Digital Twin Technology for Urban Flood Risk Management: A Systematic Review of Remote Sensing Applications and Early Warning Systems
Abstract
1. Introduction
- Predictive simulations under multiple hazard scenarios (e.g., simultaneous fluvial and pluvial flooding, storm surge combined with river overflow)
- Integration of heterogeneous data sources, including satellite remote sensing, in situ sensors, social media, and crowdsourced inputs. Social media refers to platforms like Twitter or Facebook used for rapid situational updates, while crowdsourced inputs may include structured community reports via dedicated apps or local participatory mapping platforms.
- AI-driven analytics for forecasting and anomaly detection
- Interactive dashboards and 3D environments to support decision-making
- Analyze the technical architectures of DTs used in flood modeling, with an emphasis on RS-IoT-AI integration.
- Evaluate real-world case studies from diverse geopolitical and hydrological contexts.
- Identify the challenges and limitations of technological, institutional, and ethical hindering DT deployment.
- Explore the policy and governance frameworks surrounding DT adoption, including transboundary cooperation and climate equity.
- Recommend future research directions, including AI-driven innovations, quantum computing, and participatory modeling.
2. Materials and Methods
2.1. Systematic Review Framework
2.2. Data Sources and Search Strategy
2.3. Inclusion and Exclusion Criteria
- The articulation of a clear and operational DT framework or architecture,
- Explicit application to urban flood monitoring, early warning systems (EWS), hydraulic modeling, or climate resilience planning,
- Integration of remote sensing (RS) platforms, Internet of Things (IoT) sensor networks, or Artificial Intelligence/Machine Learning (AI/ML) methodologies,
- Engagement with policy frameworks, community participation mechanisms, or equity considerations within disaster risk governance,
- Publication within peer-reviewed outlets with demonstrably transparent methodological sections, enabling reproducibility and validation.
2.4. Data Extraction and Coding
- Digital Twin Architectures: Studies were scrutinized for architectural modularity, specifically the separation of DT systems into ingestion, processing, simulation, and decision-support layers, as well as the integration depth across heterogeneous data streams (e.g., remote sensing, IoT, hydraulic models) and the deployment of real-time processing capabilities via edge computing or federated systems.
- Remote Sensing Technologies: Diverse RS sources were categorized, encompassing optical satellites (e.g., Sentinel-2, Landsat series, MODIS), UAV-acquired high-resolution imagery, and advanced multispectral or hyperspectral platforms. The technological trade-offs in spatial resolution, revisit frequency, and deployment costs were analyzed, with a critical lens on the disparities between high-income and low-resource settings.
- AI/ML Model Applications: The review documented the prevalence of supervised algorithms (e.g., Random Forest, XGBoost), deep learning models (e.g., CNN, U-Net, LSTM networks), and unsupervised techniques while highlighting emergent innovations such as hybrid AI-physics models (e.g., PINNs) for improved flood simulation in data-scarce regions.
- Application Scales: DT deployments were mapped across different operational scales, ranging from localized urban applications to watershed-wide models, national infrastructure resilience frameworks, and transboundary river basin management systems.
- Governance and Policy Integration: Special emphasis was placed on the extent of policy linkage whether DTs were embedded within national climate strategies, open data initiatives, or participatory governance models that engage vulnerable communities and prioritize climate justice.
- Authors, publication year, and journal outlet,
- Geographic focus and flood type (pluvial, fluvial, coastal),
- Remote sensing sources and data resolutions,
- AI/ML methodologies applied,
- Degree of stakeholder and community involvement,
- Key technological outcomes and reported challenges.
2.5. Quality Assessment Criteria
3. Results
3.1. Five-Dimension Quality Assessment of UFRM Digital Twin Studies
3.2. Digital Twin Architectures and Remote Sensing Integration
- Sentinel-1 (SAR): Provides 10–20 m resolution synthetic aperture radar imagery, which is unaffected by cloud cover and critical for flood mapping during extreme weather events. Its revisit frequency and night-time imaging capabilities make it indispensable for emergency response.
- Sentinel-2 and Landsat-8/9: Facilitate the monitoring of vegetation dynamics, soil moisture variability, and impervious surface extent. These variables are crucial inputs for estimating flood susceptibility indices.
- Unmanned Aerial Vehicles (UAVs): Offer sub-meter spatial resolution (0.1–0.5 m), making them ideal for fine-scale assessments in densely urbanized floodplains. UAV-based mapping is particularly valuable for post-flood damage assessment and calibration of hydrodynamic models.
- LiDAR (Light Detection and Ranging): Delivers highly accurate digital elevation models (DEMs) with cm-level vertical precision. Urban DTs such as that implemented in New York City leverage LiDAR to capture terrain features, drainage networks, and microtopography essential for simulating overland flow paths.
3.3. Global Applications and Case Studies
3.4. Data and Infrastructure Inequity
- Furthermore, cloud-native platforms critical for enabling real-time simulation, data fusion, and alert generation are often unaffordable or inaccessible due to economic or geopolitical restrictions [91].
3.5. Interoperability and Standards
- Discrepancies in spatial and temporal resolution for example, between SAR and optical RS data or between sensor networks and modeling outputs complicate the synchronization of inputs across disciplines [95].
- Moreover, in many national contexts, digital systems are siloed across governmental and municipal institutions, leading to isolated datasets and incompatible workflows that obstruct comprehensive DT development [96].
3.6. Computational Burden
- Simulations operating at building-level spatial resolution or over complex terrain often rely on access to high-performance computing (HPC) environments or cloud-based GPU clusters to deliver timely outputs [98].
- Where access to cloud computing or local HPC infrastructure is limited, data-to-decision loops become sluggish or unreliable, significantly compromising their operational relevance for early warning or emergency response [99].
- Although edge computing offers promise for decentralized data processing, its application in UFRM remains in the early stages and is largely untested in rural or low-resource settings [100].
3.7. Policy Fragmentation
- In cross-border watersheds like the Nile or Mekong, fragmented legal mandates and weak data-sharing frameworks obstruct the formation of integrated DT systems.
- The absence of enabling regulations, limited government incentives for digital innovation, and insufficient funding pathways further discourage institutional investment in DT platforms for flood management.
- In many urban settings, overlapping jurisdictions and decentralized flood management responsibilities produce organizational silos, resulting in low data interoperability and resistance to system-wide reform.
4. Discussion
4.1. Comparative Advantages over Traditional UFRM
4.2. Interoperability and System Design
4.3. Geographic and Socio-Technical Inequities
4.4. Emerging Ethical Considerations
4.5. Critical Reflections and Review Limitations
4.6. Future Research Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
DT | Digital Twin |
UFRM | Urban Flood Risk Management |
RS | Remote Sensing |
IoT | Internet of Things |
AI | Artificial Intelligence |
ML | Machine Learning |
References
- Lee, J.; Perera, D.; Glickman, T.; Taing, L. Water-related disasters and their health impacts: A global review. Prog. Disaster Sci. 2020, 8, 100123. [Google Scholar] [CrossRef]
- Adil, L.; Eckstein, D.; Künzel, V.; Schäfer, L. Climate Risk Index 2025. Available online: https://www.germanwatch.org/sites/default/files/2025-02/Climate%20Risk%20Index%202025.pdf (accessed on 10 July 2025).
