The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Definition of a Compound Heatwave
2.3.2. Estimation of Local Temperature Variations
2.3.3. Analysis of Land Surface Thermal Processes
3. Results and Discussion
3.1. The Selection of Three Extensive Compound Heatwaves in Mainland Spain from 2011 to 2024
3.2. Analysis of the Thermodynamic Causes of Three Extensive Compound Heatwaves
3.2.1. Local Temperature Variation
3.2.2. Soil–Atmosphere Interactions
3.3. Large-Scale Dynamic Circulation Processes During Three Extensive Compound Heatwaves
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Preprocessing of Meteorological Station Data
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Cos, J.; Doblas-Reyes, F.; Jury, M.; Marcos, R.; Bretonnière, P.A.; Samsó, M. The Mediterranean Climate Change Hotspot in the CMIP5 and CMIP6 Projections. Earth Syst. Dyn. 2022, 13, 321–340. [Google Scholar] [CrossRef]
- Balzan, M.; Hassoun, A.; Aroua, N.; Baldy, V.; Bou Dagher, M.; Cristina, B.; Dutay, J.-C.; El Bour, M.; Médail, F. Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report. In Union for the Mediterranean, Plan Bleu, UNEP/MAP, Marseille; FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA: Marseille, France, 2021; p. 632. ISBN 978-2-9577416-0-1. [Google Scholar]
- Serrano-Notivoli, R.; Lemus-Canovas, M.; Barrao, S.; Sarricolea, P.; Meseguer-Ruiz, O.; Tejedor, E. Heat and Cold Waves in Mainland Spain: Origins, Characteristics, and Trends. Weather Clim. Extrem. 2022, 37, 100471. [Google Scholar] [CrossRef]
- Wei, L.; Sobrino, A. Surface Urban Heat Island Analysis Based on Local Climate Zones Using ECOSTRESS and Landsat Data: A Case Study of Valencia City (Spain). Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103875. [Google Scholar] [CrossRef]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top Ten European Heatwaves since 1950 and Their Occurrence in the Coming Decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Demirtaş, M. The Anomalously Hot Summer of 2021 over the Euro-Mediterranean Region: Underlying Atmospheric Drivers and Heatwaves. Theor. Appl. Climatol. 2023, 152, 861–870. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Tejedor, E.; Sarricolea, P.; Meseguer-Ruiz, O.; de Luis, M.; Saz, M.Á.; Longares, L.A.; Olcina, J. Unprecedented Warmth: A Look at Spain’s Exceptional Summer of 2022. Atmos. Res. 2023, 293, 106931. [Google Scholar] [CrossRef]
- Tobías, A.; Royé, D.; Iñiguez, C. Heat-Attributable Mortality in the Summer of 2022 in Spain. Epidemiology 2023, 34, E5–E6. [Google Scholar] [CrossRef]
- Achebak, H.; Garcia-Aymerich, J.; Rey, G.; Chen, Z.; Méndez-Turrubiates, R.F.; Ballester, J. Ambient Temperature and Seasonal Variation in Inpatient Mortality from Respiratory Diseases: A Retrospective Observational Study. Lancet Reg. Health Eur. 2023, 35, 100757. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Xu, Z.; Chak, H.; Tong, S. Exceptional Heatwaves and Mortality in Europe: Greater Impacts since the Coronavirus Disease 2019 Outbreak. Environ. Pollut. 2024, 363, 125058. [Google Scholar] [CrossRef] [PubMed]
- Astigarraga, J.; Andivia, E.; Zavala, M.A.; Gazol, A.; Cruz-Alonso, V.; Vicente-Serrano, S.M.; Ruiz-Benito, P. Evidence of Non-Stationary Relationships between Climate and Forest Responses: Increased Sensitivity to Climate Change in Iberian Forests. Glob. Change Biol. 2020, 26, 5063–5076. [Google Scholar] [CrossRef]
