The Coexistence of Trees, Shrubs, and Grasses Creates a Complex Picture of Land Surface Phenology in Dry Tropical Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.1.1. Caatinga (Tropical Dry Forest)
2.1.2. Cerrado (Savanna)
2.2. Phenocam Data
2.3. Earth Observation Data
2.4. Data Analysis
- Start of growing season (SOS). Represents the beginning of the growing season and the start of the green-up period. This was estimated using the first derivatives of the GAMs, where the start of the growing season was identified as the day when the model slope exceeds half of the maximum positive model slope for a continuous period of 27 days or more, using only backwards-looking data, following both Archibald and Scholes [69] and White et al. [70].
- End of growing season (EOS). Represents the end of the growing season and the end of senescence. Similarly to SOS, this was estimated using the first derivatives of the GAMs. However, the EOS was identified as the day where the model slope exceeds half of the maximum negative slope for a continuous period of 27 days or more, using only backwards-looking data.
- Length of growing season (LOS). The duration of the full growing season was calculated as the difference between SOS and EOS.
- Peak of growing season (POS). Measured as the highest value of the seasonal curve for each VI.
3. Results
3.1. Can Data from MODIS EO Products Be Used to Understand Land Surface Phenology in Dry Tropical Vegetation?
3.2. Comparison of Phenological Metrics Across Sites and VIs
4. Discussion
4.1. Are EO MODIS Reliable Data Products to Describe Land Surface Phenology Across Dry Tropical Vegetation?
4.2. Difference in Phenological Metrics Between Sites and Sensors
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
a.s.l | Above sea level |
EO | Earth observation |
EOS | End of season |
EVI | Enhanced vegetation index |
ExG | Excess green index |
GAM | Generalised additive model |
GAMM | Generalised additive mixed model |
GCC | Green chromatic coordinate |
GPP | Gross primary production |
IPCC | Intergovernmental panel on climate change |
LOS | Length of season |
LSP | Land surface phenology |
MODIS | Moderate-resolution imaging spectroradiometer |
NDVI | Normalised difference vegetation index |
NIR | Near-infrared radiation |
Phenocam | Digital cameras used to track vegetation phenology |
POS | Peak of season |
RGB | Red, green, and blue colour channels |
SOS | Start of season |
Appendix A
Family | Scientific Name | Life Form |
---|---|---|
Anacardiaceae | Spondias tuberosa | Shrub|Tree |
Anacardiaceae | Myracrodruon urundeuva | Tree |
Anacardiaceae | Schinopsis brasiliensis | Tree |
Apocynaceae | Aspidosperma pyrifolium | Tree |
Bignoniaceae | Handroanthus spongiosus | Tree |
Burseraceae | Commiphora leptophloeos | Shrub|Tree |
Cactaceae | Pilosocereus | Tree|Cactus |
Euphorbiaceae | Sapium argutum | Shrub|Tree |
Euphorbiaceae | Sapium glandulosum | Shrub|Tree |
Euphorbiaceae | Cnidoscolus quercifolius | Shrub|Tree |
Euphorbiaceae | Manihot pseudoglaziovii | Tree |
Euphorbiaceae | Croton conduplicatus | Shrub|Sub-Shrub |
Fabaceae | Cenostigma microphyllum | Shrub|Tree |
Fabaceae | Senegalia piauhiensis | Shrub|Tree |
Fabaceae | Mimosa tenuiflora | Shrub|Tree|Sub-Shrub |
Malvaceae | Pseudobombax simplicifolium | Tree |
Family | Scientific Name | Life Form |