- Bowen, S. Natural Catastrophe and Climate Report: 2024 Data, Insights, and Perspectives. 2025. Available online: https://www.ajg.com/gallagherre/-/media/files/gallagher/gallagherre/news-and-insights/2025/natural-catastrophe-and-climate-report-2025.pdf (accessed on 24 July 2025).
- World Economic Forum. Quantifying the Impact of Climate Change on Human Health. In Insight Report. 2024. Available online: https://www3.weforum.org/docs/WEF_Quantifying_the_Impact_of_Climate_Change_on_Human_Health_2024.pdf (accessed on 4 August 2025).
- Khromova, S.; Méndez, G.V.; Eckelman, M.J.; Herreros-Cantis, P.; Langemeyer, J. A social-ecological-technological vulnerability approach for assessing urban hydrological risks. Ecol. Indic. 2025, 173, 113334. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Phakdimek, S.; Nagami, K.; Komori, D. Relationship Between Urbanization–Induced Land Use Changes and Flood Risk: Case Study in Chiang Mai, Thailand. Water 2025, 17, 327. [Google Scholar] [CrossRef]
- Faisal Koko, A.; Yue, W.; Abdullahi Abubakar, G.; Hamed, R.; Noman Alabsi, A.A. Analyzing urban growth and land cover change scenario in Lagos, Nigeria using multi-temporal remote sensing data and GIS to mitigate flooding. Geomat. Nat. Hazards Risk 2021, 12, 631–652. [Google Scholar] [CrossRef]
- Adegun, O.B. Flood-related challenges and impacts within coastal informal settlements: A case from LAGOS, NIGERIA. Int. J. Urban Sustain. Dev. 2023, 15, 1–13. [Google Scholar] [CrossRef]
- Sánchez-Almodóvar, E.; Olcina-Cantos, J.; Martí-Talavera, J.; Prieto-Cerdán, A.; Padilla-Blanco, A. Floods and adaptation to climate change in tourist areas: Management experiences on the coast of the province of Alicante (Spain). Water 2023, 15, 807. [Google Scholar] [CrossRef]
- Lamichhane, K.; Karki, S.; Sharma, K.; Khadka, B.; Acharya, B.; Biswakarma, K.; Adhikari, S.; Kc, R.; Danegulu, A.; Bhattarai, S.; et al. Unraveling the Causes and Impacts of Increasing Flood Disasters in the Kathmandu Valley: Lessons from the Unprecedented September 2024 Floods. Nat. Hazards Res. 2025. [Google Scholar] [CrossRef]
- Ge, C.; Qin, S. Urban flooding digital twin system framework. Syst. Sci. Control. Eng. 2025, 13. [Google Scholar] [CrossRef]
- Kapucu, N.; Ge, Y.; Rott, E.; Isgandar, H. Urban Resilience: Multidimensional perspectives, challenges and prospects for future research. Urban Gov. 2024, 4. [Google Scholar] [CrossRef]
- Ariyachandra, M.R.M.F.; Wedawatta, G. Digital Twin Smart Cities for Disaster Risk Management: A Review of Evolving Concepts. Sustainability 2023, 15, 11910. [Google Scholar] [CrossRef]
- Mazzetto, S. A review of urban Digital Twins integration, challenges, and future directions in smart city development. Sustainability 2024, 16, 8337. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, C.; Yahja, A.; Mostafavi, A. Disaster City Digital Twin: A vision for integrating artificial and human intelligence for disaster management. Int. J. Inf. Manag. 2019, 56, 102049. [Google Scholar] [CrossRef]
- Odey, G.; Cho, Y. Event-Based vs. Continuous Hydrological Modeling with HEC-HMS: A Review of Use Cases, Methodologies, and Performance Metrics. Hydrology 2025, 12, 39. [Google Scholar] [CrossRef]
- Tedla, H.Z.; Bekele, T.W.; Nigussie, L.; Negash, E.D.; Walsh, C.L.; O’Donnell, G.; Haile, A.T. Threshold-based flood early warning in an urbanizing catchment through multi-source data integration: Satellite and citizen science contribution. J. Hydrol. 2024, 635, 131076. [Google Scholar] [CrossRef]
- Rayhana, R.; Bai, L.; Xiao, G.; Liao, M.; Liu, Z. Digital Twin Models: Functions, challenges, and industry applications. IEEE J. Radio Freq. Identif. 2024, 8, 282–321. [Google Scholar] [CrossRef]
- Peldon, D.; Banihashemi, S.; LeNguyen, K.; Derrible, S. Navigating urban complexity: The transformative role of digital twins in smart city development. Sustain. Cities Soc. 2024, 111, 105583. [Google Scholar] [CrossRef]
- Bibri, S.E.; Huang, J.; Jagatheesaperumal, S.K.; Krogstie, J. The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review. Environ. Sci. Ecotechnol. 2024, 20, 100433. [Google Scholar] [CrossRef]
- Sufi, F.; Alsulami, M. AI-Driven Global Disaster Intelligence from News Media. Mathematics 2025, 13, 1083. [Google Scholar] [CrossRef]
- Oddo, P.C.; Ahamed, A.; Bolten, J.D. Socioeconomic impact evaluation for near real-time flood detection in the lower mekong river basin. Hydrology 2018, 5, 23. [Google Scholar] [CrossRef]
- Tallat, R.; Hawbani, A.; Wang, X.; Al-Dubai, A.; Zhao, L.; Liu, Z.; Min, G.; Zomaya, A.Y.; Alsamhi, S.H. Navigating Industry 5.0: A survey of key enabling technologies, trends, challenges, and opportunities. IEEE Commun. Surv. Tutor. 2023, 26, 1080–1126. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, B.; Liu, Y.; Zhang, X.; Li, Z. Urban Flood Risk Assessment through the Integration of Natural and Human Resilience Based on Machine Learning Models. Remote Sens. 2023, 15, 3678. [Google Scholar] [CrossRef]
- Morlot, M.; Zanon, B.; Cagnati, A.; Borga, M.; Anselmo, V.; Bianchini, S.; Dalla Fontana, G.; D’Agostino, V.; Zanon, F.; Dalla Fontana, G. Hydrological Digital Twin Model of a Large Anthropized Alpine Basin: The Adige Basin. J. Hydrol. 2023, 616, 130587. [Google Scholar] [CrossRef]
- Pankratova, N.D.; Grishyn, K.D.; Barilko, V.E. Digital twins: Stages of concept development, areas of use, prospects. Syst. Res. Inf. Technol. 2023. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Bibri, S.E.; Khavarian-Garmsir, A.R. Smart cities and sustainable development goals (SDGs): A systematic literature review of co-benefits and trade-offs. Cities 2024, 146, 104659. [Google Scholar] [CrossRef]
- Costa, D.G.; Bittencourt, J.C.N.; Oliveira, F.; Peixoto, J.P.J.; Jesus, T.C. Achieving sustainable smart cities through geospatial data-driven approaches. Sustainability 2024, 16, 640. [Google Scholar] [CrossRef]
- Yao, J.; Li, Z.; Zhu, B.; Zhang, P.; Wang, J.; Sun, W.; Mei, S.; Zhang, Y.; Xiao, P. Transformative Trends in Runoff and Sediment Dynamics and Their Influential Drivers in the Wuding River Basin of the Yellow River: A Comprehensive Analysis from 1960 to 2020. Water 2024, 16, 26. [Google Scholar] [CrossRef]
- Dimitrov, S.; Iliev, M.; Borisova, B.; Semerdzhieva, L.; Petrov, S. A Methodological Framework for High-Resolution Surface Urban Heat Island Mapping: Integration of UAS Remote Sensing, GIS, and the Local Climate Zoning Concept. Remote Sens. 2024, 16, 4007. [Google Scholar] [CrossRef]
