Spatiotemporal Dynamics of Annual Precipitation and Future Projections of China’s 400 mm Isohyet
Abstract
Highlights
- From 2001 to 2017, China’s precipitation generally increased, rising in the southeast while decreasing in Southwest China.
- The 400 mm isohyet moved northwestward in East China and northeastward in West China. This overall migration is projected to continue westward and northward by 2100.
- The study provides crucial insights into the spatial distribution and dynamic changes of China’s precipitation patterns.
- The study provides valuable theoretical support for regional water resource planning and decision-making, promoting sustainable agricultural development, and ensuring ecological balance.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets Sources
2.2.1. In Situ Station Observations
2.2.2. Gridded Precipitation Data
2.2.3. CMIP6 Data
2.3. Method
2.3.1. 400 mm Isohyet Extraction
2.3.2. Linear Trend Estimation
2.3.3. Quantile Mapping Method
2.3.4. Evaluation Metrics and Uncertainty Estimation
3. Results
3.1. Spatio-Temporal Changes in Precipitation Distribution over Mainland China
3.2. Features of the 400 mm Isohyet Distribution
3.3. Analysis of Future Precipitation Changes in China
3.3.1. Evaluation of Bias Correction for CMIP6 Model Data
3.3.2. Future Precipitation Changes in China Under Different Scenarios
3.3.3. Projected Shifts in the 400 mm Isohyet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hawkins, E.; Sutton, R. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 2009, 90, 1095–1108. [Google Scholar] [CrossRef]
- Held, I.M.; Soden, B.J. Robust Responses of the Hydrological Cycle to Global Warming. J. Clim. 2006, 19, 5686–5699. [Google Scholar] [CrossRef]
- Sun, Y. Impact of humanactivities on climate system: An interpretation of Chapter Ⅲ of WGⅠreport of IPCC AR6. Trans. Atmos. Sci. 2021, 44, 654–657. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Rodell, M. Water in the Balance. Science 2013, 340, 1300–1301. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Zheng, J.; Bian, J.; Ge, Q.; Hao, Z.; Yin, Y.; Liao, Y. The climate regionalization in China for 1981-2010. Chin. Sci. Bull. 2013, 58, 3088–3099. [Google Scholar] [CrossRef]
- Xueqin, Z.; Yang, S.U.N.; Du, Z.; Weiyi, M.A.O. Responses of Temperature Zone Boundaries in the Arid Region of China to Climatic Warming. Acta Geogr. Sin. 2011, 66, 1166–1178. [Google Scholar]
- Gao, Y.; Xu, J.; Zhang, M.; Jiang, F. Advances in the Study of the 400 mm Isohyet Migrations and Wetness and Dryness Changes on the Chinese Mainland. Adv. Earth Sci. 2020, 35, 1101–1112. [Google Scholar] [CrossRef]
- Li, J.; Liu, G.; Zhao, J.; Zuo, L.; Zheng, S.; Su, X. The variation of the 400 mm isohyet and its influence mechanism on the Qinghai-Tibet Plateau from 1982 to 2021. Ecol. Indic. 2024, 159, 111746. [Google Scholar] [CrossRef]
- Liu, M.; Xiao, Y.; Shi, J.; Zhang, X. Precipitation alters the relationship between biodiversity and multifunctionality of grassland ecosystems. J. Environ. Manag. 2025, 377, 124707. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Shi, X.; Wang, C.; Li, L.; Liu, S.; Li, D. Impacts of Climate Change in China: Northward Migration of Isohyets and Reduction in Cropland. Land 2025, 14, 1417. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Fu, C.; Chen, F.; Fu, Q.; Dai, A.; Shinoda, M.; Ma, Z.; Guo, W.; Li, Z.; et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 2017, 55, 719–778. [Google Scholar] [CrossRef]
- Che, Y.; Guan, X.; Wang, S.; Wu, R. Spatial Analysis of Annual Precipitation Lines of 800 mm in the Eastern Monsoon of China. Plateau Meteorol. 2020, 39, 997–1006. [Google Scholar]
- Tan, Q.; Wang, G.; Smith, M.D.; Chen, Y.; Yu, Q. Temperature patterns of soil carbon: Nitrogen: Phosphorus stoichiometry along the 400 mm isohyet in China. Catena 2021, 203, 105338. [Google Scholar] [CrossRef]
- Zheng, S.; Pan, Y.; Yu, L.; Liu, S.; Peng, D. Possible future movement of the Hu line based on IPCC CMIP6 scenarios. Environ. Res. Commun. 2022, 4, 095008. [Google Scholar] [CrossRef]
- Zhai, R.; Tao, F.; Lall, U.; Fu, B.; Elliott, J.; Jägermeyr, J. Larger Drought and Flood Hazards and Adverse Impacts on Population and Economic Productivity Under 2.0 than 1.5 °C Warming. Earth’s Future 2020, 8, e2019EF001398. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, B.; Xu, Y.; Han, Z. CMIP6 Evaluation and Projection of Temperature and Precipitation over China. Adv. Atmos. Sci. 2021, 38, 817–830. [Google Scholar] [CrossRef]