---|---|---|
Apocynaceae | Aspidosperma tomentosum | Tree |
Asteraceae | Gochnatia pulchra | Shrub|Tree |
Bignoniaceae | Jacaranda decurrens | Shrub |
Caryocaraceae | Caryocar brasiliense | Tree |
Cyperaceae | Bulbostylis Kunth | Herb |
Erythroxylaceae | Erythroxylum suberosum | Shrub|Tree|Sub-Shrub |
Fabaceae | Machaerium acutifolium | Tree |
Fabaceae | Andira humilis | Shrub|Tree |
Lamiaceae | Aegiphila verticillata | Shrub|Tree|Sub-Shrub |
Malpighiaceae | Byrsonima intermedia | Shrub |
Myrtaceae | Eugenia pyriformis | Shrub|Tree|Sub-Shrub |
Myrtaceae | Campomanesia pubescens | Shrub|Tree |
Arecaceae | Syagrus petraea | Herb|Palm |
Poaceae | Andropogon | Herb |
Poaceae | Loudetiopsis | Herb |
Poaceae | Trachypogon spicatus | Herb |
Sapotaceae | Pouteria torta | Tree |
Sapotaceae | Pradosia brevipes | Sub-Shrub |
Verbenaceae | Lippia origanoides | Shrub|Sub-Shrub |
Vochysiaceae | Qualea grandiflora | Shrub|Tree |
Vochysiaceae | Vochysia tucanorum | Tree |
Family | Scientific Name | Life Form |
---|---|---|
Annonaceae | Xylopia aromatica | Shrub|Tree |
Caryocaraceae | Caryocar Brasiliense | Tree |
Fabaceae | Pterodon pubescens | Tree |
Fabaceae | Leptolobium dasycarpum | Tree |
Fabaceae | Diptychandra aurantiaca | Tree |
Fabaceae | Anadenanthera peregrina var. falcata | Tree |
Fabaceae | Copaifera langsdorffii | Tree |
Fabaceae | Vatairea macrocarpa | Tree |
Sapotaceae | Pouteria ramiflora | Tree |
Family | Scientific Name | Life Form |
---|---|---|
Annonaceae | Xylopia aromatica | Shrub|Tree |
Apocynaceae | Aspidosperma tomentosum | Tree |
Caryocaraceae | Caryocar Brasiliense | Tree |
Fabaceae | Pterodon pubescens | Tree |
Fabaceae | Bowdichia virgilioides | Tree |
Melastomataceae | Miconia rubiginosa | Shrub|Tree |
Myrtaceae | Myrcia splendens | Tree |
Myrtaceae | Myrcia guianensis | Tree |
Sapotaceae | Pouteria torta | Tree |
Sapotaceae | Pouteria ramiflora | Tree |
Vochysiaceae | Qualea grandiflora | Shrub|Tree |
References
- Peñuelas, J.; Rutishauser, T.; Filella, I. Phenology Feedbacks on Climate Change. Science 2009, 324, 887–888. [Google Scholar] [CrossRef] [PubMed]
- Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.; Desai, A.R.; et al. Terrestrial Biosphere Models Need Better Representation of Vegetation Phenology: Results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 2012, 18, 566–584. [Google Scholar] [CrossRef]
- Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate Change, Phenology, and Phenological Control of Vegetation Feedbacks to the Climate System. Agric. For. Meteorol. 2013, 169, 156–173. [Google Scholar] [CrossRef]
- Reich, P.B. Phenology of Tropical Forests: Patterns, Causes, and Consequences. Can. J. Bot. 1995, 73, 164–174. [Google Scholar] [CrossRef]
- Polgar, C.A.; Primack, R.B. Leaf-out Phenology of Temperate Woody Plants: From Trees to Ecosystems. New Phytol. 2011, 191, 926–941. [Google Scholar] [CrossRef]
- Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.; Henebry, G.M.; Hanes, J.M.; et al. Tracking the Rhythm of the Seasons in the Face of Global Change: Phenological Research in the 21st Century. Front. Ecol. Environ. 2009, 7, 253–260. [Google Scholar] [CrossRef]
- Vico, G.; Dralle, D.; Feng, X.; Thompson, S.; Manzoni, S. How Competitive Is Drought Deciduousness in Tropical Forests? A Combined Eco-Hydrological and Eco-Evolutionary Approach. Environ. Res. Lett. 2017, 12, 065006. [Google Scholar] [CrossRef]
