Geostationary Satellite-Derived Diurnal Cycles of Photosynthesis and Their Drivers in a Subtropical Forest
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Information
2.2. Eddy-Covariance Measurements
2.3. H8/AHI Geostationary Satellite and Forcing Data
2.4. Machine Learning
2.5. Pearson Correlation and SHAP Values Analysis
3. Results
3.1. The Diurnal Dynamics of In Situ Eddy-Covariance Observations
3.2. Assessment of the Machine Learning Models Performance and Feature Importance Analysis
3.3. The Performance of the SVR Model and the Diurnal Cycle of Photosynthesis in Subtropical Forests
3.4. Influencing Factors on the Diurnal Cycle of Photosynthesis in Subtropical Forests
4. Discussion
4.1. Advantages of Integrating Eddy-Covariance Data with Geostationary Satellite Observations
4.2. Evaluation of Machine Learning Models Performance and Diurnal Cycle Characteristics of Photosynthesis in Subtropical Forests
4.3. Meteorological Factors Influencing the Diurnal Cycle of Carbon Uptake in Subtropical Forests
4.4. Limitations and Future Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makarieva, A.M.; Nefiodov, A.V.; Rammig, A.; Nobre, A.D. Re-appraisal of the global climatic role of natural forests for improved climate projections and policies. Front. For. Glob. Change 2023, 6, 1150191. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The enduring world forest carbon sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef]
- Yu, G.; Chen, Z.; Piao, S.; Peng, C.; Ciais, P.; Wang, Q.; Li, X.; Zhu, X. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc. Natl. Acad. Sci. USA 2014, 111, 4910–4915. [Google Scholar] [CrossRef]
- Lin, C.; Gentine, P.; Frankenberg, C.; Zhou, S.; Kennedy, D.; Li, X. Evaluation and mechanism exploration of the diurnal hysteresis of ecosystem fluxes. Agric. For. Meteorol. 2019, 278, 107642. [Google Scholar] [CrossRef]
- Wang, L.; Yu, M.; Ye, S.; Yan, J. Seasonal patterns of carbon and water flux responses to precipitation and solar radiation variability in a subtropical evergreen forest, South China. Agric. For. Meteorol. 2023, 342, 109760. [Google Scholar] [CrossRef]
- Losos, D.; Ranjbar, S.; Hoffman, S.; Abernathey, R.; Desai, A.R.; Otkin, J.; Zhang, H.; Ryu, Y.; Stoy, P.C. Rapid changes in terrestrial carbon dioxide uptake captured in near-real time from a geostationary satellite: The ALIVE framework. Remote Sens. Environ. 2025, 324, 114759. [Google Scholar] [CrossRef]
- Nakagawa, R.; Chau, M.; Calzaretta, J.; Keenan, T.; Vahabi, P.; Todeschini, A.; Bassiouni, M.; Kang, Y. Upscaling Global Hourly GPP with Temporal Fusion Transformer (TFT). arXiv 2023, arXiv:2306.13815. [Google Scholar] [CrossRef]
- Leng, J.; Chen, J.M.; Li, W.; Luo, X.; Xu, M.; Liu, J.; Wang, R.; Rogers, C.; Li, B.; Yan, Y. Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations. Earth Syst. Sci. Data 2024, 16, 1283–1300. [Google Scholar] [CrossRef]
- Wang, Q.; Imasu, R.; Arai, Y.; Ito, S.; Mizoguchi, Y.; Kondo, H.; Xiao, J. Sub-Daily Natural CO2 Flux Simulation Based on Satellite Data: Diurnal and Seasonal Pattern Comparisons to Anthropogenic CO2 Emissions in the Greater Tokyo Area. Remote Sens. 2021, 13, 2037. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y.; Zhang, Y.; Duveiller, G.; Jung, M.; Lyapustin, A.; Wang, Y.; Tucker, C.J. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 2018, 10, 1346. [Google Scholar] [CrossRef]