- Tijerín-Triviño, J.; Lines, E.R.; Zavala, M.A.; García, M.; Astigarraga, J.; Cruz-Alonso, V.; Dahlgren, J.; Ruiz-Benito, P. Forest Productivity Decreases in Response to Recent Changes in Vegetation Structure and Climate in the Latitudinal Extremes of the European Continent. Glob. Ecol. Biogeogr. 2025, 34, 70011. [Google Scholar] [CrossRef]
- Rodríguez-Jiménez, E.; Cruz-Pérez, N.; Koritnik, J.; García-Gil, A.; Marazuela, M.Á.; Santamarta, J.C. Revealing the Impact of Wildfires on Groundwater Quality: Insights from Sierra de La Culebra (Spain). Chemosphere 2024, 365, 143375. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chen, A. Comprehensive Assessment of Daytime, Nighttime and Compound Heatwave Risk in East China. Nat. Hazards 2024, 120, 7245–7263. [Google Scholar] [CrossRef]
- Sousa, P.M.; Barriopedro, D.; García-Herrera, R.; Ordóñez, C.; Soares, P.M.M.; Trigo, R.M. Distinct Influences of Large-Scale Circulation and Regional Feedbacks in Two Exceptional 2019 European Heatwaves. Commun. Earth Environ. 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Kim, J.H.; Nam, S.H.; Kim, M.K.; Serrano-Notivoli, R.; Tejedor, E. The 2022 Record-High Heat Waves over Southwestern Europe and Their Underlying Mechanism. Weather. Clim. Extrem. 2024, 46, 100729. [Google Scholar] [CrossRef]
- Zschenderlein, P.; Fink, A.H.; Pfahl, S.; Wernli, H. Processes Determining Heat Waves across Different European Climates. Q. J. R. Meteorol. Soc. 2019, 145, 2973–2989. [Google Scholar] [CrossRef]
- Tian, X.; Qiu, B.; Ni, Y.; Chen, J.; Li, L.; Cao, Y. Divergent Response of Energy Exchange to Heatwaves from Flux Tower Observations among Various Vegetation Types. Environ. Res. Lett. 2024, 19, 094029. [Google Scholar] [CrossRef]
- Petrou, I.; Kassomenos, P. Local Factors Contributing to Daytime, Nighttime, and Compound Heatwaves in the Eastern Mediterranean. Theor. Appl. Climatol. 2025, 156, 194. [Google Scholar] [CrossRef]
- Tripathy, K.P.; Mishra, A.K. How Unusual Is the 2022 European Compound Drought and Heatwave Event? Geophys. Res. Lett. 2023, 50, 1–12. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Guo, L.; Huang, L.; Chen, D. Similarities and Differences in the Mechanisms Causing the European Summer Heatwaves in 2003, 2010, and 2018. Earth’s Future 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Ribeiro, A.F.S.; Russo, A.; Gouveia, C.M.; Pires, C.A.L. Drought-Related Hot Summers: A Joint Probability Analysis in the Iberian Peninsula. Weather Clim. Extrem. 2020, 30, 100279. [Google Scholar] [CrossRef]
- Faybishenko, B.; Versteeg, R.; Pastorello, G.; Dwivedi, D.; Varadharajan, C.; Agarwal, D. Challenging Problems of Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series Data. Stoch. Environ. Res. Risk Assess. 2022, 36, 1049–1062. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, G. Extreme High Temperatures and Heatwave Events across Europe in 2023. Environ. Res. Commun. 2025, 7, 021001. [Google Scholar] [CrossRef]
- Hoy, A.; Hänsel, S.; Maugeri, M. An Endless Summer: 2018 Heat Episodes in Europe in the Context of Secular Temperature Variability and Change. Int. J. Climatol. 2020, 40, 6315–6336. [Google Scholar] [CrossRef]
- Meher, J.K.; Das, L. Gridded Data as a Source of Missing Data Replacement. J. Earth Syst. Sci. 2019, 128, 1–14. [Google Scholar] [CrossRef]