- Camargo, M.G.G.; de Carvalho, G.H.; Alberton, B.C.; Reys, P.; Morellato, L.P.C. Leafing Patterns and Leaf Exchange Strategies of a Cerrado Woody Community. Biotropica 2018, 50, 442–454. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Bradley, N.L.; Leopold, A.C.; Ross, J.; Huffaker, W. Phenological Changes Reflect Climate Change in Wisconsin. Proc. Natl. Acad. Sci. USA 1999, 96, 9701–9704. [Google Scholar] [CrossRef]
- Alberton, B.; Torres, R.d.S.; Cancian, L.F.; Borges, B.D.; Almeida, J.; Mariano, G.C.; dos Santos, J.; Morellato, L.P.C. Introducing Digital Cameras to Monitor Plant Phenology in the Tropics: Applications for Conservation. Perspect. Ecol. Conserv. 2017, 15, 82–90. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, Drivers and Feedbacks of Global Greening. Nat. Rev. Earth Environ. 2019, 1, 14–27. [Google Scholar] [CrossRef]
- Abernethy, K.; Bush, E.R.; Forget, P.-M.; Mendoza, I.; Morellato, L.P.C. Current Issues in Tropical Phenology: A Synthesis. Biotropica 2018, 50, 477–482. [Google Scholar] [CrossRef]
- Morellato, L.P.C.; Altomare, M.; Gressler, E. A Review of Reproductive Plant Phenology in South and Central America: New Perspectives. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Springer Nature: Cham, Switzerland, 2024; pp. 107–138. ISBN 978-3-031-75027-4. [Google Scholar]
- Rankine, C.; Sánchez-Azofeifa, G.A.; Guzmán, J.A.; Espirito-Santo, M.M.; Sharp, I. Comparing MODIS and Near-Surface Vegetation Indexes for Monitoring Tropical Dry Forest Phenology along a Successional Gradient Using Optical Phenology Towers. Environ. Res. Lett. 2017, 12, 105007. [Google Scholar] [CrossRef]
- Sánchez-Azofeifa, G.A.; Quesada, M.; Rodríguez, J.P.; Nassar, J.M.; Stoner, K.E.; Castillo, A.; Garvin, T.; Zent, E.L.; Calvo-Alvarado, J.C.; Kalacska, M.E.R.; et al. Research Priorities for Neotropical Dry Forests. Biotropica 2005, 37, 477–485. [Google Scholar] [CrossRef]
- Alberton, B.; Martin, T.C.M.; Da Rocha, H.R.; Richardson, A.D.; Moura, M.S.B.; Torres, R.S.; Morellato, L.P.C. Relationship between Tropical Leaf Phenology and Ecosystem Productivity Using Phenocameras. Front. Environ. Sci. 2023, 11, 1223219. [Google Scholar] [CrossRef]
- Alberton, B.; Torres, R.d.S.; Silva, T.S.F.; da Rocha, H.R.; Moura, M.S.B.; Morellato, L.P.C. Leafing Patterns and Drivers across Seasonally Dry Tropical Communities. Remote Sens. 2019, 11, 2267. [Google Scholar] [CrossRef]
- Anderson, C.B. Biodiversity Monitoring, Earth Observations and the Ecology of Scale. Ecol. Lett. 2018, 21, 1572–1585. [Google Scholar] [CrossRef]
- Hanes, J.M.; Liang, L.; Morisette, J.T. Land Surface Phenology. In Biophysical Applications of Satellite Remote Sensing; Hanes, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 99–125. ISBN 978-3-642-25047-7. [Google Scholar]
- Helman, D. Land Surface Phenology: What Do We Really ‘See’ from Space? Sci. Total Environ. 2018, 618, 665–673. [Google Scholar] [CrossRef]
- Fu, Y.; Zhang, H.; Dong, W.; Yuan, W. Comparison of Phenology Models for Predicting the Onset of Growing Season over the Northern Hemisphere. PLoS ONE 2014, 9, e109544. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef]
