Thin Sea Ice Thickness Prediction Using Multivariate Radar-Physical Features and Machine Learning Algorithms
Abstract
1. Introduction
1.1. Sea Ice Thickness Prediction Methods
1.2. Microwave Remote Sensing in Sea Ice Studies
1.3. Research Objectives
2. Materials and Methods
2.1. Dataset 1: SERF 2017 Experiment
2.2. Dataset 2: SERF 2021 Experiment
2.3. Methodology
2.4. Applied Models
2.5. Permutation Importance Method
3. Results
3.1. Sea Ice Thickness Prediction Using Dataset 1
3.2. Sea Ice Thickness Prediction Using Dataset 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cohen, J.; Zhang, X.; Francis, J.; Jung, T.; Kwok, R.; Overland, J.; Ballinger, T.; Bhatt, U.; Chen, H.; Coumou, D.; et al. Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change 2020, 10, 20–29. [Google Scholar] [CrossRef]
- Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958–2018). Environ. Res. Lett. 2018, 13, 105005. [Google Scholar] [CrossRef]
- Steiner, N.S.; Bowman, J.; Campbell, K.; Chierici, M.; Eronen-Rasimus, E.; Falardeau, M.; Flores, H.; Fransson, A.; Herr, H.; Insley, S.J.; et al. Climate change impacts on sea-ice ecosystems and associated ecosystem services. Elem. Sci. Anth. 2021, 9, 00007. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. Two Decades of Arctic Sea-Ice Thickness from Satellite Altimeters: Retrieval Approaches and Record of Changes (2003–2023). Remote Sens. 2024, 16, 2983. [Google Scholar] [CrossRef]
- Stössel, A. On the impact of sea ice in a global ocean circulation model. Ann. Glaciol. 1997, 25, 111–115. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, R.; Wang, Y.; Yan, H.; Hong, M. Short-Term Daily Prediction of Sea Ice Concentration Based on Deep Learning of Gradient Loss Function. Front. Mar. Sci. 2021, 8, 736429. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, X.; Bi, H.; Ren, Y.; Liang, Y.; Li, C.; Li, X. Understanding Arctic Sea Ice Thickness Predictability by a Markov Model. J. Clim. 2023, 36, 4879–4897. [Google Scholar] [CrossRef]
- Shokr, M.; Sinha, N.K. Sea Ice: Physics and Remote Sensing; John Wiley & Sons: Hoboken, NJ, USA, 2023. [Google Scholar]
- Xu, M.; Li, J. Assessment of sea ice thickness simulations in the CMIP6 models with CICE components. Front. Mar. Sci. 2023, 10, 1223772. [Google Scholar] [CrossRef]
- Msadek, R.; Vecchi, G.A.; Winton, M.; Gudgel, R.G. Importance of initial conditions in seasonal predictions of Arctic sea ice extent. Geophys. Res. Lett. 2014, 41, 5208–5215. [Google Scholar] [CrossRef]
- Blanchard-Wrigglesworth, E.; Cullather, R.I.; Wang, W.; Zhang, J.; Bitz, C.M. Model forecast skill and sensitivity to initial conditions in the seasonal Sea Ice Outlook. Geophys. Res. Lett. 2015, 42, 8042–8048. [Google Scholar] [CrossRef]
- Peterson, K.A.; Arribas, A.; Hewitt, H.T.; Keen, A.B.; Lea, D.J.; McLaren, A.J. Assessing the forecast skill of Arctic sea ice extent in the GloSea4 seasonal prediction system. Clim. Dyn. 2015, 44, 147–162. [Google Scholar] [CrossRef]
- Yang, Q.; Dixon, T.H.; Myers, P.G.; Bonin, J.; Chambers, D.; Van Den Broeke, M.R.; Ribergaard, M.H.; Mortensen, J. Correction: Corrigendum: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation. Nat. Commun. 2016, 7, 13545. [Google Scholar] [CrossRef]
- Hibler, W.D. A Dynamic Thermodynamic Sea Ice Model. J. Phys. Oceanogr. 1979, 9, 815–846. [Google Scholar] [CrossRef]
- Fichefet, T. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res. Ocean. 1997, 102, 12609–12646. [Google Scholar] [CrossRef]
- Vancoppenolle, M.; Fichefet, T.; Goosse, H.; Bouillon, S.; Madec, G.; Maqueda, M.A.M. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model. 2009, 27, 33–53. [Google Scholar] [CrossRef]
- Shih, S.E.; Ding, K.H.; Nghiem, S.V.; Hsu, C.C.; Kong, J.A.; Jordan, A.K. Thin saline ice thickness retrieval using time-series C-band polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1589–1598. [Google Scholar] [CrossRef]
- Leppäranta, M.; Meleshko, V.P.; Uotila, P.; Pavlova, T. Sea Ice Modelling. In Sea Ice in the Arctic: Past, Present and Future; Johannessen, O.M., Bobylev, L.P., Shalina, E.V., Sandven, S., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 315–387. [Google Scholar] [CrossRef]
- Stroeve, J.; Notz, D. Insights on past and future sea-ice evolution from combining observations and models. Glob. Planet. Change 2015, 135, 119–132. [Google Scholar] [CrossRef]
- Sea Ice Outlook: 2021 Post-Season Report. 2021. Available online: https://www.arcus.org/sipn/sea-ice-outlook/2021/post-season (accessed on 29 June 2025).