- Magnani, M.; Baneschi, I.; Giamberini, M.; Mosca, P.; Raco, B.; Provenzale, A. Drivers of carbon fluxes in Alpine tundra: A comparison of three empirical model approaches. Sci. Total Environ. 2020, 732, 139139. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peñuelas, J.; Cescatti, A.; Zhang, Y.; Zhang, Z. Atmospheric Dryness Dominates Afternoon Depression of Global Terrestrial Photosynthesis. Geophys. Res. Lett. 2024, 51, e2024GL110954. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Koyama, K.; Takemoto, S. Morning reduction of photosynthetic capacity before midday depression. Sci. Rep. 2014, 4, 4389. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Xiao, J.; Zhang, Z. Heatwave effects on gross primary production of northern mid-latitude ecosystems. Environ. Res. Lett. 2020, 15, 074027. [Google Scholar] [CrossRef]
- Kivalov, S.N.; Fitzjarrald, D.R. Observing the Whole-Canopy Short-Term Dynamic Response to Natural Step Changes in Incident Light: Characteristics of Tropical and Temperate Forests. Bound. Layer Meteorol. 2019, 173, 1–52. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Emanuel, R.E.; Riveros-Iregui, D.A.; McGlynn, B.L.; Epstein, H.E. On the spatial heterogeneity of net ecosystem productivity in complex landscapes. Ecosphere 2011, 2, art86. [Google Scholar] [CrossRef]
- Xiao, J.; Fisher, J.B.; Hashimoto, H.; Ichii, K.; Parazoo, N.C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 2021, 7, 877–887. [Google Scholar] [CrossRef]
- Sansone, C.; Bruno, A.; Piscitelli, C.; Baci, D.; Fontana, A.; Brunet, C.; Noonan, D.M.; Albini, A. Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Cells 2021, 10, 231. [Google Scholar] [CrossRef]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Niclòs, R.; Valor, E.; Caselles, V.; Coll, C.; Sánchez, J.M. In situ angular measurements of thermal infrared sea surface emissivity—Validation of models. Remote Sens. Environ. 2005, 94, 83–93. [Google Scholar] [CrossRef]
- Yao, Y.; Humphrey, V.; Konings, A.G.; Wang, Y.; Yin, Y.; Holtzman, N.; Wood, J.D.; Bar-On, Y.; Frankenberg, C. Investigating Diurnal and Seasonal Cycles of Vegetation Optical Depth Retrieved from GNSS Signals in a Broadleaf Forest. Geophys. Res. Lett. 2024, 51, e2023GL107121. [Google Scholar] [CrossRef]
- Tran, N.N.; Huete, A.; Nguyen, H.; Grant, I.; Miura, T.; Ma, X.; Lyapustin, A.; Wang, Y.; Ebert, E. Seasonal Comparisons of Himawari-8 AHI and MODIS Vegetation Indices over Latitudinal Australian Grassland Sites. Remote Sens. 2020, 12, 2494. [Google Scholar] [CrossRef]
- Arabi, B.; Salama, M.S.; Pitarch, J.; Verhoef, W. Integration of in-situ and multi-sensor satellite observations for long-term water quality monitoring in coastal areas. Remote Sens. Environ. 2020, 239, 111632. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Japan. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Jung, M.; Schwalm, C.; Migliavacca, M.; Walther, S.; Camps-Valls, G.; Koirala, S.; Anthoni, P.; Besnard, S.; Bodesheim, P.; Carvalhais, N.; et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 2020, 17, 1343–1365. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, Q.; Sun, R. Comparison of Machine Learning Methods to Up-Scale Gross Primary Production. Remote Sens. 2021, 13, 2448. [Google Scholar] [CrossRef]
- Diaz-Gonzalez, F.A.; Vuelvas, J.; Correa, C.A.; Vallejo, V.E.; Patino, D. Machine learning and remote sensing techniques applied to estimate soil indicators—Review. Ecol. Indic. 2022, 135, 108517. [Google Scholar] [CrossRef]
- Wang, X.; Kent, M.; Fang, X.-F. Evergreen broad-leaved forest in Eastern China: Its ecology and conservation and the importance of resprouting in forest restoration. For. Ecol. Manag. 2007, 245, 76–87. [Google Scholar] [CrossRef]
- Song, Y.-C.; Da, L.-J.; Yang, Y.-C. Population Structure and Regeneration Types of Dominant Species in an Evergreen Broadleaved Forest in Tiantong National Forest Park, Zhejiang Province, Eastern China. Chin. J. Plant Ecol. 2004, 28, 376–384. [Google Scholar]