- Fuady, M.; Buraida Kevin, M.A.; Farrel, M.R.; Triaputri, A. Enhancing Urban Resilience: Opportunities and Challenges in Adapting to Natural Disasters in Indonesian Cities. Sustainability 2025, 17, 1632. [Google Scholar] [CrossRef]
- Samarakkody, A.; Amaratunga, D.; Haigh, R. Technological Innovations for Enhancing Disaster Resilience in Smart Cities: A Comprehensive Urban Scholar’s Analysis. Sustainability 2023, 15, 12036. [Google Scholar] [CrossRef]
- Li, W.; Ma, Z.; Li, J.; Li, Q.; Li, Y.; Yang, J. Digital Twin Smart Water Conservancy: Status, challenges, and prospects. Water 2024, 16, 2038. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Zhao, H.; Guan, W.; Yang, A. Pakistan’s 2022 floods: Spatial distribution, causes and future trends from Sentinel-1 SAR observations. Remote Sens. Environ. 2024, 304, 114055. [Google Scholar] [CrossRef]
- Barrile, V.; Genovese, E.; Maesano, C.; Calluso, S.; Manti, M.P. Developing an Urban Digital Twin for Environmental and Risk Assessment: A Case Study on Public Lighting and Hydrogeological Risk. Future Internet 2025, 17, 110. [Google Scholar] [CrossRef]
- Roudbari, N.S.; Punekar, S.R.; Patterson, Z.; Eicker, U.; Poullis, C. From data to action in flood forecasting leveraging graph neural networks and digital twin visualization. Sci. Rep. 2024, 14. [Google Scholar] [CrossRef] [PubMed]
- Shao, G.; Helu, M. Framework for a digital twin in manufacturing: Scope and requirements. Manuf. Lett. 2020, 24, 105–107. [Google Scholar] [CrossRef]
- Gómez-Guijarro, M.D.; Cavero-Redondo, I.; Saz-Lara, A.; Pascual-Morena, C.; Álvarez-Bueno, C.; Martínez-García, I. Intranasal insulin effect on cognitive and/or memory impairment: A systematic review and meta-analysis. Cogn. Neurodynamics 2024, 18, 3059–3073. [Google Scholar] [CrossRef]
- Belle, A.B.; Zhao, Y. Evidence-based decision-making: On the use of systematicity cases to check the compliance of reviews with reporting guidelines such as PRISMA 2020. Expert Syst. Appl. 2023, 217, 119569. [Google Scholar] [CrossRef]
- Damaceno, E.R.; Pinto Jd, S.; Sigahi, T.F.A.C.; Moraes, G.H.S.M.D.; Leal Filho, W.; Anholon, R. Incorporating Local Communities into Sustainability Reporting: A Grey Systems-Based Analysis of Brazilian Companies. AppliedMath 2025, 5, 42. [Google Scholar] [CrossRef]
- Van Der Braak, K.; Ghannad, M.; Orelio, C.; Heus, P.; Damen Ja, A.; Spijker, R.; Robinson, K.; Lund, H.; Hooft, L. The score after 10 years of registration of systematic review protocols. Syst. Rev. 2022, 11. [Google Scholar] [CrossRef]
- Most, T.; Gräning, L.; Wolff, S. Robustness Investigation of Cross-Validation Based Quality Measures for Model Assessment. Eng. Model. Anal. Simul. 2024, 2, 1–10. [Google Scholar] [CrossRef]
- Li, W. Scoring rubric reliability and internal validity in rater-mediated EFL writing assessment: Insights from many-facet Rasch measurement. Read. Writ. 2022, 35, 2409–2431. [Google Scholar] [CrossRef]
- Uchida, S.; Negishi, M. Assigning CEFR-J levels to English learners’ writing: An approach using lexical metrics and generative AI. Res. Methods Appl. Linguist. 2025, 4, 100199. [Google Scholar] [CrossRef]
- Frazier, A.E.; Song, L. Artificial intelligence in Landscape Ecology: Recent advances, perspectives, and opportunities. Curr. Landsc. Ecol. Rep. 2025, 10, 1–13. [Google Scholar] [CrossRef]
- Sasongko, I.; Gai, A.M.; Wijayaningtyas, M.; Susanti, D.; Sukowiyono, G.; Putra, D. Sasak Cultural Resilience: A case for Lombok (Indonesia) earthquake in 2018. Heritage 2025, 8, 155. [Google Scholar] [CrossRef]
- Böhlen, M. Planetary positions. In Routledge eBooks; Routledge: London, UK, 2024; pp. 78–109. [Google Scholar] [CrossRef]
- Cutter, S.L. Emerging tipping points in policy and practice. In Routledge eBooks; Routledge: London, UK, 2025; pp. 8–24. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Fan, Z.; Xu, Z.; Melville, B.W.; Liu, G.; Hong, L. Digital twinning of river basins towards full-scale, sustainable and equitable water management and disaster mitigation. NPJ Nat. Hazards 2024, 1, 43. [Google Scholar] [CrossRef]
- Piro, P.; Saleh, M.M.; Pirouz, B.; Turco, M.; Palermo, S.A. Smart and Innovative Systems for Urban Flooding Risk Management. In Proceedings of the 2023 International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Cosenza, Italy, 13–15 September 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Sajadieh, S.M.M.; Noh, S.D. From Simulation to Autonomy: Reviews of the integration of artificial intelligence and digital twins. Int. J. Precis. Eng. Manuf.-Green Technol. 2025, 12, 1–15. [Google Scholar] [CrossRef]
- Li, X.; Sun, Q.; Zhang, Y.; Sha, J.; Zhang, M. Enhancing hydrological extremes prediction accuracy: Integrating diverse loss functions in Transformer models. Environ. Model. Softw. 2024, 177, 106042. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Zandsalimi, Z.; Nabian, M.A.; Shafiee-Jood, M.; Alemazkoor, N. Interpretable physics-informed graph neural networks for flood forecasting. Comput.-Aided Civ. Infrastruct. Eng. 2025, 40, 2629–2649. [Google Scholar] [CrossRef]
- Ren, H.; Pang, B.; Bai, P.; Zhao, G.; Liu, S.; Liu, Y.; Li, M. Flood Susceptibility Assessment with Random Sampling Strategy in Ensemble Learning (RF and XGBoost). Remote Sens. 2024, 16, 320. [Google Scholar] [CrossRef]
- Li, Z.; Demir, I. U-net-based semantic classification for flood extent extraction using SAR imagery and GEE platform: A case study for 2019 central US flooding. Sci. Total Environ. 2023, 869, 161757. [Google Scholar] [CrossRef] [PubMed]
- Schnebele, E.; Cervone, G.; Kumar, S.; Waters, N. Real Time Estimation of the Calgary Floods Using Limited Remote Sensing Data. Water 2014, 6, 381–398. [Google Scholar] [CrossRef]
- Alonso-Sarria, F.; Valdivieso-Ros, C.; Molina-Pérez, G. Detecting Flooded Areas Using Sentinel-1 SAR Imagery. Remote Sens. 2025, 17, 1368. [Google Scholar] [CrossRef]
- World Bank. Learning from Japan’s Experience in Integrated Urban Flood Risk Management: A Series of Knowledge Notes—Appendix: Case Studies in Integrated Urban Flood Risk Management in Japan. 2019. Available online: https://documents1.worldbank.org/curated/en/915131601460271575/pdf/Appendix-Case-Studies-in-Integrated-Urban-Flood-Risk-Management-in-Japan.pdf (accessed on 23 June 2025).