- Li, W.; Hsu, C.Y.; Tedesco, M. Advancing Arctic Sea Ice Remote Sensing with AI and Deep Learning: Opportunities and Challenges. Remote Sens. 2024, 16, 3764. [Google Scholar] [CrossRef]
- Gough, W.A.; Gagnon, A.S.; Lau, H.P. Interannual Variability of Hudson Bay Ice Thickness. Polar Geogr. 2004, 28, 222–238. [Google Scholar] [CrossRef]
- Xie, H.; Tekeli, A.E.; Ackley, S.F.; Yi, D.; Zwally, H.J. Sea ice thickness estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003–2009. J. Geophys. Res. Ocean. 2013, 118, 2438–2453. [Google Scholar] [CrossRef]
- Steer, A.; Heil, P.; Watson, C.; Massom, R.A.; Lieser, J.L.; Ozsoy-Cicek, B. Estimating small-scale snow depth and ice thickness from total freeboard for East Antarctic sea ice. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2016, 131, 41–52. [Google Scholar] [CrossRef]
- Shi, H.; Sohn, B.J.; Dybkjær, G.; Tonboe, R.T.; Lee, S.M. Simultaneous estimation of wintertime sea ice thickness and snow depth from space-borne freeboard measurements. Cryosphere 2020, 14, 3761–3783. [Google Scholar] [CrossRef]
- Zhang, Q.; Luo, H.; Min, C.; Xiu, Y.; Shi, Q.; Yang, Q. Evaluation of Arctic Sea Ice Thickness from a Parameter-Optimized Arctic Sea Ice–Ocean Model. Remote Sens. 2023, 15, 2537. [Google Scholar] [CrossRef]
- Xiao, F.; Li, F.; Zhang, S.; Li, J.; Geng, T.; Xuan, Y. Estimating Arctic Sea Ice Thickness with CryoSat-2 Altimetry Data Using the Least Squares Adjustment Method. Sensors 2020, 20, 7011. [Google Scholar] [CrossRef]
- Gregory, W.; Lawrence, I.R.; Tsamados, M. A Bayesian approach towards daily pan-Arctic sea ice freeboard estimates from combined CryoSat-2 and Sentinel-3 satellite observations. Cryosphere 2021, 15, 2857–2871. [Google Scholar] [CrossRef]
- Gao, P.A.; Director, H.M.; Bitz, C.M.; Raftery, A.E. Probabilistic Forecasts of Arctic Sea Ice Thickness. J. Agric. Biol. Environ. Stat. 2022, 27, 280–302. [Google Scholar] [CrossRef]
- Li, M.; Zhang, R.; Liu, K. Machine Learning Incorporated With Causal Analysis for Short-Term Prediction of Sea Ice. Front. Mar. Sci. 2021, 8, 649378. [Google Scholar] [CrossRef]
- Kwok, R.; Nghiem, S.V.; Yueh, S.H.; Huynh, D.D. Retrieval of thin ice thickness from multifrequency polarimetric SAR data. Remote Sens. Environ. 1995, 51, 361–374. [Google Scholar] [CrossRef]
- Belchansky, G.I.; Douglas, D.C.; Platonov, N.G. Fluctuating Arctic Sea Ice Thickness Changes Estimated by an In Situ Learned and Empirically Forced Neural Network Model. J. Clim. 2008, 21, 716–729. [Google Scholar] [CrossRef]
- Lin, H.; Yang, L. A hybrid neural network model for sea ice thickness forecasting. In Proceedings of the 2012 8th International Conference on Natural Computation, Chongqing, China, 29–31 May 2012; pp. 358–361. [Google Scholar] [CrossRef]
- Herbert, C.; Munoz-Martin, J.F.; Llaveria, D.; Pablos, M.; Camps, A. Sea Ice Thickness Estimation Based on Regression Neural Networks Using L-Band Microwave Radiometry Data from the FSSCat Mission. Remote Sens. 2021, 13, 1366. [Google Scholar] [CrossRef]
