Sea Ice Concentration Manifestation in Radar Signal at Low Incidence Angles Depending on Wind Speed
Abstract
:1. Introduction
2. Data
3. Parameterization of NRCS Depending on Sea Ice Concentration and Wind Speed
3.1. Binning Procedure
3.2. NRCS Dependence on Wind Speed and SIC
4. Results and Discussion
- The errors of mismatch of SIC and radar data: within one antenna footprint, various sea ice concentrations can be present;
- The sea ice concentration product is obtained from radiometer data, and the influence of the atmosphere may cause errors in defining this parameter;
- Wind speed is obtained from the reanalysis dataset, and these values may differ from real measurements; however, at this moment, reanalysis is the only source of information about wind speed over sea ice cover: remote sensing methods tuned for a water surface do not work there;
- Numerous factors regarding ice properties are not taken into account: the temperature of water and ice, the presence and conditions of snow cover, sea ice types, the size of sea ice floes [21], the relief of ice cover, ice thickness and salinity, etc.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMSR-2 | Advanced Microwave Scanning Radiometer 2 |
DPR | Dual-Frequency Precipitation Radar |
GANAL | Japanese Global Analysis Model Data |
GPM | Global Precipitation Measurements |
NRCS | Normalized Radar Cross-Section |
SIC | Sea Ice Concentration |
SWIM | Sea Wave Investigation and Measurement |
CFOSAT | Chinese–French Oceanic Satellite |
Appendix A
Incidence Angle | a | b | c | d | e | f | g |
---|---|---|---|---|---|---|---|
4.62° | 7.42 | 2.89 | 5.71 | 4.60 | 0.33 | 5.52 | 0.49 |
5.37° | 8.48 | 2.74 | 4.99 | 5.07 | −0.60 | 7.46 | 0.66 |
6.13° | 7.55 | 3.40 | 4.50 | 6.82 | −1.47 | 8.38 | 0.67 |
7.63° | 5.58 | 5.66 | 4.03 | 5.33 | −2.53 | 8.61 | 0.55 |
6.88° | 6.80 | 4.57 | 3.96 | 6.51 | −2.04 | 9.15 | 0.67 |
8.39° | 6.10 | 5.94 | 3.67 | 6.14 | −3.21 | 9.48 | 0.67 |
9.14° | 5.06 | 5.65 | 3.52 | 5.82 | −3.65 | 9.67 | 0.71 |
9.89° | 8.60 | 5.34 | 3.44 | 4.18 | −3.93 | 9.67 | 0.78 |
10.65° | 8.52 | 5.64 | 3.25 | 6.34 | −4.57 | 9.74 | 0.74 |
References
- Ivanova, N.; Johannessen, O.M.; Pedersen, L.T.; Tonboe, R.T. Retrieval of Arctic Sea Ice Parameters by Satellite Passive Microwave Sensors: A Comparison of Eleven Sea Ice Concentration Algorithms. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7233–7246. [Google Scholar] [CrossRef]
- Spreen, G.; Kaleschke, L.; Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys. Res. Ocean. 2008, 113, 1–14. [Google Scholar] [CrossRef]
- Mäkynen, M.; Kern, S.; Tonboe, R. Evaluation of Microwave Radiometer Sea Ice Concentration Products over the Baltic Sea. Remote Sens. 2024, 16, 4430. [Google Scholar] [CrossRef]
- Naoki, K.; Ukita, J.; Nishio, F.; Nakayama, M.; Comiso, J.C.; Gasiewski, A. Thin sea ice thickness as inferred from passive microwave and in situ observations. J. Geophys. Res. Ocean. 2008, 113, C02S16. [Google Scholar] [CrossRef]
- Soriot, C.; Prigent, C.; Jimenez, C.; Frappart, F. Arctic Sea Ice Thickness Estimation From Passive Microwave Satellite Observations Between 1.4 and 36 GHz. Earth Space Sci. 2023, 10, e2022EA002542. [Google Scholar] [CrossRef]
- Lee, S.M.; Sohn, B.J.; Kim, S.J. Differentiating between first-year and multiyear sea ice in the Arctic using microwave-retrieved ice emissivities. J. Geophys. Res. Atmos. 2017, 122, 5097–5112. [Google Scholar] [CrossRef]
- Lindell, D.B.; Long, D.G. Multiyear Arctic Sea Ice Classification Using OSCAT and QuikSCAT. IEEE Trans. Geosci. Remote Sens. 2016, 54, 167–175. [Google Scholar] [CrossRef]
- Gao, X.; Pang, X.; Ji, Q. Sea ice classification in the Weddell Sea based on scatterometer data. Adv. Polar. Sci. 2017, 28, 196–203. [Google Scholar] [CrossRef]
- Laxon, S.; Peacock, N.; Smith, D. High interannual variability of sea ice thickness in the Arctic region. Nature 2003, 425, 947–950. [Google Scholar] [CrossRef]
- Pang, C.; Li, L.; Zhan, L.; Chen, H.; Shi, Y. Estimation of Arctic Sea Ice Thickness Using HY-2B Altimeter Data. Remote Sens. 2024, 16, 4565. [Google Scholar] [CrossRef]
- Horvat, C.; Buckley, E.; Stewart, M.; Yoosiri, P.; Wilhelmus, M.M. Linear Ice Fraction: Sea Ice Concentration Estimates from the ICESat-2 Laser Altimeter. EGUsphere 2023, 2023, 1–18. [Google Scholar] [CrossRef]
- Collard, F.; Marié, L.; Nouguier, F.; Kleinherenbrink, M.; Ehlers, F.; Ardhuin, F. Wind-Wave Attenuation in Arctic Sea Ice: A Discussion of Remote Sensing Capabilities. J. Geophys. Res. Ocean. 2022, 127, e2022JC018654. [Google Scholar] [CrossRef]