- Yang, Q.; Liu, H.; Yang, H.; Wang, Z.; Fang, X.; Ma, Z.; Wang, X. Tiantong Subtropical Forest Dynamics Plot: Tree Species and Their Distribution Patterns; China Forestry Publishing House: Beijing, China, 2020. [Google Scholar]
- Wang, J. Global and Transect-Scale Variations of Forest Soil Organic Carbon Residence Time and Its Driving Factors. Master’s Thesis, East China Normal University, Shanghai, China, 2019. [Google Scholar]
- Yan, E.-R.; Wang, X.-H.; Huang, J.-J. Shifts in plant nutrient use strategies under secondary forest succession. Plant Soil 2006, 289, 187–197. [Google Scholar] [CrossRef]
- Schmid, H.P. Footprint modeling for vegetation atmosphere exchange studies: A review and perspective. Agric. For. Meteorol. 2002, 113, 159–183. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithm. Bound.-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Fan, S.-M.; Wofsy, S.C.; Bakwin, P.S.; Jacob, D.J.; Fitzjarrald, D.R. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon Forest. J. Geophys. Res. Atmos. 1990, 95, 16851–16864. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of flux measurements for density effects due to heat and water vapour transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Glob. Change Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef]
- Dong, S.; Cheng, J.; Shi, J.; Shi, C.; Sun, S.; Liu, W. A Data Fusion Method for Generating Hourly Seamless Land Surface Temperature from Himawari-8 AHI Data. Remote Sens. 2022, 14, 5170. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Zhang, Y.; Tao, C.; Xiao, R.; Tan, Y. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning. Remote Sens. Environ. 2020, 250, 112045. [Google Scholar] [CrossRef]
- Ishida, H.; Nakjima, T.Y.; Yokota, T.; Kikuchi, N.; Watanabe, H. Investigation of GOSAT TANSO-CAI Cloud Screening Ability through an Intersatellite Comparison. J. Appl. Meteorol. Climatol. 2011, 50, 1571–1586. [Google Scholar] [CrossRef]
- Ishida, H.; Nakajima, T.Y. Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res. Atmos. 2009, 114, 2008JD010710. [Google Scholar] [CrossRef]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite (ERTS) Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. PROSPECT: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of GOES-R Satellite Land Surface Temperature Algorithm Using SURFRAD Ground Measurements and Statistical Es-timates of Error Properties. IEEE Trans. Geosci. Remote Sens. 2012, 50, 704–713. [Google Scholar] [CrossRef]
- Schmit, T.J.; Li, J.; Li, J.; Feltz, W.F.; Gurka, J.J.; Goldberg, M.D.; Schrab, K.J. The GOES-R Advanced Baseline Imager and the Continuation of Current Sounder Products. J. Appl. Meteorol. Climatol. 2008, 47, 2696–2711. [Google Scholar] [CrossRef]
- Varghese, R.; Cherukuri, A.K.; Doddrell, N.H.; Doss, C.G.P.; Simkin, A.J.; Ramamoorthy, S. Machine learning in photosynthesis: Prospects on sustainable crop development. Plant Sci. 2023, 335, 111795. [Google Scholar] [CrossRef]
- Song, E.; Zhu, X.; Shao, G.; Tian, L.; Zhou, Y.; Jiang, A.; Lu, J. Multi-Temporal Remote Sensing Inversion of Evapotranspiration in the Lower Yangtze River Based on Landsat 8 Remote Sensing Data and Analysis of Driving Factors. Remote Sens. 2023, 15, 2887. [Google Scholar] [CrossRef]
- Bichri, H.; Chergui, A.; Hain, M. Investigating the Impact of Train/Test Split Ratio on the Performance of Pre-Trained Models with Custom Datasets. Int. J. Adv. Comput. Sci. Appl. 2024, 15. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. On the Importance of Train–Test Split Ratio of Datasets in Automatic Landslide Detection by Supervised Classification. Remote Sens. 2020, 12, 3054. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Ranjbar, S.; Losos, D.; Hoffman, S.; Cuntz, M.; Stoy, P.C. Using Geostationary Satellite Observations and Machine Learning Models to Estimate Ecosystem Carbon Uptake and Respiration at Half Hourly Time Steps at Eddy Covariance Sites. J. Adv. Model. Earth Syst. 2024, 16, e2024MS004341. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gong, H.; Ma, K.; Hu, Z.; Dong, Z.; Ma, Y.; Chen, W.; Wu, R.; Wang, L. Attribution of the August 2022 Extreme Heatwave in Southern China: Role of Dynamical and Thermodynamical Processes. Bull. Am. Meteorol. Soc. 2024, 105, E193–E199. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; Fisher, J.B.; Baldocchi, D.D. ECOSTRESS estimates gross primary production with fine spatial resolution for different times of day from the International Space Station. Remote Sens. Environ. 2021, 258, 112360. [Google Scholar] [CrossRef]
- Li, X.; Ryu, Y.; Xiao, J.; Dechant, B.; Liu, J.; Li, B.; Jeong, S.; Gentine, P. New-generation geostationary satellite reveals widespread midday depression in dryland photosynthesis during 2020 western U.S. heatwave. Sci. Adv. 2023, 9, eadi0775. [Google Scholar] [CrossRef]
- Khan, A.M.; Stoy, P.C.; Joiner, J.; Baldocchi, D.; Verfaillie, J.; Chen, M.; Otkin, J.A. The Diurnal Dynamics of Gross Primary Productivity Using Observations From the Advanced Baseline Imager on the Geostationary Operational Environmental Satellite-R Series at an Oak Savanna Ecosystem. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006701. [Google Scholar] [CrossRef]
- Amoroso, N.; Cilli, R.; Maggipinto, T.; Monaco, A.; Tangaro, S.; Bellotti, R. Satellite data and machine learning reveal a significant correlation between NO(2) and COVID-19 mortality. Environ. Res. 2022, 204 Pt A, 111970. [Google Scholar] [CrossRef]
- Shang, H.; Letu, H.; Nakajima, T.Y.; Wang, Z.; Ma, R.; Wang, T.; Lei, Y.; Ji, D.; Li, S.; Shi, J. Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation geostationary satellite data. Sci. Rep. 2018, 8, 1105. [Google Scholar] [CrossRef]
- Chatzopoulos-Vouzoglanis, K.; Reinke, K.J.; Soto-Berelov, M.; Jones, S.D. One year of near-continuous fire monitoring on a continental scale: Comparing fire radiative power from polar-orbiting and geostationary observations. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103214. [Google Scholar] [CrossRef]
- Yun, S.-I.; Kang, B.-M.; Lim, S.-S.; Choi, W.-J.; Ko, J.; Yoon, S.; Ro, H.-M.; Kim, H.-Y. Further understanding CH4 emissions from a flooded rice field exposed to experimental warming with elevated [CO2]. Agric. For. Meteorol. 2012, 154–155, 75–83. [Google Scholar] [CrossRef]
- Losos, D.; Hoffman, S.; Stoy, P.C. GOES-R land surface products at Western Hemisphere eddy covariance tower locations. Sci. Data 2024, 11, 277. [Google Scholar] [CrossRef]
- Baldocchi, D.D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Glob. Change Biol. 2003, 9, 479–492. [Google Scholar] [CrossRef]
- Richardson, A.D.; Andy Black, T.; Ciais, P.; Delbart, N.; Friedl, M.A.; Gobron, N.; Hollinger, D.Y.; Kutsch, W.L.; Longdoz, B.; Luyssaert, S.; et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3227–3246. [Google Scholar] [CrossRef]
- Teng, D.; Gong, X.; He, X.; Wang, J.; Lv, G.; Wang, J.; Yang, X. Impact of meteorological variability on diurnal and seasonal net ecosystem productivity in a desert riparian forest ecosystem. Front. Plant. Sci. 2024, 15, 1332192. [Google Scholar] [CrossRef] [PubMed]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Margolis, H.; Cescatti, A.; Richardson, A.; Arain, A.; Arneth, A.; Bonal, D.; Chen, J.; Gianelle, D.; et al. Global Patterns of Land-Atmosphere Fluxes of Carbon Dioxide, Latent Heat, and Sensible Heat Derived from Eddy Covariance, Satel-lite, and Meteorological Observations. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, L. Synchronous Changes of GPP and Solar-Induced Chlorophyll Fluorescence in a Subtropical Evergreen Coniferous Forest. Plants 2023, 12, 2224. [Google Scholar] [CrossRef]
