Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake
Abstract
1. Introduction
2. Materials and Methods
2.1. Far-Field Body Wave Data
2.2. InSAR Observation
2.3. Fault Model Inversion
2.3.1. Bayesian Estimation for Fault Geometry with InSAR Data
2.3.2. Finite Fault Inversion with Geodetic and Seismic Data
2.4. Coulomb Stress Change
3. Results
3.1. Coseismic Deformation
3.2. Rupture Process and Slip Distribution
4. Discussion
4.1. Coulomb Stress Change and Earthquake Risk
4.2. Seismogenic Structure of the Al Haouz Earthquake and Implications for Regional Tectonics
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheloni, D.; Famiglietti, N.A.; Tolomei, C.; Caputo, R.; Vicari, A. The 8 September 2023, MW 6.8, Morocco Earthquake: A Deep Transpressive Faulting Along the Active High Atlas Mountain Belt. Geophys. Res. Lett. 2024, 51, e2023GL106992. [Google Scholar] [CrossRef]
- Levandowski, W. Fault-Slip Potential near the Deadly 8 September 2023 Mw 6.8 Al Haouz, Morocco, Earthquake. Seism. Rec. 2023, 3, 367–375. [Google Scholar] [CrossRef]
- Yeck, W.L.; Hatem, A.E.; Goldberg, D.E.; Barnhart, W.D.; Jobe, J.A.T.; Shelly, D.R.; Villaseñor, A.; Benz, H.M.; Earle, P.S. Rapid Source Characterization of the 2023 Mw 6.8 Al Haouz, Morocco, Earthquake. Seism. Rec. 2023, 3, 357–366. [Google Scholar] [CrossRef]
- Pelaez, J.A.; Chourak, M.; Tadili, B.A.; Brahim, L.A.; Hamdache, M.; Casado, C.L.; Solares, J.M.M. A Catalog of Main Moroccan Earthquakes from 1045 to 2005. Seismol. Res. Lett. 2007, 78, 614–621. [Google Scholar] [CrossRef]
- Cherkaoui, T.-E.; Hassani, A.E. Seismicity and Seismic Hazard in Morocco 1901–2010. Bull. L’Institut Sci. 2012, pp. 45–55. Available online: http://www.israbat.ac.ma/wp-content/uploads/2015/01/05-Cherkaoui_BIS_ST34_45.pdf (accessed on 5 July 2025).
- Nayak, K.; López-Urías, C.; Romero-Andrade, R.; Sharma, G.; Guzmán-Acevedo, G.M.; Trejo-Soto, M.E. Ionospheric Total Electron Content (TEC) Anomalies as Earthquake Precursors: Unveiling the Geophysical Connection Leading to the 2023 Moroccan 6.8 Mw Earthquake. Geosciences 2023, 13, 319. [Google Scholar] [CrossRef]
- Huang, K.; Wei, G.; Chen, K.; Zhang, N.; Li, M.; Dal Zilio, L. The 2023 Mw 6.8 Morocco Earthquake: A Lower Crust Event Triggered by Mantle Upwelling? Geophys. Res. Lett. 2024, 51, e2024GL109052. [Google Scholar] [CrossRef]
- Touati, B.; Gu, W.; Ni, S.; Chu, R.; Sheng, M.; Xue, Q.; Bellalem, F.; Maouche, S.; Yahyaoui, H. The 2023 Mw 6.8 Adassil Earthquake (Chichaoua, Morocco) on a Steep Reverse Fault in the Deep Crust and Its Geodynamic Implications. Earth Planet. Phys. 2024, 8, 522–534. [Google Scholar] [CrossRef]
- Chalouan, A.; Gil, A.J.; Chabli, A.; Bargach, K.; Liemlahi, H.; El Kadiri, K.; Tendero-Salmerón, V.; Galindo-Zaldívar, J. cGPS Record of Active Extension in Moroccan Meseta and Shortening in Atlasic Chains under the Eurasia-Nubia Convergence. Sensors 2023, 23, 4846. [Google Scholar] [CrossRef]
- Hamdache, M.; Pelaez, J.A.; Talbi, A.; Casado, C.L. A Unified Catalog of Main Earthquakes for Northern Algeria from A.D. 856 to 2008. Seismol. Res. Lett. 2010, 81, 732–739. [Google Scholar] [CrossRef]
- McClusky, S.; Reilinger, R.; Mahmoud, S.; Ben Sari, D.; Tealeb, A. GPS Constraints on Africa (Nubia) and Arabia Plate Motions. Geophys. J. Int. 2003, 155, 126–138. [Google Scholar] [CrossRef]
- Serpelloni, E.; Vannucci, G.; Pondrelli, S.; Argnani, A.; Casula, G.; Anzidei, M.; Baldi, P.; Gasperini, P. Kinematics of the Western Africa-Eurasia Plate Boundary from Focal Mechanisms and GPS Data. Geophys. J. Int. 2007, 169, 1180–1200. [Google Scholar] [CrossRef]