- Ngoungue Langue, C.G.; Lavaysse, C.; Vrac, M.; Flamant, C. Heat Wave Monitoring over West African Cities: Uncertainties, Characterization and Recent Trends. Nat. Hazards Earth Syst. Sci. 2023, 23, 1313–1333. [Google Scholar] [CrossRef]
- Yu, S.; Tett, S.F.B.; Freychet, N.; Yan, Z. Changes in Regional Wet Heatwave in Eurasia during Summer (1979–2017). Environ. Res. Lett. 2021, 16, 064094. [Google Scholar] [CrossRef]
- Lhotka, O.; Kyselý, J. The 2021 European Heat Wave in the Context of Past Major Heat Waves. Earth Space Sci. 2022, 9, 1–12. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Y.; Li, K.; He, B.; Cui, Y.; Hou, P. Changes in Day–Night Dominance of Combined Day and Night Heatwave Events in China during 1979–2018. Environ. Res. Lett. 2023, 17, 114058. [Google Scholar] [CrossRef]
- Ji, L.; Chen, H. Differences in Variations of Long-Lived and Short-Lived Summer Heat Waves during 1981–2020 over Eastern China and Their Corresponding Large-Scale Circulation Anomalies. J. Meteorol. Res. 2024, 38, 414–436. [Google Scholar] [CrossRef]
- Paredes-Fortuny, L.; Khodayar, S. Understanding the Magnification of Heatwaves over Spain: Relevant Changes in the Most Extreme Events. Weather Clim. Extrem. 2023, 42, 100631. [Google Scholar] [CrossRef]
- Luo, J.; Deng, C.; Zhu, Y.; Xia, F.; Pang, Y.; Zhu, H. Comparison on Characteristics and Causes at Different Stages of the Extreme Heat Event in Chongqing in the 2022 Midsummer. Meteorol. Mon. 2023, 49, 1108–1118. (In Chinese) [Google Scholar]
- Qiao, L.; Zuo, Z.; Zhang, R.; Piao, S.; Xiao, D.; Zhang, K. Soil Moisture–Atmosphere Coupling Accelerates Global Warming. Nat. Commun. 2023, 14, 4908. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Hao, H.; Zhang, J. Soil Moisture Influenced the Variability of Air Temperature and Oasis Effect in a Large Inland Basin of an Arid Region. Hydrol. Process. 2021, 35, e14246. [Google Scholar] [CrossRef]
- Entekhabi, D.; Asrar, G.R.; Betts, A.K.; Beven, K.J.; Bras, R.L.; Duffy, C.J.; Dunne, T.; Koster, R.D.; Lettenmaier, D.P.; McLaughlin, D.B.; et al. An Agenda for Land Surface Hydrology Research and a Call for the Second International Hydrological Decade. Bull. Am. Meteorol. Soc. 1999, 80, 2043–2058. [Google Scholar] [CrossRef]
- Tang, S.; Qiao, S.; Wang, B.; Liu, F.; Feng, T.; Yang, J.; He, M.; Chen, D.; Cheng, J.; Feng, G.; et al. Linkages of Unprecedented 2022 Yangtze River Valley Heatwaves to Pakistan Flood and Triple-Dip La Niña. npj Clim. Atmos. Sci. 2023, 6, 44. [Google Scholar] [CrossRef]
- Aminzadeh, M.; Roderick, M.L.; Or, D. Using the Complementary Relationship Between Actual and Potential Evaporation to Diagnose the Onset of Heatwaves. Water Resour. Res. 2021, 57, e2020WR029156. [Google Scholar] [CrossRef]
- Xulu, N.G.; Chikoore, H.; Bopape, M.J.M.; Nethengwe, N.S. Climatology of the Mascarene High and Its Influence on Weather and Climate over Southern Africa. Climate 2020, 8, 86. [Google Scholar] [CrossRef]
- Materia, S.; Ardilouze, C.; Prodhomme, C.; Donat, M.G.; Benassi, M.; Doblas-Reyes, F.J.; Peano, D.; Caron, L.P.; Ruggieri, P.; Gualdi, S. Summer Temperature Response to Extreme Soil Water Conditions in the Mediterranean Transitional Climate Regime. Clim. Dyn. 2022, 58, 1943–1963. [Google Scholar] [CrossRef]
- Horton, R.M.; Mankin, J.S.; Lesk, C.; Coffel, E.; Raymond, C. A Review of Recent Advances in Research on Extreme Heat Events. Curr. Clim. Change Rep. 2016, 2, 242–259. [Google Scholar] [CrossRef]
