M.J.B.; Talling, P.; Wood, J.; Bailey, L.; Azpiroz-Zabala, M.; Paull, C.K.; Gwiazda, R.; et al. Global Monitoring Data Shows Grain Size Controls Turbidity Current Structure. Earth Space Sci. Open Res. Arch. 2020. [Google Scholar]
- Weaver, P.P.E.; Aguzzi, J.; Boschen-Rose, R.E.; Colaço, A.; De Stigter, H.; Gollner, S.; Haeckel, M.; Hauton, C.; Helmons, R.; Jones, D.O.B.; et al. Assessing Plume Impacts Caused by Polymetallic Nodule Mining Vehicles. Mar. Policy 2022, 139, 105011. [Google Scholar] [CrossRef]
- Lee, W.Y.; Li, A.C.Y.; Lee, J.H.W. Structure of a Horizontal Sediment-Laden Momentum Jet. J. Hydraul. Eng. 2013, 139, 124–140. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The Regional Oceanic Modeling System (ROMS): A Split-Explicit, Free-Surface, Topography-Following-Coordinate Oceanic Model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Farrara, J.D.; Chao, Y.; Li, Z.; Wang, X.; Jin, X.; Zhang, H.; Li, P.; Vu, Q.; Olsson, P.Q.; Schoch, G.C.; et al. A Data-Assimilative Ocean Forecasting System for the Prince William Sound and an Evaluation of Its Performance during Sound Predictions 2009. Cont. Shelf Res. 2013, 63, S193–S208. [Google Scholar] [CrossRef]
- Bolaños, R.; Tornfeldt Sørensen, J.V.; Benetazzo, A.; Carniel, S.; Sclavo, M. Modelling Ocean Currents in the Northern Adriatic Sea. Cont. Shelf Res. 2014, 87, 54–72. [Google Scholar] [CrossRef]
- Thongniran, N.; Vateekul, P.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P. Spatio-Temporal Deep Learning for Ocean Current Prediction Based on HF Radar Data. In Proceedings of the 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE), Chonburi, Thailand, 10–12 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 254–259. [Google Scholar]
- Bayındır, C. Predicting the ocean currents using deep learning. TWMS J. Appl. Eng. Math. 2023, 13, 373–385. [Google Scholar]
- Dauji, S.; Deo, M.C.; Bhargava, K. Prediction of Ocean Currents with Artificial Neural Networks. ISH J. Hydraul. Eng. 2015, 21, 14–27. [Google Scholar] [CrossRef]
- Immas, A.; Do, N.; Alam, M.-R. Real-Time in Situ Prediction of Ocean Currents. Ocean Eng. 2021, 228, 108922. [Google Scholar] [CrossRef]
- Kusnanti, E.A.; Novitasari, D.C.R.; Setiawan, F.; Fanani, A.; Hafiyusholeh, M.; Permata Sari, G.I. Predicting Velocity and Direction of Ocean Surface Currents Using Elman Recurrent Neural Network Method. J. Inf. Syst. Eng. Bus. Intell. 2022, 8, 21–30. [Google Scholar] [CrossRef]
- Chae, J.; Jin, H.; Chang, I.; Kim, Y.H.; Park, Y.; Kim, Y.T.; Kang, B.; Kim, M.; Ju, H.; Park, J. Prediction of Sea Surface Current Around the Korean Peninsula Using Artificial Neural Networks. J. Geophys. Res. Mach. Learn. Comput. 2024, 1, e2024JH000168. [Google Scholar] [CrossRef]
- Ren, L.; Hu, Z.; Hartnett, M. Short-Term Forecasting of Coastal Surface Currents Using High Frequency Radar Data and Artificial Neural Networks. Remote Sens. 2018, 10, 850. [Google Scholar] [CrossRef]
- Saha, D.; Deo, M.C.; Joseph, S.; Bhargava, K. A Combined Numerical and Neural Technique for Short Term Prediction of Ocean Currents in the Indian Ocean. Env. Syst. Res. 2016, 5, 4. [Google Scholar] [CrossRef]
- Rozier, D.; Birol, F.; Cosme, E.; Brasseur, P.; Brankart, J.M.; Verron, J. A Reduced-Order Kalman Filter for Data Assimilation in Physical Oceanography. SIAM Rev. 2007, 49, 449–465. [Google Scholar] [CrossRef]
- GEBCO Compilation Group. GEBCO 2024 Grid. 2024. Available online: https://www.gebco.net/data-products-gridded-bathymetry-data/gebco2024-grid (accessed on 5 June 2025).