- Billi, A.; Cuffaro, M.; Orecchio, B.; Palano, M.; Presti, D.; Totaro, C. Retracing the Africa–Eurasia Nascent Convergent Boundary in the Western Mediterranean Based on Earthquake and GNSS Data. Earth Planet. Sci. Lett. 2023, 601, 117906. [Google Scholar] [CrossRef]
- Tesón; Teixell, A.; Arboleya, M.L. Intraplate Tectonics: Insights from Mountain Building in the Moroccan Atlas and Related Subsidence in the Ouarzazate Foreland Basin. In Proceedings of the International Meeting of Young researchers in Structural Geology and Tectonics, Oviedo, Spain, 1–3 July 2008. [Google Scholar]
- Sébrier, M.; Siame, L.; Zouine, E.M.; Winter, T.; Missenard, Y.; Leturmy, P. Active Tectonics in the Moroccan High Atlas. Comptes Rendus Géosci. 2006, 338, 65–79. [Google Scholar] [CrossRef]
- Lanari, R.; Faccenna, C.; Fellin, M.G.; Essaifi, A.; Nahid, A.; Medina, F.; Youbi, N. Tectonic Evolution of the Western High Atlas of Morocco: Oblique Convergence, Reactivation, and Transpression. Tectonics 2020, 39, e2019TC005563. [Google Scholar] [CrossRef]
- Teixell, A.; Arboleya, M.; Julivert, M.; Charroud, M. Tectonic Shortening and Topography in the Central High Atlas (Morocco). Tectonics 2003, 22, 2002TC001460. [Google Scholar] [CrossRef]
- Helg, U.; Burkhard, M.; Caritg, S.; Robert-Charrue, C. Folding and Inversion Tectonics in the Anti-Atlas of Morocco. Tectonics 2004, 23, 2003TC001576. [Google Scholar] [CrossRef]
- Ellero, A.; Ottria, G.; Malusà, M.G.; Ouanaimi, H. Structural Geological Analysis of the High Atlas (Morocco): Evidences of a Transpressional Fold-Thrust Belt. In Tectonics—Recent Advances; Sharkov, E., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0675-3. [Google Scholar]
- Beauchamp, W.; Allmendinger, R.W.; Barazangi, M.; Demnati, A.; El Alji, M.; Dahmani, M. Inversion Tectonics and the Evolution of the High Atlas Mountains, Morocco, Based on a Geological-geophysical Transect. Tectonics 1999, 18, 163–184. [Google Scholar] [CrossRef]
- Gomez, F.; Beauchamp, W.; Barazangi, M. Role of the Atlas Mountains (Northwest Africa) within the African-Eurasian Plate-Boundary Zone. Geology 2000, 28, 775. [Google Scholar] [CrossRef]
- Medina, F.; Cherkaoui, T.-E. Focal Mechanisms of the Atlas Earthquakes, and Tectonic Implications. Geol. Rundsch. 1991, 80, 639–648. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the Western Mediterranean. Geol. Soc. Lond. Spec. Publ. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Xu, X.; Sandwell, D.T.; Smith-Konter, B. Coseismic Displacements and Surface Fractures from Sentinel-1 InSAR: 2019 Ridgecrest Earthquakes. Seismol. Res. Lett. 2020, 91, 1979–1985. [Google Scholar] [CrossRef]
- Fang, J.; Houseman, G.A.; Wright, T.J.; Evans, L.A.; Craig, T.J.; Elliott, J.R.; Hooper, A. The Dynamics of the India-Eurasia Collision: Faulted Viscous Continuum Models Constrained by High-Resolution Sentinel-1 InSAR and GNSS Velocities. J. Geophys. Res. Solid Earth 2024, 129, e2023JB028571. [Google Scholar] [CrossRef]
- Massonnet, D.; Rossi, M. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Fialko, Y. Interseismic Strain Accumulation and the Earthquake Potential on the Southern San Andreas Fault System. Nature 2006, 441, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Garthwaite, M.C.; Wang, H.; Wright, T.J. Broadscale Interseismic Deformation and Fault Slip Rates in the Central Tibetan Plateau Observed Using InSAR. J. Geophys. Res. Solid Earth 2013, 118, 5071–5083. [Google Scholar] [CrossRef]