- Lee, S.; Im, J.; Kim, J.; Kim, M.; Shin, M.; Kim, H.C.; Quackenbush, L.J. Arctic Sea Ice Thickness Estimation from CryoSat-2 Satellite Data Using Machine Learning-Based Lead Detection. Remote Sens. 2016, 8, 698. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Li, H.; Yan, Q.; Zhen, Y. Estimation of Sea Ice Thickness Using FY-3E Data Based on Random Forest Method. In Proceedings of the 2024 Photonics and Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Hernández-Macià, F.; Gabarró, C.; Gomez, G.S.; Escorihuela, M.J. A Machine Learning Approach on SMOS Thin Sea Ice Thickness Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10752–10758. [Google Scholar] [CrossRef]
- Shamshiri, R.; Eide, E.; Høyland, K.V. Spatio-temporal distribution of sea-ice thickness using a machine learning approach with Google Earth Engine and Sentinel-1 GRD data. Remote Sens. Environ. 2022, 270, 112851. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Y.; Zhang, R.; Yan, H.; Hong, M. Bias correction of Arctic sea ice thickness products based on factor selection and machine learning methods. Appl. Ocean. Res. 2024, 149, 104069. [Google Scholar] [CrossRef]
- Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep Neural Networks. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 19–24 April 2015; pp. 4580–4584. [Google Scholar] [CrossRef]
- Chi, J.; Kim, H.C. Retrieval of daily sea ice thickness from AMSR2 passive microwave data using ensemble convolutional neural networks. Gisci. Remote Sens. 2021, 58, 812–830. [Google Scholar] [CrossRef]
- Liang, Z.; Ji, Q.; Pang, X.; Fan, P.; Yao, X.; Chen, Y.; Chen, Y.; Yan, Z. Estimation of Daily Arctic Winter Sea Ice Thickness from Thermodynamic Parameters Using a Self-Attention Convolutional Neural Network. Remote Sens. 2023, 15, 1887. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, R.; Wang, Y.; Yan, H.; Xu, J.; Guo, Y. Short-term Forecasting of Sea Ice Thickness Based on PredRNN++. J. Phys. Conf. Ser. 2023, 2486, 012017. [Google Scholar] [CrossRef]
- Isleifson, D.; Galley, R.J.; Firoozy, N.; Landy, J.C.; Barber, D.G. Investigations into Frost Flower Physical Characteristics and the C-Band Scattering Response. Remote Sens. 2018, 10, 991. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y. Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009–2010 winter. J. Geophys. Res. Ocean. 2012, 117. [Google Scholar] [CrossRef]
- Nghiem, S.V.; Kwok, R.; Yueh, S.H.; Gow, A.J.; Perovich, D.K.; Kong, J.A.; Hsu, C.C. Evolution in polarimetric signatures of thin saline ice under constant growth. Radio Sci. 1997, 32, 127–151. [Google Scholar] [CrossRef]
- Isleifson, D.; Harasyn, M.L.; Landry, D.; Babb, D.; Asihene, E. Observations of Thin First Year Sea Ice Using a Suite of Surface Radar, LiDAR, and Drone Sensors. Can. J. Remote Sens. 2023, 49, 2226220. [Google Scholar] [CrossRef]
- Dadjoo, M.; Mayvan, M.Z.; Isleifson, D. Experimental Observations of Forming Sea Ice Using Surface-Based L-, C-, and Ku-Band Polarimetric Scatterometers. In Proceedings of the IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, Athens, Greece, 7–12 July 2024; pp. 76–79. [Google Scholar] [CrossRef]
- Isleifson, D.; Galley, R.J.; Barber, D.G.; Landy, J.C.; Komarov, A.S.; Shafai, L. A Study on the C-Band Polarimetric Scattering and Physical Characteristics of Frost Flowers on Experimental Sea Ice. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1787–1798. [Google Scholar] [CrossRef]