- Josipovic, N.; Viergutz, K. Smart Solutions for Municipal Flood Management: Overview of Literature, Trends, and Applications in German Cities. Smart Cities 2023, 6, 944–964. [Google Scholar] [CrossRef]
- Abdulameer, L.; Al-Khafaji, M.S.; Al-Awadi, A.T.; Maimuri, N.M.L.A.; Al-Shammari, M.; Al-Dujaili, A.N.; DhiyaAl-Jumeily, N. Artificial Intelligence in Climate-Resilient Water Management: A Systematic Review of applications, challenges, and future Directions. Water Conserv. Sci. Eng. 2025, 10, 1–22. [Google Scholar] [CrossRef]
- Ahsen, R.; Di Bitonto, P.; Novielli, P.; Magarelli, M.; Romano, D.; Diacono, D.; Monaco, A.; Amoroso, N.; Bellotti, R.; Tangaro, S. Harnessing Digital Twins for Sustainable Agricultural Water Management: A Systematic Review. Appl. Sci. 2025, 15, 4228. [Google Scholar] [CrossRef]
- Hlal, M.; El Monhim, B.; Chenal, J.; Munyaka, J.-C.B.; Azmi, R.; Sbai, A.; Cwick, G.; Hichou, B.B. Application of Deep Learning and Geospatial Analysis in Soil Loss Risk in the Moulouya Watershed, Morocco. Water 2025, 17, 1351. [Google Scholar] [CrossRef]
- Riaz, K.; McAfee, M.; Gharbia, S.S. Management of Climate Resilience: Exploring the Potential of Digital Twin Technology, 3D City Modelling, and Early Warning Systems. Sensors 2023, 23, 2659. [Google Scholar] [CrossRef]
- Zhao, T.; Song, C.; Yu, J.; Xing, L.; Xu, F.; Li, W.; Wang, Z. Leveraging Immersive Digital Twins and AI-Driven Decision Support Systems for Sustainable Water Reserves Management: A Conceptual Framework. Sustainability 2025, 17, 3754. [Google Scholar] [CrossRef]
- Wang, A.; Li, H.; He, Z.; Tao, Y.; Wang, H.; Yang, M.; Savic, D.; Daigger, G.T.; Ren, N. Digital Twins for Wastewater Treatment: A technical review. Engineering 2024, 36, 21–35. [Google Scholar] [CrossRef]
- Lagap, U.; Ghaffarian, S. Digital post-disaster risk management twinning: A review and improved conceptual framework. Int. J. Disaster Risk Reduct. 2024, 110, 104629. [Google Scholar] [CrossRef]
- Su, W.-R.; Lin, Y.-J.; Huang, C.-H.; Yang, C.-H.; Tsai, Y.-F. 3D GIS Platform for Flood Wargame: A Case Study of New Taipei City, Taiwan. Water 2021, 13, 2211. [Google Scholar] [CrossRef]
- Silva, A.F.R.; Eleutério, J.C.; Apel, H.; Kreibich, H. Assessing the impact of early warning and evacuation on human losses during the 2021 Ahr Valley flood in Germany using agent-based modelling. Nat. Hazards Earth Syst. Sci. 2025, 25, 1501–1520. [Google Scholar] [CrossRef]
- Ahmed, T.; Mahmood, Y.; Yodo, N.; Huang, Y. Weather-Related Combined Effect on Failure Propagation and Maintenance Procedures towards Sustainable Gas Pipeline Infrastructure. Sustainability 2024, 16, 5789. [Google Scholar] [CrossRef]
- Thanvisitthpon, N.T. Enhanced flood adaptive capacity through a growth mindset. In IGI Global eBooks; IGI Global: Hershey, PA, USA, 2025; pp. 231–278. [Google Scholar] [CrossRef]
- Gašparović, M.; Medak, D.; Pilaš, I.; Jurjević, L.; Balenović, I. Fusion of Sentinel-2 And Planetscope Imagery for Vegetation Detection And Monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci./Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 155–160. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Dahms, T.; Kübert-Flock, C.; Steffan-Dewenter, I.; Zhang, J.; Ullmann, T. Spatiotemporal fusion modelling using STARFM: Examples of Landsat 8 and Sentinel-2 NDVI in Bavaria. Remote Sens. 2022, 14, 677. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Ramli, M.W.A.; Tajuddin Wa, N.W.A.; Arman, N.Z.; Hassan, C.H.C.; Ramzan, M.A.; Yusop, Z.; Alias, N.E. Evaluating flood early warning system and public preparedness and knowledge in urban and semi-urban areas of Johor, Malaysia: Challenges and opportunities. Int. J. Disaster Risk Reduct. 2024, 113, 104870. [Google Scholar] [CrossRef]
- Muhadi, N.A.; Abdullah, A.F.; Bejo, S.K.; Mahadi, M.R.; Mijic, A. The Use of LiDAR-Derived DEM in Flood Applications: A Review. Remote Sens. 2020, 12, 2308. [Google Scholar] [CrossRef]
- Fischer-Preßler, D.; Bonaretti, D.; Bunker, D. Digital transformation in disaster management: A literature review. J. Strateg. Inf. Syst. 2024, 33, 101865. [Google Scholar] [CrossRef]
- Zhang, B.; Ding, G.; Zheng, Q.; Zhang, K.; Qin, S. Iterative updating of digital twin for equipment: Progress, challenges, and trends. Adv. Eng. Inform. 2024, 62, 102773. [Google Scholar] [CrossRef]
- Pal, D.; Marttila, H.; Ala-Aho, P.; Lotsari, E.; Ronkanen, A.; Gonzales-Inca, C.; Croghan, D.; Korppoo, M.; Kämäri, M.; Van Rooijen, E.; et al. Blueprint conceptualization for a river basin’s digital twin. Hydrol. Res. 2025, 56, 197–212. [Google Scholar] [CrossRef]
- Mankowski, R. City-Scale Digital Twins for Flood Resilience. GIM Int. 2020, 38, 1–25. [Google Scholar]
- Tokyo Metropolitan Government. Tokyo Digital Twin 3D Model. Available online: https://info.tokyo-digitaltwin.metro.tokyo.lg.jp/3dmodel/ (accessed on 12 May 2025).
- Gorup, G.; Lesar, Ž.; Marolt, M.; Bohak, C. Procedural Point Cloud and Mesh Editing for Urban Planning Using Blender. Land 2025, 14, 815. [Google Scholar] [CrossRef]
- Paternina-Verona, D.A.; Coronado-Hernández, O.E.; Fuertes-Miquel, V.S.; Saba, M.; Ramos, H.M. Digital Twin Based on CFD Modelling for Analysis of Two-Phase Flows During Pipeline Filling–Emptying Procedures. Appl. Sci. 2025, 15, 2643. [Google Scholar] [CrossRef]
- Ghaith, M.; Yosri, A.; El-Dakhakhni, W. Synchronization-Enhanced Deep Learning Early Flood Risk Predictions: The Core of Data-Driven City Digital Twins for Climate Resilience Planning. Water 2022, 14, 3619. [Google Scholar] [CrossRef]
- Space for Climate Observatory. Flood DAM-DT. Available online: https://www.spaceclimateobservatory.org/flooddam-dt (accessed on 12 May 2025).