- Zelenin, E.; Bachmanov, D.; Garipova, S.; Trifonov, V.; Kozhurin, A. The Database of the Active Faults of Eurasia (AFEAD): Ontology and Design behind the Continental-Scale Dataset. Earth Syst. Sci. Data 2021, 14, 4489–4503. [Google Scholar] [CrossRef]
- Wald, D.J.; Heaton, T.H.; Hudnut, K.W. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data. Bull. Seismol. Soc. Am. 1996, 86, S49–S70. [Google Scholar] [CrossRef]
- Qian, Y.; Ni, S.; Wei, S.; Almeida, R.; Zhang, H. The Effects of Core-Reflected Waves on Finite Fault Inversions with Teleseismic Body Wave Data. Geophys. J. Int. 2017, 211, 936–951. [Google Scholar] [CrossRef]
- Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M. Update on CRUST1.0—A 1-Degree Global Model of Earth’s Crust. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013. [Google Scholar]
- Kennett, B.; Engdahl, E.; Buland, R. Constraints on Seismic Velocities in the Earth from Traveltimes. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Liu, H.; Xie, L.; Zhao, G.; Ali, E.; Xu, W. A Joint InSAR-GNSS Workflow for Correction and Selection of Interferograms to Estimate High-Resolution Interseismic Deformations. Satell. Navig. 2023, 4, 14. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar Interferogram Filtering for Geophysical Applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Gao, H.; Liao, M.; Feng, G. An Improved Quadtree Sampling Method for InSAR Seismic Deformation Inversion. Remote Sens. 2021, 13, 1678. [Google Scholar] [CrossRef]
- Zhu, L.; Rivera, L.A. A Note on the Dynamic and Static Displacements from a Point Source in Multilayered Media. Geophys. J. R. Astron. Soc. 2010, 148, 619–627. [Google Scholar] [CrossRef]
- Shen, W.; Ritzwoller, M.H.; Kang, D.; Kim, Y.H.; Lin, F.C.; Ning, J.; Wang, W.; Zheng, Y.; Zhou, L. A Seismic Reference Model for the Crust and Uppermost Mantle beneath China from Surface Wave Dispersion. Geophys. J. Int. 2016, 206, 954–979. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Half Space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Okada, Y. Surface Deformation Due to Shear and Tensile Faults in a Halfspace. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Bagnardi, M.; Hooper, A.J. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087–1092. [Google Scholar] [CrossRef]
- Zheng, A.; Yu, X.; Xu, W.; Chen, X.; Zhang, W. A Hybrid Source Mechanism of the 2017 Mw 6.5 Jiuzhaigou Earthquake Revealed by the Joint Inversion of Strong-Motion, Teleseismic and InSAR Data. Tectonophysics 2020, 789, 228538. [Google Scholar] [CrossRef]
- Olson, A.H.; Apsel, R.J. Finite Faults and Inverse Theory with Applications to the 1979 Imperial Valley Earthquake. Bull. Seismol. Soc. Am. 1982, 72, 1969–2001. [Google Scholar] [CrossRef]
- Hartzell, S.H.; Heaton, T.H. Inversion of Strong Ground Motion and Teleseismic Waveform Data for the Fault Rupture History of the 1979 Imperial Valley, California, Earthquake. Bull. Seismol. Soc. Am. 1983, 73, 1553–1583. [Google Scholar] [CrossRef]
- Sekiguchi, H. Fault Geometry at the Rupture Termination of the 1995 Hyogo-Ken Nanbu Earthquake. Bull. Seismol. Soc. Am. 2000, 90, 117–133. [Google Scholar] [CrossRef]
- Aki, K.; Richards, P. Quantitative Seismology; University Science Books: New York, NY, USA, 2002. [Google Scholar]
- Akaike, H. Likelihood and the Bayes Procedure. Trab. Estada Investig. Oper. 1980, 31, 143–166. [Google Scholar] [CrossRef]
- Lawson, C.L.; Hanson, R.J. Solving Least Squares Problems; Prentice-Hall: Englewood Cliffs, NJ, USA, 1974; Available online: https://epubs.siam.org/doi/pdf/10.1137/1.9781611971217.bm (accessed on 5 July 2025).