- Nghiem, S.; Martin, S.; Perovich, D.; Kwok, R.; Drucker, R.; Gow, A. A laboratory study of the effect of frost flowers on C band radar backscatter from sea ice. J. Geophys. Res. Ocean. 1997, 102, 3357–3370. [Google Scholar] [CrossRef]
- Stroeve, J.; Nandan, V.; Willatt, R.; Tonboe, R.; Hendricks, S.; Ricker, R.; Mead, J.; Huntemann, M.; Itkin, P.; Schneebeli, M.; et al. Surface-based Ku-and Ka-band polarimetric radar for sea ice studies. Cryosphere Discuss. 2020, 2020, 1–38. [Google Scholar] [CrossRef]
- Tonboe, R.T.; Nandan, V.; Yackel, J.; Kern, S.; Pedersen, L.T.; Stroeve, J. Simulated Ka-and Ku-band radar altimeter height and freeboard estimation on snow-covered Arctic sea ice. Cryosphere 2021, 15, 1811–1822. [Google Scholar] [CrossRef]
- Nandan, V.; Scharien, R.K.; Geldsetzer, T.; Kwok, R.; Yackel, J.J.; Mahmud, M.S.; Rösel, A.; Tonboe, R.; Granskog, M.; Willatt, R.; et al. Snow Property Controls on Modeled Ku-Band Altimeter Estimates of First-Year Sea Ice Thickness: Case Studies From the Canadian and Norwegian Arctic. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1082–1096. [Google Scholar] [CrossRef]
- Fofonoff, N. Physical properties of seawater: A new salinity scale and equation of state for seawater. J. Geophys. Res. Ocean. 1985, 90, 3332–3342. [Google Scholar] [CrossRef]
- Starovoitov, V.V.; Golub, Y.I. Data normalization in machine learning. Informatics 2021, 18, 83–96. [Google Scholar] [CrossRef]
- Hope, T.M.H. Chapter 4-Linear regression. In Machine Learning; Mechelli, A., Vieira, S., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 67–81. [Google Scholar] [CrossRef]
- de Ville, B. Decision trees. WIREs Comput. Stat. 2013, 5, 448–455. [Google Scholar] [CrossRef]
- Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics 2010, 26, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Debeer, D.; Strobl, C. Conditional permutation importance revisited. BMC Bioinform. 2020, 21, 1–30. [Google Scholar] [CrossRef]
- scikit-learn. Permutation Feature Importance—scikit-learn Documentation. Available online: https://scikit-learn.org/stable/modules/permutation_importance.html (accessed on 27 August 2025).
- Bejani, M.M.; Ghatee, M. A systematic review on overfitting control in shallow and deep neural networks. Artif. Intell. Rev. 2021, 54, 6391–6438. [Google Scholar] [CrossRef]
- Santos, C.F.G.D.; Papa, J.P. Avoiding overfitting: A survey on regularization methods for convolutional neural networks. ACM Comput. Surv. (Csur) 2022, 54, 1–25. [Google Scholar] [CrossRef]
- Ying, X. An overview of overfitting and its solutions. In Proceedings of the Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1168, p. 022022. [Google Scholar] [CrossRef]
- Isleifson, D.; Hwang, B.; Barber, D.G.; Scharien, R.K.; Shafai, L. C-band polarimetric backscattering signatures of newly formed sea ice during fall freeze-up. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3256–3267. [Google Scholar] [CrossRef]
- Dadjoo, M.; Isleifson, D. SERF2017: Thin Sea Ice Multivariate Physical & Radar Time Series [Data Set]. Available online: https://canwin-datahub.ad.umanitoba.ca/data/dataset/serf2017-thin-sea-ice-multivariate-physical-radar-time-series (accessed on 27 August 2025).