- Newbold, P. ARIMA Model Building and the Time Series Analysis Approach to Forecasting. J. Forecast. 1983, 2, 23–35. [Google Scholar] [CrossRef]
- Kisi, O.; Guven, A. A Machine Code-Based Genetic Programming for Suspended Sediment Concentration Estimation. Adv. Eng. Softw. 2010, 41, 939–945. [Google Scholar] [CrossRef]
- Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, QLD, Australia, 19–24 April 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 4580–4584. [Google Scholar]
- Rumelhart, D.E.; Hintont, G.E.; Williams, R.J. Learning Representations by BackPropagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Staudemeyer, R.C.; Morris, E.R. Understanding LSTM—A Tutorial into Long Short-Term Memory Recurrent Neural Networkss. arXiv 2019, arXiv:1909.09586. [Google Scholar]
- Kirbas, I.; Kerem, A. Short-Term Wind Speed Prediction Based on Artificial Neural Network Models. Meas. Control 2016, 49, 183–190. [Google Scholar] [CrossRef]
- Kerem, A.; Kirbas, I.; Saygin, A. Performance Analysis of Time Series Forecasting Models for Short Term Wind Speed Prediction. In Proceedings of the International Conference on Engineering and Natural Sciences (ICENS), Sarajevo, Bosnia and Herzegovina, 24–28 May 2016; pp. 2733–2739. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Qian, P.; Feng, B.; Liu, X.; Zhang, D.; Yang, J.; Ying, Y.; Liu, C.; Si, Y. Tidal Current Prediction Based on a Hybrid Machine Learning Method. Ocean Eng. 2022, 260, 111985. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995; ISBN 978-1-4757-2442-4. [Google Scholar]
- Kolukula, S.S.; Pln, M. Enhancing Observations Data: A Machine-Learning Approach to Fill Gaps in the Moored Buoy Data. Results Eng. 2025, 26, 104708. [Google Scholar] [CrossRef]
- Treiber, N.A.; Heinermann, J.; Kramer, O. Wind Power Prediction with Machine Learning. In Computational Sustainability; Lässig, J., Kersting, K., Morik, K., Eds.; Studies in Computational Intelligence; Springer International Publishing: Cham, Switzerland, 2016; Volume 645, pp. 13–29. ISBN 978-3-319-31856-1. [Google Scholar]
- Smola, A.J.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Ghorbani, M.A.; Khatibi, R.; FazeliFard, M.H.; Naghipour, L.; Makarynskyy, O. Short-Term Wind Speed Predictions with Machine Learning Techniques. Meteorol. Atmos. Phys. 2016, 128, 57–72. [Google Scholar] [CrossRef]
Speed | Maximum | Minimum | Average Velocity 1 | Average Speed 2 | |
---|---|---|---|---|---|
Zonal component | Training set | 14.952 | 0.001 | 0.254 | 3.032 |
Test set | 16.902 | 0.026 | −6.081 | 6.089 | |
Meridional component | Training set | 10.542 | 0.000 | 0.073 | 2.161 |
Test set | 7.643 | 0.020 | −0.683 | 2.155 |
Model | Sliding Window | MAE | RMSE | MedAE | Error ≤ 20% Count (Total: 96) |
---|---|---|---|---|---|
XGBoost | 6 h | 4.062 | 4.710 | 2.018 | 8 |
12 h | 3.760 | 4.388 | 2.360 | 10 | |
24 h | 2.377 | 2.941 | 1.740 | 32 | |