- Space Climate Observatory (SCO). SCO Projects. Available online: https://www.spaceclimateobservatory.org/projects (accessed on 12 May 2025).
- Alexandre, C.; Johary, R.; Catry, T.; Mouquet, P.; Révillion, C.; Rakotondraompiana, S.; Pennober, G. A Sentinel-1 Based Processing Chain for Detection of Cyclonic Flood Impacts. Remote Sens. 2020, 12, 252. [Google Scholar] [CrossRef]
- Space for Climate Observatory. Cimopolée Project. Available online: https://www.spaceclimateobservatory.org/cimopolee (accessed on 12 May 2025).
- Space for Climate Observatory. CIMOPOLEE: Monitoring the Impact of Tropical Cyclones in Madagascar, 2024. Available online: https://doi.org/10.60566/mv9wx-ntw09 (accessed on 12 May 2025).
- Mekonnen, K.; Velpuri, N.M.; Leh, M.; Akpoti, K.; Owusu, A.; Tinonetsana, P.; Hamouda, T.; Ghansah, B.; Paranamana, T.P.; Munzimi, Y. Accuracy of satellite and reanalysis rainfall estimates over Africa: A multi-scale assessment of eight products for continental applications. J. Hydrol. Reg. Stud. 2023, 49, 101514. [Google Scholar] [CrossRef]
- Sakhri, A.; Ahmed, A.; Maimour, M.; Kherbache, M.; Rondeau, E.; Doghmane, N. A digital twin-based energy-efficient wireless multimedia sensor network for waterbirds monitoring. Future Gener. Comput. Syst. 2024, 155, 146–163. [Google Scholar] [CrossRef]
- Li, F.; Yigitcanlar, T.; Nepal, M.; Nguyen, K.; Dur, F. Machine learning and remote sensing integration for leveraging urban sustainability: A review and framework. Sustain. Cities Soc. 2023, 96, 104653. [Google Scholar] [CrossRef]
- Nursamsi, I.; Phinn, S.R.; Levin, N.; Luskin, M.S.; Sonter, L.J. Remote sensing of artisanal and small-scale mining: A review of scalable mapping approaches. Sci. Total Environ. 2024, 951, 175761. [Google Scholar] [CrossRef]
- Chatrabhuj, N.; Meshram, K.; Mishra, U.; Omar, P.J. Integration of remote sensing data and GIS technologies in river management system. Discov. Geosci. 2024, 2, 67. [Google Scholar] [CrossRef]
- Hlal, M.; Sbai, A.; Benrbia, K.; Cwick, G.J.; Harradji, A.E.; Benhamed, A.; Amghar, A.; Mouadili, O. The importance of GNSS in monitoring the evolution of the Saïdia-Nador coastline. In Studies in Computational Intelligence; Springer: New York, NY, USA, 2024; pp. 47–54. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Highes, L.; Baabdullah, A.M.; Riveriro-Navarrete, S.; Giannakis, M.; Al-Debei, M.M.; Dennehy, D.; Metri, B.; Buhalis, D.; Cheung, C.M.K.; et al. Metaverse beyond the hype: Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. Int. J. Inf. Manag. 2022, 66, 102542. [Google Scholar] [CrossRef]
- Nativi, S.; Mazzetti, P.; Craglia, M. Digital Ecosystems for Developing Digital Twins of the Earth: The Destination Earth Case. Remote Sens. 2021, 13, 2119. [Google Scholar] [CrossRef]
- Michael, J.; Blankenbach, J.; Derksen, J.; Finklenburg, B.; Fuentes, R.; Gries, T.; Hendiani, S.; Herlé, S.; Hesseler, S.; Kimm, M.; et al. Integrating models of civil structures in digital twins: State-of-the-Art and challenges. J. Infrastruct. Intell. Resil. 2024, 3, 100100. [Google Scholar] [CrossRef]
- Stark, R.; Fresemann, C.; Lindow, K. Development and Operation of Digital Twins for Technical Systems and Services. CIRP Annals 2019, 68, 129–132. [Google Scholar] [CrossRef]
- Rangzan, M.; Attarchi, S.; Gloaguen, R.; Alavipanah, S.K. SAR Temporal Shifting: A New Approach for Optical-to-SAR Translation with Consistent Viewing Geometry. Remote Sens. 2024, 16, 2957. [Google Scholar] [CrossRef]
- Aarstad, J.; Saidl, J. Barriers to Adopting AI Technology in SMEs. 2023. Available online: https://research-api.cbs.dk/ws/portalfiles/portal/60704162/790410_Aarstad_Saidl_Barriers_to_Adopting_AI_Technology_in_SMEs.pdf (accessed on 12 May 2025).
- Kassim, N.M.; Leen, J.Y.A.; Hashim, N.H.; Lurudusamy, S.N.; Ramayah, T.; Kai, J. Assessing resident’s response towards smart community initiatives in Kota Belud. In IGI Global eBooks; IGI Global: Hershey, PA, USA, 2025; pp. 69–102. [Google Scholar] [CrossRef]
- Rong, Y.; Bates, P.; Neal, J. GPU-Accelerated urban flood modeling using a nonuniform structured grid and a super grid scale river channel. Water Resour. Res. 2024, 60. [Google Scholar] [CrossRef]
- Agbehadji, I.E.; Mabhaudhi, T.; Botai, J.; Masinde, M. A Systematic Review of Ex-isting Early Warning Systems’ Challenges and Opportunities in Cloud Computing Early Warning Systems. Climate 2023, 11, 188. [Google Scholar] [CrossRef]
- Shahra, E.Q.; Wu, W.; Basurra, S.; Aneiba, A. Intelligent Edge-Cloud Framework for Water Quality Monitoring in Water Distribution System. Water 2024, 16, 196. [Google Scholar] [CrossRef]
- World Economic Forum. Digital Twin Cities: Key Insights and Recommendations; World Economic Forum: Geneva, Switzerland, 2023. [Google Scholar]
- Kim, Y.; Oh, J.; Bartos, M. Stormwater Digital Twin with Online Quality Control Detects Urban Flood Hazards under Uncertainty. Sustain. Cities Soc. 2024, 105, 105982. [Google Scholar] [CrossRef]
- Koirala, B.; Cai, H.; Khayatian, F.; Munoz, E.; An, J.; Mutschler, R.; Sulzer, M.; De Wolf, C.; Orehounig, K. Digitalization of Urban Multi-Energy Systems—Advances in Digital Twin Applications across Life-Cycle Phases. Adv. Appl. Energy 2024, 16, 100196. [Google Scholar] [CrossRef]
- Martinez-Ruedas, C.; Flores-Arias, J.-M.; Moreno-Garcia, I.M.; Linan-Reyes, M.; Bellido-Outeiriño, F.J. A Cyber–Physical System Based on Digital Twin and 3D SCADA for Real-Time Monitoring of Olive Oil Mills. Technologies 2024, 12, 60. [Google Scholar] [CrossRef]
- Lifelo, Z.; Ding, J.; Ning, H.; Qurat-Ul-Ain; Dhelim, S. Artificial Intelligence-Enabled Metaverse for Sustainable Smart Cities: Technologies, Applications, Challenges, and Future Directions. Electronics 2024, 13, 4874. [Google Scholar] [CrossRef]
- Jeddoub, I.; Nys, G.-A.; Hajji, R.; Billen, R. Digital Twins for Cities: Analyzing the Gap between Concepts and Current Implementations with a Specific Focus on Data Integration. Int. J. Appl. Earth Obs. Geoinf. 2023, 122, 103440. [Google Scholar] [CrossRef]
- Abdelalim, A.M.; Essawy, A.; Sherif, A.; Salem, M.; Al-Adwani, M.; Abdullah, M.S. Optimizing Facilities Management Through Artificial Intelligence and Digital Twin Technology in Mega-Facilities. Sustainability 2025, 17, 1826. [Google Scholar] [CrossRef]
- Shahat, E.; Hyun, C.T.; Yeom, C. City Digital Twin Potentials: A Review and Research Agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Hong, J.-H.; Shi, Y.-T. Integration of Heterogeneous Sensor Systems for Disaster Responses in Smart Cities: Flooding as an Example. ISPRS Int. J. Geo-Inf. 2023, 12, 279. [Google Scholar] [CrossRef]
- Chen, T.; Sun, J.; Zhang, Z.; Xiao, Z.; Zheng, L.; Chai, H.; Lin, B. High-performance computing in urban flood modeling: A study on spatial partitioning techniques and parallel performance. J. Hydrol. 2024, 649, 132474. [Google Scholar] [CrossRef]
- Lawler, S.; Zhang, C.; Siddiqui, A.R.; Di, L. Leveraging OGC API for Cloud-Based Flood Modeling Campaigns. Environ. Model. Softw. 2024, 171, 105855. [Google Scholar] [CrossRef]
- WMO. Closing Data Gaps Improves Global Forecasts; Press Release: New York, NY, USA, 2025; Available online: https://wmo.int/media/news/closing-data-gaps-improves-global-forecasts (accessed on 12 August 2025).