- Stein, R.S. The Role of Stress Transfer in Earthquake Occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Stein, R.S.; King, G.C.P.; Lin, J. Change in Failure Stress on the Southern San Andreas Fault System Caused by the 1992 Magnitude = 7.4 Landers Earthquake. Science 1992, 258, 1328–1332. [Google Scholar] [CrossRef]
- King, G.C.P.; Stein, R.S.; Lin, J. Static Stress Changes and the Triggering of Earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide. U.S. Geological Survey Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- Lakhouidsi, K.; Fadil, A.; Tahayt, A.; Soulaimani, A. Present-Day Kinematics of the Northwest Moroccan Atlantic Margin from GNSS Data: West Southwest Extrusion at the Western End of the High Atlas. Can. J. Earth Sci. 2024, 61, 586–596. [Google Scholar] [CrossRef]
- García-Armenteros, J.A. Topo-Iberia CGPS Network: A New 3D Crustal Velocity Field in the Iberian Peninsula and Morocco Based on 11 Years (2008–2019). GPS Solut. 2023, 27, 155. [Google Scholar] [CrossRef]
- Ait Brahim, L.; Chotin, P.; Hinaj, S.; Abdelouafi, A.; El Adraoui, A.; Nakcha, C.; Dhont, D.; Charroud, M.; Sossey Alaoui, F.; Amrhar, M.; et al. Paleostress Evolution in the Moroccan African Margin from Triassic to Present. Tectonophysics 2002, 357, 187–205. [Google Scholar] [CrossRef]
- Koulali, A.; Ouazar, D.; Tahayt, A.; King, R.W.; Vernant, P.; Reilinger, R.E.; McClusky, S.; Mourabit, T.; Davila, J.M.; Amraoui, N. New GPS Constraints on Active Deformation along the Africa–Iberia Plate Boundary. Earth Planet. Sci. Lett. 2011, 308, 211–217. [Google Scholar] [CrossRef]
Satellite | Orbit | Primary Day/Month/Year | Secondary Day/Month/Year | Perpendicular Baseline (m) | Mean Coherence | Pass |
---|---|---|---|---|---|---|
Sentinel-1A | Ascending | 3 September 2023 | 15 September 2023 | 92.4 | 0.78 | 45 |
Sentinel-1A | Descending | 4 September 2023 | 16 September 2023 | 28.7 | 0.77 | 52 |
Sentinel-1A | Descending | 30 August 2023 | 11 September 2023 | 46.4 | 0.75 | 154 |
Length (km) | Width (km) | Depth (km) | Dip (°) | Strike (°) | Fault X 1 (km) | Fault Y 1 (km) | Strike–Slip 2 (m) | Dip–Slip 3 (m) | |
---|---|---|---|---|---|---|---|---|---|
Lower | 5 | 1 | 1 | 0.1 | 0 | −30 | −30 | −1 | −2 |
Upper | 30 | 50 | 20 | 89.9 | 360 | 30 | 30 | 1 | 2 |
Optimal | 22.23 | 38.61 | 10.77 | 70.3 | 250.3 | 10.73 | −15.29 | −0.23 | −0.61 |
2.5% 4 | 18.72 | 31.68 | 9.63 | 66.9 | 246.9 | 9.42 | −15.93 | −0.38 | −0.79 |
97.5% 4 | 25.10 | 47.59 | 12.21 | 74.1 | 254.1 | 11.73 | −14.65 | −0.10 | −0.50 |
Source | Lon (°) | Lat (°) | Depth (km) | Strike (°) | Dip (°) | Rake | Mw |
---|---|---|---|---|---|---|---|
USGS | −8.385 | 31.058 | 19 | 255 | 69 | 69 | 6.8 |
122 | 29 | 132 | |||||
GCMT | −8.31 | 30.94 | 23.8 | 257 | 70 | 73 | 6.9 |
118 | 26 | 128 | |||||
Cheloni et al. [1] | / | / | / | 106 | 22 | 125 | 6.8 |
Yeck et al. [3] | −8.332 | 30.978 | 25 | 251 | 69 | 75 | 6.84 |
Huang et al. [7] | −8.33 | 30.97 | 26 | 251 | 72 | / | 6.82 |
Touati [8] | −8.4 | 31.2 | 29.1 | 250 | 70 | 74 | 6.82 |
This study | −8.294 | 30.935 | 28.9 | 249.5 | 70.3 | 70 | 6.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, N.; Chen, Z.; Zhao, L.; Sun, K.; Xie, L.; Xu, W. Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake. Remote Sens. 2025, 17, 2971. https://doi.org/10.3390/rs17172971
Fang N, Chen Z, Zhao L, Sun K, Xie L, Xu W. Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake. Remote Sensing. 2025; 17(17):2971. https://doi.org/10.3390/rs17172971
Chicago/Turabian StyleFang, Nan, Zhidan Chen, Lei Zhao, Kai Sun, Lei Xie, and Wenbin Xu. 2025. "Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake" Remote Sensing 17, no. 17: 2971. https://doi.org/10.3390/rs17172971
APA StyleFang, N., Chen, Z., Zhao, L., Sun, K., Xie, L., & Xu, W. (2025). Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake. Remote Sensing, 17(17), 2971. https://doi.org/10.3390/rs17172971