36 h | 2.449 | 2.983 | 2.145 | 25 | |
48 h | 2.767 | 3.337 | 2.471 | 26 | |
60 h | 2.723 | 3.280 | 2.502 | 25 | |
LSTM | 6 h | 2.492 | 3.165 | 2.224 | 37 |
12 h | 2.284 | 2.967 | 1.733 | 35 | |
24 h | 2.087 | 2.756 | 1.615 | 40 | |
36 h | 2.566 | 3.003 | 1.506 | 17 | |
48 h | 1.925 | 2.395 | 1.259 | 42 | |
60 h | 2.586 | 3.557 | 1.389 | 37 | |
ARIMA | 6 h | 4.503 | 5.008 | 1.816 | 3 |
12 h | 3.378 | 3.963 | 1.943 | 11 | |
24 h | 2.092 | 2.562 | 1.181 | 31 | |
36 h | 2.061 | 2.535 | 1.322 | 34 | |
48 h | 1.880 | 2.383 | 1.342 | 38 | |
60 h | 1.860 | 2.346 | 1.416 | 39 | |
SVR | 6 h | 5.001 | 5.540 | 1.938 | 2 |
12 h | 4.880 | 5.426 | 2.061 | 3 | |
24 h | 3.489 | 3.918 | 1.312 | 9 | |
36 h | 3.197 | 3.716 | 1.448 | 11 | |
48 h | 3.188 | 3.631 | 1.371 | 9 | |
60 h | 3.055 | 3.520 | 1.382 | 9 |
Model | Sliding Window | MAE | RMSE | MedAE | Error ≤ 20% Count (Total: 96) |
---|---|---|---|---|---|
XGBoost | 6 h | 1.248 | 1.565 | 0.998 | 61 |
12 h | 1.184 | 1.477 | 0.897 | 57 | |
24 h | 1.131 | 1.385 | 1.059 | 57 | |
36 h | 1.089 | 1.326 | 0.943 | 62 | |
48 h | 1.092 | 1.318 | 1.018 | 64 | |
60 h | 1.051 | 1.291 | 0.966 | 65 | |
LSTM | 6 h | 1.083 | 1.325 | 1.035 | 60 |
12 h | 1.071 | 1.303 | 0.945 | 67 | |
24 h | 0.980 | 1.188 | 0.992 | 69 | |
36 h | 0.972 | 1.190 | 0.841 | 68 | |
48 h | 0.903 | 1.120 | 0.899 | 74 | |
60 h | 0.926 | 1.182 | 0.888 | 73 | |
ARIMA | 6 h | 1.179 | 1.477 | 0.944 | 63 |
12 h | 1.105 | 1.355 | 1.076 | 64 | |
24 h | 0.999 | 1.228 | 0.878 | 68 | |
36 h | 0.940 | 1.168 | 0.899 | 69 | |
48 h | 0.943 | 1.176 | 0.915 | 71 | |
60 h | 0.949 | 1.182 | 0.896 | 68 | |
SVR | 6 h | 1.475 | 1.769 | 0.897 | 41 |
12 h | 1.495 | 1.787 | 0.820 | 40 | |
24 h | 1.551 | 1.833 | 0.803 | 38 | |
36 h | 1.732 | 2.039 | 0.918 | 36 | |
48 h | 1.677 | 1.965 | 0.919 | 34 | |
60 h | 1.615 | 1.909 | 0.907 | 39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, H.; Yao, Z.; Xu, D.; Wang, J.; Yang, C.; Liu, N.; Pang, Y. Data-Driven Prediction of Deep-Sea Near-Seabed Currents: A Comparative Analysis of Machine Learning Algorithms. Remote Sens. 2025, 17, 3131. https://doi.org/10.3390/rs17183131
Bao H, Yao Z, Xu D, Wang J, Yang C, Liu N, Pang Y. Data-Driven Prediction of Deep-Sea Near-Seabed Currents: A Comparative Analysis of Machine Learning Algorithms. Remote Sensing. 2025; 17(18):3131. https://doi.org/10.3390/rs17183131
Chicago/Turabian StyleBao, Hairong, Zhixiong Yao, Dongfeng Xu, Jun Wang, Chenghao Yang, Nuan Liu, and Yuntian Pang. 2025. "Data-Driven Prediction of Deep-Sea Near-Seabed Currents: A Comparative Analysis of Machine Learning Algorithms" Remote Sensing 17, no. 18: 3131. https://doi.org/10.3390/rs17183131
APA StyleBao, H., Yao, Z., Xu, D., Wang, J., Yang, C., Liu, N., & Pang, Y. (2025). Data-Driven Prediction of Deep-Sea Near-Seabed Currents: A Comparative Analysis of Machine Learning Algorithms. Remote Sensing, 17(18), 3131. https://doi.org/10.3390/rs17183131