- Jamali, A.; Roy, S.K.; Hashemi Beni, L.; Pradhan, B.; Li, J.; Ghamisi, P. Residual Wave Vision U-Net for Flood Mapping Using Dual-Polarization Sentinel-1 SAR Imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 127, 103662. [Google Scholar] [CrossRef]
- Hofmeister, M.; Bai, J.; Brownbridge, G.; Mosbach, S.; Lee, K.F.; Farazi, F.; Hillman, M.; Agarwal, M.; Ganguly, S.; Akroyd, J.; et al. Semantic Agent Framework for Automated Flood Assessment Using Dynamic Knowledge Graphs. Data-Centric Eng. 2024, 5, e14. [Google Scholar] [CrossRef]
- UNDRR. Global Status of Multi-Hazard Early Warning Systems 2023; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland, 2023; Available online: https://www.undrr.org/reports/global-status-MHEWS-2023 (accessed on 12 August 2025).
- Disaster Risk Reduction and Recovery for Building Resilience Team (DRT), Bangkok Regional Hub, United Nations Development Programme in Asia and the Pacific. Digital Disaster Risk Reduction Maturity Model (DDRRMM) White Paper. In DX4Resilience. 2022. Available online: https://www.undp.org/sites/g/files/zskgke326/files/2022-09/DDRRMM%20White%20Paper%20Version%204.0%20%28FINAL%29_1%20September%202022.pdf (accessed on 13 May 2025).
- World Bank. Digital Transformation Drives Development in Africa. Available online: https://projects.worldbank.org/en/results/2024/01/18/digital-transformation-drives-development-in-afe-afw-africa (accessed on 12 August 2025).
- Alonso-Robisco, A.; Carbo, J.M.; Kormanyos, E.; Triebskorn, E. Houston, We Have a Problem: Can Satellite Information Bridge the Climate-Related Data Gap? Lat. Am. J. Cent. Bank. 2025, 100173. [Google Scholar]
- Campbell, J.; Neuner, J.; See, L.; Fritz, S.; Fraisl, D.; Espey, J.; Kim, A. The Role of Combining National Official Statistics with Global Monitoring to Close the Data Gaps in the Environmental SDGs. Stat. J. IAOS 2020, 36, 443–453. [Google Scholar] [CrossRef]
- Cheong, B.C. Transparency and accountability in AI systems: Safeguarding wellbeing in the age of algorithmic decision-making. Front. Hum. Dyn. 2024, 6, 1421273. [Google Scholar] [CrossRef]
- Iranshahi, K.; Brun, J.; Arnold, T.; Sergi, T.; Müller, U.C. Digital twins: Recent advances and future directions in engineering fields. Intell. Syst. Appl. 2025, 26, 200516. [Google Scholar] [CrossRef]
- Moshood, T.D.; Rotimi, J.O.; Shahzad, W.; Bamgbade, J. Infrastructure digital twin technology: A new paradigm for future construction industry. Technol. Soc. 2024, 77, 102519. [Google Scholar] [CrossRef]
- Sivakumar, M.; Maranco, M.; Krishnaraj, N.; Reddy, U.S. Data Analytics and Visualization in Smart Manufacturing Using AI-Based Digital Twins. In Artificial Intelligence-Enabled Digital Twin for Smart Manufacturing; Scrivener Publishing LLC: Beverly, MA, USA, 2024; pp. 249–277. [Google Scholar] [CrossRef]
- Hatami, M.; Qu, Q.; Chen, Y.; Kholidy, H.; Blasch, E.; Ardiles-Cruz, E. A Survey of the Real-Time Metaverse: Challenges and Opportunities. Future Internet 2024, 16, 379. [Google Scholar] [CrossRef]
- Kostadimas, D.; Kasapakis, V.; Kotis, K. A Systematic Review on the Combination of VR, IoT and AI Technologies, and Their Integration in Applications. Future Internet 2025, 17, 163. [Google Scholar] [CrossRef]
- Hajoary, E.a.D. Exploring the evolving dynamics of data privacy, ethical considerations, and data protection in the digital era. Int. J. Recent Innov. Trends Comput. Commun. 2023, 11, 2760–2771. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, T.; Ma, W.; Zheng, J.; Li, Z.; Wang, L. Unveiling Privacy Challenges: Big Data-Driven Digital Twins in Smart City Applications. SID Symp. Dig. Tech. Pap. 2024, 55, 49–52. [Google Scholar] [CrossRef]
- Bäumer, F.S.; Schultenkämper, S.; Geierhos, M.; Lee, Y.S. Mirroring Privacy Risks with Digital Twins: When Pieces of Personal Data Suddenly Fit Together. SN Comput. Sci. 2024, 5. [Google Scholar] [CrossRef]
- Chen, C.; Han, Y.; Galinski, A.; Calle, C.; Carney, J.; Ye, X.; van Westen, C. Integrating urban digital twins with cloud-based geospatial dashboards for coastal resilience planning: A case study in Florida. J. Plan. Educ. Res. 2025, 0739456X251316185. [Google Scholar] [CrossRef]
- Farooq, S.; Farooq, B.; Basheer, S.; Walia, S. Balancing environmental sustainability and privacy ethical dilemmas in AI-enabled smart cities. In Advances in Environmental Engineering and Green Technologies; IGI Global: Hershey, PA, USA, 2024; pp. 275–290. [Google Scholar] [CrossRef]
- Ghaith, M.; Yosri, A.; El-Dakhakhni, W. Digital twin: A city-scale flood imitation framework. In Proceedings of the Canadian Society of Civil Engineering Annual Conference, Virtual, 26–29 May 2021; Springer: New York, NY, USA, 2022; pp. 573–588. [Google Scholar] [CrossRef]
- Argyroudis, S.A.; Mitoulis, S.A.; Chatzi, E.; Baker, J.W.; Brilakis, I.; Gkoumas, K.; Vousdoukas, M.; Hynes, W.; Carluccio, S.; Keou, O.; et al. Digital Technologies Can Enhance Climate Resilience of Critical Infrastructure. Clim. Risk Manag. 2021, 35, 100387. [Google Scholar] [CrossRef]
- Haque, M. Indigenous knowledge and practices of the ethnic and small island communities in disaster management. In International Handbook of Disaster Research; Springer: New York, NY, USA, 2022; pp. 1–9. [Google Scholar] [CrossRef]
- Alcaraz, C.; Lopez, J. Digital twin: A comprehensive survey of security threats. IEEE Commun. Surv. Tutor. 2022, 24, 1475–1503. Available online: https://ieeexplore.ieee.org/abstract/document/9765576 (accessed on 12 August 2025). [CrossRef]
- Wang, Y.; Su, Z.; Guo, S.; Dai, M.; Luan, T.H.; Liu, Y. A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. IEEE Internet Things J. 2023, 10, 14965–14987. Available online: https://ieeexplore.ieee.org/abstract/document/10090432 (accessed on 12 August 2025). [CrossRef]