- Lu, K.; Arshad, M.; Ma, X.; Ullah, I.; Wang, J.; Shao, W. Evaluating observed and future spatiotemporal changes in precipitation and temperature across China based on CMIP6-GCMs. Int. J. Climatol. 2022, 42, 7703–7729. [Google Scholar] [CrossRef]
- Li, C.; Zwiers, F.; Zhang, X.; Li, G.; Sun, Y.; Wehner, M. Changes in Annual Extremes of Daily Temperature and Precipitation in CMIP6 Models. J. Clim. 2021, 34, 3441–3460. [Google Scholar] [CrossRef]
- Jiang, D.; Hu, D.; Tian, Z.; Lang, X. Differences between CMIP6 and CMIP5 Models in Simulating Climate over China and the East Asian Monsoon. Adv. Atmos. Sci. 2020, 37, 1102–1118. [Google Scholar] [CrossRef]
- Sun, Z.; Long, D.; Hong, Z.; Hamouda, M.A.; Mohamed, M.M.; Wang, J. How China’s Fengyun Satellite Precipitation Product Compares with Other Mainstream Satellite Precipitation Products. J. Hydrometeorol. 2022, 23, 785–806. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.-J. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys.-Chin. Ed. 2013, 56, 1102–1111. [Google Scholar] [CrossRef]
- Zhang, P.; Duan, A.; Hu, J. Combined Effect of the Tropical Indian Ocean and Tropical North Atlantic Sea Surface Temperature Anomaly on the Tibetan Plateau Precipitation Anomaly in Late Summer. J. Clim. 2022, 35, 7499–7518. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y. Increasing Tibetan Plateau terrestrial evapotranspiration primarily driven by precipitation. Agric. For. Meteorol. 2022, 317, 108887. [Google Scholar] [CrossRef]
- Tang, G.; Wan, W.; Zeng, Z.; Guo, X.; Li, N.; Long, D.; Hong, Y. An Overview of the Global Precipitation Measurement(GPM)Mission and Its Latest Development. Remote Sens. Technol. Appl. 2015, 30, 607–615. [Google Scholar]
- Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Change Res. 2020, 11, 239–251. [Google Scholar] [CrossRef]
- Cui, T.; Li, C.; Tian, F. Evaluation of Temperature and Precipitation Simulations in CMIP6 Models Over the Tibetan Plateau. Earth Space Sci. 2021, 8, e2020EA001620. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Wang, S.; Yan, W.; Zhang, H.; Du, J.; Zhao, Y. Comparative Analysis of Three Interpolation Methods in Precipitation Contour Drawing. J. China Hydrol. 2023, 43, 21–26. [Google Scholar] [CrossRef]
- Chao, M.; Wensi, M.; Zijian, W.; Weiwei, L.; Yiwei, Z.; Muqing, M. Migration and inducement of 400 mm isohyet in Chinese mainland from 1951 to 2012. J. Henan Polytech. Univ. Nat. Sci. Ed. 2016, 35, 520–525. [Google Scholar] [CrossRef]
- Tong, Y.; Gao, X.; Han, Z.; Xu, Y. Bias Correction of Daily Precipitation Simulated by RegCM4 Model over China. Chin. J. Atmos. Sci. 2017, 41, 1156–1166. [Google Scholar] [CrossRef]
- Lei, H.; Ma, J.; Li, H.; Wang, J.; Shao, D.; Zhao, H. Bias Correction of Climate Model Precipitation in the Upper Heihe River Basin based on Quantile Mapping Method. Plateau Meteorol. 2020, 39, 266–279. [Google Scholar] [CrossRef]
- Wang, Q.; Zhai, P. CMIP6 Projections of the “Warming-Wetting” Trend in Northwest China and Related Extreme Events Based on Observational Constraints. J. Meteorol. Res. 2022, 36, 239–250. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-First Century Drought Projections in the CMIP6 Forcing Scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
Data | Data Description | Spatial Resolution | Time Span |
---|---|---|---|
Observed precipitation data | 2074 meteorological observation stations | Point observations | 2001–2017 |
CN05.1 | Gridded data interpolated from over 2416 ground-based meteorological stations in China | 0.25° × 0.25° | 2001–2017 |
GPM IMERG | GPM satellite mission | 0.1° × 0.1° | 2001–2017 |
CMIP6 | The NASA Earth Exchange Global Daily Downscaled Projections | 0.25° × 0.25° | Historical data: 1985–2014 Future projections: 2015–2100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Sun, Z.; Shen, H.; Tu, L.; Huang, K.; Ou, W. Spatiotemporal Dynamics of Annual Precipitation and Future Projections of China’s 400 mm Isohyet. Remote Sens. 2025, 17, 3078. https://doi.org/10.3390/rs17173078
Xiong Y, Sun Z, Shen H, Tu L, Huang K, Ou W. Spatiotemporal Dynamics of Annual Precipitation and Future Projections of China’s 400 mm Isohyet. Remote Sensing. 2025; 17(17):3078. https://doi.org/10.3390/rs17173078
Chicago/Turabian StyleXiong, Yi, Zhangli Sun, Haoting Shen, Lin Tu, Kaihong Huang, and Wendong Ou. 2025. "Spatiotemporal Dynamics of Annual Precipitation and Future Projections of China’s 400 mm Isohyet" Remote Sensing 17, no. 17: 3078. https://doi.org/10.3390/rs17173078
APA StyleXiong, Y., Sun, Z., Shen, H., Tu, L., Huang, K., & Ou, W. (2025). Spatiotemporal Dynamics of Annual Precipitation and Future Projections of China’s 400 mm Isohyet. Remote Sensing, 17(17), 3078. https://doi.org/10.3390/rs17173078