- Wadhams, P.; Squire, V.A.; Goodman, D.J.; Cowan, A.M.; Moore, S.C. The attenuation rates of ocean waves in the marginal ice zone. J. Geophys. Res. Ocean. 1988, 93, 6799–6818. [Google Scholar] [CrossRef]
- Huang, B.Q.; Li, X.M. Wave Attenuation by Sea Ice in the Arctic Marginal Ice Zone Observed by Spaceborne SAR. Geophys. Res. Lett. 2023, 50, e2023GL105059. [Google Scholar] [CrossRef]
- Panfilova, M.; Karaev, V. Sea Ice Detection by an Unsupervised Method Using Ku- and Ka-Band Radar Data at Low Incidence Angles: First Results. Remote Sens. 2023, 15, 3530. [Google Scholar] [CrossRef]
- Panfilova, M.; Karaev, V. Sea Ice Detection Method Using the Dependence of the Radar Cross-Section on the Incidence Angle. Remote Sens. 2024, 16, 859. [Google Scholar] [CrossRef]
- Chu, X.; He, Y.; Karaev, V.Y. Relationships Between Ku-Band Radar Backscatter and Integrated Wind and Wave Parameters at Low Incidence Angles. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4599–4609. [Google Scholar] [CrossRef]
- Hauser, D.; Tourain, C.; Hermozo, L.; Alraddawi, D.; Aouf, L.; Chapron, B.; Dalphinet, A.; Delaye, L.; Dalila, M.; Dormy, E.; et al. New Observations From the SWIM Radar On-Board CFOSAT: Instrument Validation and Ocean Wave Measurement Assessment. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5–26. [Google Scholar] [CrossRef]
- Ebuchi, N.; Graber, H.C. Directivity of wind vectors derived from the ERS-1/AMI scatterometer. J. Geophys. Res. Ocean. 1998, 103, 7787–7797. [Google Scholar] [CrossRef]
- Hossan, A.; Jones, W.L. Ku- and Ka-Band Ocean Surface Radar Backscatter Model Functions at Low-Incidence Angles Using Full-Swath GPM DPR Data. Remote Sens. 2021, 13, 1569. [Google Scholar] [CrossRef]
- Hwang, B.; Wilkinson, J.; Maksym, T.; Graber, H.C.; Schweiger, A.; Horvat, C.; Perovich, D.K.; Arntsen, A.E.; Stanton, T.P.; Ren, J.; et al. Winter-to-summer transition of Arctic sea ice breakup and floe size distribution in the Beaufort Sea. Elem. Sci. Anthr. 2017, 5, 40. [Google Scholar] [CrossRef]
- Stroeve, J.; Nandan, V.; Willatt, R.; Dadic, R.; Rostosky, P.; Gallagher, M.; Mallett, R.; Barrett, A.; Hendricks, S.; Tonboe, R.; et al. Rain on snow (ROS) understudied in sea ice remote sensing: A multi-sensor analysis of ROS during MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate). Cryosphere 2022, 16, 4223–4250. [Google Scholar] [CrossRef]
- Alekseeva, T.; Tikhonov, V.; Frolov, S.; Repina, I.; Raev, M.; Sokolova, J.; Sharkov, E.; Afanasieva, E.; Serovetnikov, S. Comparison of Arctic Sea Ice Concentrations from the NASA Team, ASI, and VASIA2 Algorithms with Summer and Winter Ship Data. Remote Sens. 2019, 11, 2481. [Google Scholar] [CrossRef]
- Long, D.; Donelan, M.; Freilich, V.; Masuko, H.; Piersin, W.; Plant, W.; Weissman, D.; Wentz, F. Current Progress in Ku-band Model Functions; Technical Report MERS 96-002; Bringham Young University: Provo, UT, USA, 1996. [Google Scholar]
- Sergeev, D.A.; Kandaurov, A.A.; Troitskaya, Y.I. Investigation of the Pancake Ice Influence on the Wind–Wave Interaction Within Laboratory Modeling. In Conference the Physical and Mathematical Modeling of Earth and Environment Processes—2022; Karev, V.I., Ed.; Springer: Cham, Switzerland, 2023; pp. 257–261. [Google Scholar]
- Ban, W.; Zhang, L.; Zhang, X.; Nie, H.; Chen, X.; Chen, X. Wind-Concerned Sea Ice Detection and Concentration Retrieval From GNSS-R Data Using a Modified Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 9755–9763. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panfilova, M.; Karaev, V. Sea Ice Concentration Manifestation in Radar Signal at Low Incidence Angles Depending on Wind Speed. Remote Sens. 2025, 17, 1858. https://doi.org/10.3390/rs17111858
Panfilova M, Karaev V. Sea Ice Concentration Manifestation in Radar Signal at Low Incidence Angles Depending on Wind Speed. Remote Sensing. 2025; 17(11):1858. https://doi.org/10.3390/rs17111858
Chicago/Turabian StylePanfilova, Maria, and Vladimir Karaev. 2025. "Sea Ice Concentration Manifestation in Radar Signal at Low Incidence Angles Depending on Wind Speed" Remote Sensing 17, no. 11: 1858. https://doi.org/10.3390/rs17111858
APA StylePanfilova, M., & Karaev, V. (2025). Sea Ice Concentration Manifestation in Radar Signal at Low Incidence Angles Depending on Wind Speed. Remote Sensing, 17(11), 1858. https://doi.org/10.3390/rs17111858