- Bibri, S.E. The Social Shaping of the Metaverse as an Alternative to the Imaginaries of Data-Driven Smart Cities: A Study in Science, Technology, and Society. Smart Cities 2022, 5, 832–874. [Google Scholar] [CrossRef]
- Bibri, S.E.; Huang, J. Artificial Intelligence of Things for Sustainable Smart City Brain and Digital Twin Systems: Environmental Synergies between Real-Time Management and Predictive Planning. Environ. Sci. Ecotechnol. 2025, 26, 100591. [Google Scholar] [CrossRef]
- Pappalardo, V.; La Rosa, D. Spatial Analysis of Flood Exposure and Vulnerability for Planning More Equal Mitigation Actions. Sustainability 2023, 15, 7957. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, L.; Kar, A.K.; Baabdullah, A.M.; Grover, P.; Abbas, R.; Andreini, D.; Abumoghli, I.; Barlette, Y.; Bunker, D.; et al. Climate change and COP26: Are digital technologies and information management part of the problem or the solution? An editorial reflection and call to action. Int. J. Inf. Manag. 2021, 63, 102456. [Google Scholar] [CrossRef]
- Gach, E. Normative Shifts in the Global Conception of Climate Change: The Growth of Climate Justice. Soc. Sci. 2019, 8, 24. [Google Scholar] [CrossRef]
- Sharma, A.; Kosasih, E.; Zhang, J.; Brintrup, A.; Calinescu, A. Digital Twins: State of the art theory and practice, challenges, and open research questions. J. Ind. Inf. Integr. 2022, 30, 100383. [Google Scholar] [CrossRef]
- Kaynak, S.; Kaynak, B.; Mermer, O.; Demir, I. City-Scale Digital Twin Framework for flood impact analysis: Integrating urban infrastructure and real-time data analytics. EarthArXiv 2025. [Google Scholar] [CrossRef]
- Kineber, A.F.; Singh, A.K.; Fazeli, A.; Mohandes, S.R.; Cheung, C.; Arashpour, M.; Ejohwomu, O.; Zayed, T. Modelling the relationship between digital twins implementation barriers and sustainability pillars: Insights from building and construction sector. Sustain. Cities Soc. 2023, 99, 104930. [Google Scholar] [CrossRef]
- Omar, O. Digital Twins for Climate-Responsive Urban Development: Integrating Zero-Energy Buildings into Smart City Strategies. Sustainability 2025, 17, 6670. [Google Scholar] [CrossRef]
- Xu, H.; Omitaomu, F.; Sabri, S.; Zlatanova, S.; Li, X.; Song, Y. Leveraging generative AI for urban digital twins: A scoping review on the autonomous generation of urban data, scenarios, designs, and 3D city models for smart city advancement. Urban Inform. 2024, 3. [Google Scholar] [CrossRef]
- Tavakoli, M.; Motlagh, Z.K.; Dąbrowska, D.; Youssef, Y.M.; Đurin, B.; Saqr, A.M. Harnessing AHP and Fuzzy Scenarios for Resilient Flood Management in Arid Environments: Challenges and Pathways Toward Sustainability. Water 2025, 17, 1276. [Google Scholar] [CrossRef]
- Hussainzad, E.A.; Gou, Z. Climate Risk and Vulnerability Assessment in Informal Settlements of the Global South: A Critical Review. Land 2024, 13, 1357. [Google Scholar] [CrossRef]
- Dihan, M.S.; Akash, A.I.; Tasneem, Z.; Das, P.; Das, S.K.; Islam, M.R.; Islam, M.M.; Badal, F.R.; Ali, M.F.; Ahamed, M.H.; et al. Digital twin: Data exploration, architecture, implementation and future. Heliyon 2024, 10, e26503. [Google Scholar] [CrossRef]
- Westerlaken, M. Digital twins and the digital logics of biodiversity. Soc. Stud. Sci. 2024, 54, 575–597. [Google Scholar] [CrossRef]
- Harpham, Q. Using Spatio-Temporal Feature Type Structures for Coupling Environmental Numerical Models to Each Other and to Data Sources. Ph.D. Thesis, The Open University, Milton Keynes, UK, 2019. [Google Scholar] [CrossRef]
- Barth, L.; Schweiger, L.; Galeno, G.; Schaal, N.; Ehrat, M. Value Creation with Digital Twins: Application-Oriented Conceptual Framework and Case Study. Appl. Sci. 2023, 13, 3511. [Google Scholar] [CrossRef]
- Barata, J.; Kayser, I. How will the digital twin shape the future of industry 5.0? Technovation 2024, 134, 103025. [Google Scholar] [CrossRef]
- Yfanti, S.; Sakkas, N. Technology Readiness Levels (TRLs) in the Era of Co-Creation. Appl. Syst. Innov. 2024, 7, 32. [Google Scholar] [CrossRef]
- Alamri, S. The Geospatial Crowd: Emerging Trends and Challenges in Crowdsourced Spatial Analytics. ISPRS Int. J. Geo-Inf. 2024, 13, 168. [Google Scholar] [CrossRef]
- Hornik, J.; Rachamim, M.; Ofir, C. Leveraging real-time digital twins for smart livestreaming platforms to enhance consumers’ experience. J. Supercomput. 2025, 81, 887. [Google Scholar] [CrossRef]
Dimension | Scoring Guide | Indicators |
---|---|---|
1. Technical Rigor | 0 = Weak or absent methods 0.5 = Moderate rigor, some validation 1 = Strong empirical design with validated models |
|
2. Innovation | 0 = No novel contribution 0.5 = Moderate innovation (e.g., common ML model) 1 = Novel algorithm, architecture, or RS integration |
|
3. Relevance to UFRM | 0 = Vague or tangential relevance 0.5 = Partial relevance (e.g., smart cities without flood-specific focus) 1 = Direct application to flood prediction, management, or resilience |
|
4. Policy Integration and Equity | 0 = No mention of policy or equity 0.5 = Generic mention or theoretical discussion 1 = Concrete discussion of governance, public participation, or social inclusion |
|
5. Transparency and Replicability | 0 = No methods or data sharing 0.5 = Partial or unclear sharing 1 = Fully transparent methodology and open tools |
|
Study ID | Technical Rigor | Innovation | Relevance to UFRM | Policy Integration and Equity | Transparency and Replicability | SRS (Total) | Notes |
---|---|---|---|---|---|---|---|
Li et al. [33,34] | 1 | 1 | 1 | 0.5 | 1 | 4.5 | Validated model with real-time data; novel hybrid AI model. |
Barrile et al. [35] | 0.5 | 0.5 | 1 | 0 | 0.5 | 2.5 | Moderate rigor; limited equity focus; proprietary software. |
Roudbari et al. [36] | 1 | 0.5 | 1 | 1 | 0.5 | 4.0 | Strong policy integration; open datasets; modest innovation. |
Model Type | Application Area | Notes | Example Study |
---|---|---|---|