- Smith, W.K.; Dannenberg, M.P.; Yan, D.; Herrmann, S.; Barnes, M.L.; Barron-Gafford, G.A.; Biederman, J.A.; Ferrenberg, S.; Fox, A.M.; Hudson, A.; et al. Remote Sensing of Dryland Ecosystem Structure and Function: Progress, Challenges, and Opportunities. Remote Sens. Environ. 2019, 233, 111401. [Google Scholar] [CrossRef]
- Khare, S.; Deslauriers, A.; Morin, H.; Latifi, H.; Rossi, S. Comparing Time-Lapse Phenocams with Satellite Observations across the Boreal Forest of Quebec, Canada. Remote Sens. 2022, 14, 100. [Google Scholar] [CrossRef]
- Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J.; et al. Using Data from Landsat, MODIS, VIIRS and PhenoCams to Monitor the Phenology of California Oak/Grass Savanna and Open Grassland across Spatial Scales. Agric. For. Meteorol. 2017, 237–238, 311–325. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Aubrecht, D.M.; Chen, M.; Gray, J.M.; Johnston, M.R.; Keenan, T.F.; Klosterman, S.T.; Kosmala, M.; et al. Tracking Vegetation Phenology across Diverse North American Biomes Using PhenoCam Imagery. Sci. Data 2018, 5, 180028. [Google Scholar] [CrossRef]
- Zhang, X.; Jayavelu, S.; Liu, L.; Friedl, M.A.; Henebry, G.M.; Liu, Y.; Schaaf, C.B.; Richardson, A.D.; Gray, J. Evaluation of Land Surface Phenology from VIIRS Data Using Time Series of PhenoCam Imagery. Agric. For. Meteorol. 2018, 256–257, 137–149. [Google Scholar] [CrossRef]
- Hofmann, G.S.; Cardoso, M.F.; Alves, R.J.V.; Weber, E.J.; Barbosa, A.A.; De Toledo, P.M.; Pontual, F.B.; Salles, L.D.O.; Hasenack, H.; Cordeiro, J.L.P.; et al. The Brazilian Cerrado Is Becoming Hotter and Drier. Glob. Change Biol. 2021, 27, 4060–4073. [Google Scholar] [CrossRef]
- Peng, D.; Wang, Y.; Xian, G.; Huete, A.R.; Huang, W.; Shen, M.; Wang, F.; Yu, L.; Liu, L.; Xie, Q.; et al. Investigation of Land Surface Phenology Detections in Shrublands Using Multiple Scale Satellite Data. Remote Sens. Environ. 2021, 252, 112133. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Gao, F.; Liu, Y.; Schaaf, C.; Friedl, M.; Yu, Y.; Jayavelu, S.; Gray, J.; Liu, L.; et al. Exploration of Scaling Effects on Coarse Resolution Land Surface Phenology. Remote Sens. Environ. 2017, 190, 318–330. [Google Scholar] [CrossRef]
- Streher, A.S.; Sobreiro, J.F.F.; Morellato, L.P.C.; Silva, T.S.F. Land Surface Phenology in the Tropics: The Role of Climate and Topography in a Snow-Free Mountain. Ecosystems 2017, 20, 1436–1453. [Google Scholar] [CrossRef]
- Dexter, K.G.; Pennington, R.T.; Oliveira-Filho, A.T.; Bueno, M.L.; de Miranda, P.L.; Neves, D.M. Inserting Tropical Dry Forests Into the Discussion on Biome Transitions in the Tropics. Front. Ecol. Evol. 2018, 6, 104. [Google Scholar] [CrossRef]
- Costa, T.M.; dos Santos, M.G.M.; Neves, S.P.S.; de Miranda, L.d.P.; Funch, L.S. Phenological Dynamics of Croton heliotropiifolius Populations in a Savanna/Caatinga Gradient, Chapada Diamantina, Brazil. Rodriguésia 2021, 72, e01322020. [Google Scholar] [CrossRef]
- Brown, T.B.; Hultine, K.R.; Steltzer, H.; Denny, E.G.; Denslow, M.W.; Granados, J.; Henderson, S.; Moore, D.; Nagai, S.; Sanclements, M.; et al. Using Phenocams to Monitor Our Changing Earth: Toward a Global Phenocam Network. Front. Ecol. Environ. 2016, 14, 84–93. [Google Scholar] [CrossRef]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.L. Use of Digital Webcam Images to Track Spring Green-up in a Deciduous Broadleaf Forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital Repeat Photography for Phenological Research in Forest Ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Richardson, A.D.; Braswell, B.H.; Hollinger, D.Y.; Jenkins, J.P.; Ollinger, S.V. Near-surface Remote Sensing of Spatial and Temporal Variation in Canopy Phenology. Ecol. Appl. 2009, 19, 1417–1428. [Google Scholar] [CrossRef]