- Rodrigues, R.R.; Taschetto, A.S.; Sen Gupta, A.; Foltz, G.R. Common Cause for Severe Droughts in South America and Marine Heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Pérez-García, L.; García-Hernández, C.; Ruiz-Fernández, J. Trends, Atmospheric Patterns, and Spatial Variability of Heatwaves in an Oceanic Climate Area of NW Iberia. Land 2025, 14, 310. [Google Scholar] [CrossRef]
Data Source | Data Type | Temporal Range | Spatial Range | Purpose |
---|---|---|---|---|
NOAA | Tmax and Tmin at meteorological stations | 1 June–31 August for each year from 2011 to 2024 (daily) | 40 stations in mainland Spain | Analysis of HWs in mainland Spain from 2011 to 2024 |
25 May–7 September for each year from 1981 to 2010 (daily) | Calculation of the 95th percentile of daily temperatures using a sliding 15-day window | |||
ERA5 | 2m temperature, surface net solar radiation, volumetric soil water layer 1, surface latent heat flux, and surface sensible heat flux | 16–18 June 2017, 16–18 June 2022, 22–24 August 2023 (hourly) | Range: 10°W–4°E, 35°N–44°N Resolution: 0.25° × 0.25° | Analysis of the soil–atmosphere interactions |
16–18 June from 1981 to 2010, 22–24 August from 1981 to 2010 (hourly) | Climatology | |||
v-component of wind, u-component of wind, and vertical velocity at 950 hPa; temperature at 925 hPa and 950 hPa | 16–18 June 2017, 16–18 June 2022, 22–24 August 2023 (hourly) | Range: 10°W–4°E, 35°N–44°N Resolution: 0.25° × 0.25° | Analysis of the local temperature variation | |
16–18 June from 1981 to 2010, 22–24 August from 1981 to 2010 (hourly) | Climatology | |||
geopotential at 500 hPa; v-component of wind, u-component of wind, and temperature at 850 hPa | 16–18 June 2017, 16–18 June 2022, 22–24 August 2023 (daily at 12:00 UTC) | Range: 30°W–80°E, 10°N–70°N Resolution: 0.25° × 0.25° | Analysis of the large-scale dynamic circulation processes |
16–18 June 2017 | 16–18 June 2022 | 22–24 August 2023 | |||||||
---|---|---|---|---|---|---|---|---|---|
T2M-SNSR | −0.123 | −0.432 | −0.353 | 0.521 | −0.284 | 0.121 | 0.321 | 0.133 | |
T2M-SLHF | −0.330 | −0.496 | −0.511 | −0.395 | −0.347 | −0.288 | 0.221 | −0.131 | −0.128 |
T2M-SSHF | −0.104 | 0.236 | −0.075 | −0.281 | −0.223 | ||||
T2M-SoilW | −0.223 | −0.643 | −0.500 | −0.207 | −0.600 | −0.460 | 0.116 | −0.476 | −0.334 |
16–18 June 2017 | 16–18 June 2022 | 22–24 August 2023 | |||||||
---|---|---|---|---|---|---|---|---|---|
Z500 anomaly (dagpm) | +12.92 | +11.02 | +7.02 | +10.97 | +12.33 | +6.30 | +10.29 | +9.59 | +8.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Jiang, N.; Xu, Y.; Bastos, L.; Wang, J.; Xu, T. The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain. Remote Sens. 2025, 17, 2976. https://doi.org/10.3390/rs17172976
Li Z, Jiang N, Xu Y, Bastos L, Wang J, Xu T. The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain. Remote Sensing. 2025; 17(17):2976. https://doi.org/10.3390/rs17172976
Chicago/Turabian StyleLi, Zeqi, Nan Jiang, Yan Xu, Luísa Bastos, Jiangteng Wang, and Tianhe Xu. 2025. "The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain" Remote Sensing 17, no. 17: 2976. https://doi.org/10.3390/rs17172976
APA StyleLi, Z., Jiang, N., Xu, Y., Bastos, L., Wang, J., & Xu, T. (2025). The Thermodynamic and Dynamic Cause Analysis of Three Extensive Compound Heatwaves from 2011 to 2024 in Mainland Spain. Remote Sensing, 17(17), 2976. https://doi.org/10.3390/rs17172976