Transformer-based Models | Compound hazard forecasting | Useful for multi-input time series (e.g., cyclone + flood) | [49] |
Physics-Informed Neural Nets | Hydraulic modeling | Enforce boundary constraints in simulations | [50] |
Random Forest, XGBoost | Land cover change, flood susceptibility | Strong performance with RS datasets | [51] |
U-Net and CNN variants | Flood extent mapping from SAR | High accuracy in image segmentation tasks | [52] |
Flood Type | Best Sensors | Best AI/ML Models | Simulation Resolution | Strengths | Weaknesses |
---|---|---|---|---|---|
Urban Flash Flood | UAV, Sentinel-1 SAR | U-Net, CNN | <1 m | High spatial precision; rapid deployment | High UAV cost; limited coverage |
Riverine | Landsat, Sentinel-2, LiDAR | RF, XGBoost, PINNs | 5–10 m DEM | Strong for large catchments; good temporal coverage | Coarser urban detail |
Coastal | Sentinel-1 SAR, altimetry | LSTM, Transformers | 10–30 m DEM | Captures tidal/surge events | Lower inland accuracy |
Country/City | Technologies Used | Flood Type | Reported Impacts |
---|---|---|---|
Yokohama, Japan | GIS, hydrological modeling, hazard mapping | Pluvial and coastal | Multi-layered mitigation strategies; real-time support. |
Hamburg, Germany | DT, hydrodynamic models, infrastructure data | Pluvial | Improved extreme rain event forecasting. |
Calgary, Canada | DT, SAR, IoT, hydrodynamic simulation | Riverine | Accurate water level forecasts 9 days ahead. |
Country | City | Implementation Density | Notes | Source |
---|---|---|---|---|
Portugal | Lisbon | High | Advanced adoption; integrates IoT, AI, and climate models into flood forecasting systems. | [77] |
Finland | Helsinki | High | Pioneers in urban flood resilience using Digital Twins; strong policy support. | [78] |
Japan | Tokyo | High | Rapid urbanization driving DT use; smart cities initiatives support flood management systems. | [79,80] |
USA | Waterloo | High | Focused on flood risks and resilience in urban planning and emerging interest; limited by infrastructure and funding. | [81] |
USA | Ohio | High | The project utilized open-source software and data, incorporating several key components: the generation of flood alerts and detection of flood events; rapid mapping of flood extents and continuous monitoring during active flooding; short-term forecasting of flood coverage and surface elevation using high-resolution hydrodynamic models in targeted areas; and the real-time and post-event evaluation of financial risks associated with flooding. | [82] |
Rwanda | - | Emerging | GeoHaTACC is an operational toolbox designed to detect and inventory hydro-geological hazards in tropical regions, while also documenting the impacts of climate change on these hazards. The system integrates multiple data sources and is currently being piloted in Rwanda, a country significantly affected by such events, with the long-term goal of expanding its application to other territories. | [83,84] |
Madagascar and Reunion Island | - | Low | The Cimopolée Project focuses on monitoring the impacts of tropical cyclones in the southwest Indian Ocean using satellite Earth observation data. It supports rapid damage assessment and resilience analysis for emergency response and planning. The project contributes to Digital Twin applications by integrating real-time geospatial data into risk management tools. | [85,86] |
Case Study | Reported Achievements | Limitations/Challenges |
---|---|---|
H2Porto (Portugal) | Reduced response time by 35%; integrated IoT and RS | Data latency during extreme events; maintenance costs |
Calgary (Canada) | Accurate 9-day forecasts; interactive simulations | Model drift; high compute requirements |
Reggio Calabria (Italy) | High-precision 3D model; hazard mapping | Low public uptake; interoperability issues |
Flood Type | Preferred Sensors | AI Models | Simulation Resolution |
---|---|---|---|
Urban Flash Flood | UAV, SAR, IoT rain gauges | CNN, U-Net | <1 m |
Riverine Flood | Optical RS, SAR, LiDAR | RF, XGBoost, PINNs | 5–10 m |
Coastal Flood | SAR, tide gauges, altimetry | LSTM, Transformers | 10–30 m |
Trend | Current TRL (1–9) | Operational Constraints | Potential in LMICs |
---|---|---|---|
VR-enhanced DTs | 5 | High bandwidth; costly hardware | Low–medium |
Crowdsourced geospatial data | 6 | Data validation; uneven participation | High |
Hybrid AI-Physics models | 4 | High computational demand | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hlal, M.; Baraka Munyaka, J.-C.; Chenal, J.; Azmi, R.; Diop, E.B.; Bounabi, M.; Ebnou Abdem, S.A.; Almouctar, M.A.S.; Adraoui, M. Digital Twin Technology for Urban Flood Risk Management: A Systematic Review of Remote Sensing Applications and Early Warning Systems. Remote Sens. 2025, 17, 3104. https://doi.org/10.3390/rs17173104
Hlal M, Baraka Munyaka J-C, Chenal J, Azmi R, Diop EB, Bounabi M, Ebnou Abdem SA, Almouctar MAS, Adraoui M. Digital Twin Technology for Urban Flood Risk Management: A Systematic Review of Remote Sensing Applications and Early Warning Systems. Remote Sensing. 2025; 17(17):3104. https://doi.org/10.3390/rs17173104
Chicago/Turabian StyleHlal, Mohammed, Jean-Claude Baraka Munyaka, Jérôme Chenal, Rida Azmi, El Bachir Diop, Mariem Bounabi, Seyid Abdellahi Ebnou Abdem, Mohamed Adou Sidi Almouctar, and Meriem Adraoui. 2025. "Digital Twin Technology for Urban Flood Risk Management: A Systematic Review of Remote Sensing Applications and Early Warning Systems" Remote Sensing 17, no. 17: 3104. https://doi.org/10.3390/rs17173104
APA StyleHlal, M., Baraka Munyaka, J.-C., Chenal, J., Azmi, R., Diop, E. B., Bounabi, M., Ebnou Abdem, S. A., Almouctar, M. A. S., & Adraoui, M. (2025). Digital Twin Technology for Urban Flood Risk Management: A Systematic Review of Remote Sensing Applications and Early Warning Systems. Remote Sensing, 17(17), 3104. https://doi.org/10.3390/rs17173104