- Chen, D.; Qiao, S.; Yang, J.; Tang, S.; Zuo, D.; Feng, G. Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event. npj Clim. Atmos. Sci. 2024, 7, 172. [Google Scholar] [CrossRef]
- Oren, R.; Sperry, J.S.; Katul, G.G.; Pataki, D.E.; Ewers, B.E.; Phillips, N.; Schäfer, K.V.R. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 1999, 22, 1515–1526. [Google Scholar] [CrossRef]
- Duan, A.; Zhong, Y.; Xu, G.; Yang, K.; Tian, B.; Wu, Y.; Bai, H.; Hu, E. Quantifying the 2022 extreme drought in the Yangtze River Basin using GRACE-FO. J. Hydrol. 2024, 630, 130680. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.-w.; Feng, G.-c.; Wang, Q.-j.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Kaced, K.; Larbes, C.; Ramzan, N.; Bounabi, M.; Dahmane, Z.E. Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Sol. Energy 2017, 158, 490–503. [Google Scholar] [CrossRef]
- Pumpanen, J.; Lindén, A.; Miettinen, H.; Kolari, P.; Ilvesniemi, H.; Mammarella, I.; Hari, P.; Nikinmaa, E.; Heinonsalo, J.; Bäck, J.; et al. Precipitation and net ecosystem exchange are the most important drivers of DOC flux in upland boreal catchments. J. Geophys. Res. Biogeosci. 2014, 119, 1861–1878. [Google Scholar] [CrossRef]
- Hill, T.; Chocholek, M.; Clement, R. The case for increasing the statistical power of eddy covariance ecosystem studies: Why, where and how? Glob. Change Biol. 2017, 23, 2154–2165. [Google Scholar] [CrossRef]
Band | Name | Center Wavelength (μm) | Spatial Resolution (km) | Observation Objective |
---|---|---|---|---|
1 | Blue | 0.47 | 1 | Vegetation, aerosol detection |
2 | Green | 0.51 | 1 | Vegetation, aerosol detection |
3 | Red | 0.64 | 0.5 | Vegetation, low cloud/fog detection |
4 | NIR | 0.86 | 1 | Vegetation, aerosol detection |
5 | SWIR | 1.6 | 2 | Cloud phase discrimination |
6 | SWIR | 2.3 | 2 | Cloud particle size analysis |
7 | MIR | 3.9 | 2 | Wildfire monitoring |
8 | TIR | 6.2 | 2 | Upper-level tropospheric water vapor density |
9 | TIR | 6.9 | 2 | Mid-upper tropospheric water vapor density |
10 | TIR | 7.3 | 2 | Mid-tropospheric water vapor density |
11 | TIR | 8.6 | 2 | Sulfur dioxide content analysis |
12 | TIR | 9.6 | 2 | Ozone content monitoring |
13 | TIR | 10.4 | 2 | Sea surface temperature (SST) measurement |
14 | TIR | 11.2 | 2 | Cloud imaging, SST measurement |
15 | TIR | 12.4 | 2 | Cloud imaging, SST measurement |
16 | TIR | 13.3 | 2 | Cloud top height estimation |
GPP | ||||
---|---|---|---|---|
Test | Validation | |||
R2 | RMSE | R2 | RMSE | |
RF | 0.98 | 0.01 | 0.71 | 0.19 |
GBR | 0.86 | 0.12 | 0.71 | 0.19 |
MLP | 0.51 | 0.25 | 0.51 | 0.25 |
SVR | 0.86 | 0.13 | 0.76 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Dai, X.; Liu, Z.; He, C.; Song, E.; Huang, K. Geostationary Satellite-Derived Diurnal Cycles of Photosynthesis and Their Drivers in a Subtropical Forest. Remote Sens. 2025, 17, 3079. https://doi.org/10.3390/rs17173079
Xu J, Dai X, Liu Z, He C, Song E, Huang K. Geostationary Satellite-Derived Diurnal Cycles of Photosynthesis and Their Drivers in a Subtropical Forest. Remote Sensing. 2025; 17(17):3079. https://doi.org/10.3390/rs17173079
Chicago/Turabian StyleXu, Jiang, Xi Dai, Zhibin Liu, Chenyang He, Enze Song, and Kun Huang. 2025. "Geostationary Satellite-Derived Diurnal Cycles of Photosynthesis and Their Drivers in a Subtropical Forest" Remote Sensing 17, no. 17: 3079. https://doi.org/10.3390/rs17173079
APA StyleXu, J., Dai, X., Liu, Z., He, C., Song, E., & Huang, K. (2025). Geostationary Satellite-Derived Diurnal Cycles of Photosynthesis and Their Drivers in a Subtropical Forest. Remote Sensing, 17(17), 3079. https://doi.org/10.3390/rs17173079