- Dadjoo, M.; Isleifson, D. SERF2021: Thin Sea Ice Multivariate Physical & Radar Time Series [Data Set]. Available online: https://canwin-datahub.ad.umanitoba.ca/data/dataset/serf2021-thin-sea-ice-multivariate-physical-radar-time-series (accessed on 27 August 2025).
Scenario 1 | Scenario 2 | Scenario 3 | ||||
---|---|---|---|---|---|---|
Rank | Feature Name | Weight | Feature Name | Weight | Feature Name | Weight |
1 | CFDM | 0.1516 | CFDM | 0.1559 | CFDM | 0.2177 |
2 | Bulk Ice Salinity | 0.0422 | Bulk Ice Salinity | 0.0456 | C-VV | 0.0278 |
3 | Ice Surface Salinity | 0.0353 | Ice Surface Salinity | 0.0394 | C-HH | 0.0216 |
4 | Surface Cover Salinity | 0.0153 | Surface Cover Salinity | 0.0112 | Air Temperature | 0.0119 |
5 | C-VV | 0.0093 | C-VV | 0.0112 | Wind Speed | 0.0014 |
6 | C-HH | 0.0056 | C-HH | 0.0037 | Humidity | 0.0013 |
7 | Air Temperature | 0.0027 | Air Temperature | 0.0025 | C-HV | −0.0009 |
8 | Humidity | 0.0017 | Wind Speed | 0.0024 | - | - |
9 | Surface Temperature | 0.0004 | Humidity | 0.0011 | - | - |
10 | Wind Speed | 0.0004 | Surface Temperature | 0.0002 | - | - |
11 | C-HV | −0.0003 | C-HV | −0.0006 | - | - |
12 | Frost Flower Height | −0.0012 | - | - | - | - |
Scenario 1 | Scenario 2 | Scenario 3 | ||||
---|---|---|---|---|---|---|
Rank | Feature Name | Weight | Feature Name | Weight | Feature Name | Weight |
1 | CFDM | 0.0381 | CFDM | 0.0398 | CFDM | 0.1031 |
2 | Surface Cover Salinity | 0.0181 | Surface Cover Salinity | 0.0193 | C-VV | 0.0018 |
3 | C-VV | 0.0012 | C-VV | 0.0019 | C-HH | 0.0010 |
4 | C-HH | 0.0008 | C-HH | 0.0004 | C-HV | 0.0002 |
5 | Frost Flower Height | 0.0006 | C-HV | 0.0001 | Wind Speed | 0.0000 |
6 | Snow Depth | 0.0005 | Surface Temperature | 0.0001 | Air Temperature | −0.0001 |
7 | C-HV | 0.0003 | Wind Speed | 0.0000 | HumidityV | −0.0002 |
8 | Air Temperature | 0.0001 | Air Temperature | −0.0001 | - | - |
9 | Wind Speed | 0.0000 | Humidity | −0.0002 | - | - |
10 | Surface Temperature | −0.0001 | Bulk Ice Salinity | −0.0036 | - | - |
11 | Humidity | −0.0001 | Ice Surface Salinity | −0.0084 | - | - |
12 | Bulk Ice Salinity | −0.0039 | - | - | - | - |
13 | Ice Surface Salinity | −0.0076 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadjoo, M.; Isleifson, D. Thin Sea Ice Thickness Prediction Using Multivariate Radar-Physical Features and Machine Learning Algorithms. Remote Sens. 2025, 17, 3002. https://doi.org/10.3390/rs17173002
Dadjoo M, Isleifson D. Thin Sea Ice Thickness Prediction Using Multivariate Radar-Physical Features and Machine Learning Algorithms. Remote Sensing. 2025; 17(17):3002. https://doi.org/10.3390/rs17173002
Chicago/Turabian StyleDadjoo, Mehran, and Dustin Isleifson. 2025. "Thin Sea Ice Thickness Prediction Using Multivariate Radar-Physical Features and Machine Learning Algorithms" Remote Sensing 17, no. 17: 3002. https://doi.org/10.3390/rs17173002
APA StyleDadjoo, M., & Isleifson, D. (2025). Thin Sea Ice Thickness Prediction Using Multivariate Radar-Physical Features and Machine Learning Algorithms. Remote Sensing, 17(17), 3002. https://doi.org/10.3390/rs17173002