- Hufkens, K.; Friedl, M.; Sonnentag, O.; Braswell, B.H.; Milliman, T.; Richardson, A.D. Linking Near-Surface and Satellite Remote Sensing Measurements of Deciduous Broadleaf Forest Phenology. Remote Sens. Environ. 2012, 117, 307–321. [Google Scholar] [CrossRef]
- Klosterman, S.T.; Hufkens, K.; Gray, J.M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M.A.; Richardson, A.D. Evaluating Remote Sensing of Deciduous Forest Phenology at Multiple Spatial Scales Using PhenoCam Imagery. Biogeosciences 2014, 11, 4305–4320. [Google Scholar] [CrossRef]
- Yan, D.; Scott, R.L.; Moore, D.J.P.; Biederman, J.A.; Smith, W.K. Understanding the Relationship between Vegetation Greenness and Productivity across Dryland Ecosystems through the Integration of PhenoCam, Satellite, and Eddy Covariance Data. Remote Sens. Environ. 2019, 223, 50–62. [Google Scholar] [CrossRef]
- Toomey, M.; Friedl, M.A.; Frolking, S.; Hufkens, K.; Klosterman, S.; Sonnentag, O.; Baldocchi, D.D.; Bernacchi, C.J.; Biraud, S.C.; Bohrer, G.; et al. Greenness Indices from Digital Cameras Predict the Timing and Seasonal Dynamics of Canopy-Scale Photosynthesis. Ecol. Appl. 2015, 25, 99–115. [Google Scholar] [CrossRef]
- Kurc, S.A.; Benton, L.M. Digital Image-Derived Greenness Links Deep Soil Moisture to Carbon Uptake in a Creosotebush-Dominated Shrubland. J. Arid Environ. 2010, 74, 585–594. [Google Scholar] [CrossRef]
- Alberton, B.; Almeida, J.; Helm, R.; Torres, R.d.S.; Menzel, A.; Morellato, L.P.C. Using Phenological Cameras to Track the Green up in a Cerrado Savanna and Its On-the-Ground Validation. Ecol. Inform. 2014, 19, 62–70. [Google Scholar] [CrossRef]
- Alberton, B.; Alvarado, S.T.; da Silva Torres, R.; Fernandes, G.W.; Morellato, L.P.C. Monitoring Immediate Post-Fire Vegetation Dynamics of Tropical Mountain Grasslands Using Phenocameras. Ecol. Inform. 2023, 78, 102341. [Google Scholar] [CrossRef]
- Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Bishop, M.J.; Polidoro, B.A.; Ramirez-Llodra, E.; Tozer, M.G.; Nel, J.L.; Mac Nally, R.; Gregr, E.J.; et al. A Function-Based Typology for Earth’s Ecosystems. Nature 2022, 610, 513–518. [Google Scholar] [CrossRef]
- Ribeiro, J.; Walter, B. As Principais Fitofisionomias Do Bioma Cerrado. In Cerrado: Ecologia E Flora; Sano, S.M., de Almeida, S.P., Ribeiro, J.F., Eds.; Embrapa Cerrados: Planaltina, Brazil, 2008; pp. 151–212. ISBN 978-85-7383-397-3. [Google Scholar]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 2017, 67, 534–545. [Google Scholar] [CrossRef]
- Dong, X.; Liu, X.; He, X.; Ma, L.; Wang, G.G.; Yu, K.; Chen, N.; Zhao, C. Navigating the Biogeography of Wide-Spread Short-Forests in Global Drylands. Res. Sq. 2025; Preprint Version 1. [Google Scholar] [CrossRef]
- Wells, L.H.; Dexter, K.G.; Pennington, R.T.; Coutinho, Í.A.C.; Ramos, D.; Phillips, O.L.; Baker, T.; Ryan, C.M. Satellite Remote Sensing Can Operationalise the IUCN Global Ecosystem Typology in the Biome-Diverse North-East of Brazil. Front. Biogeogr. 2025, 18, e145498. [Google Scholar] [CrossRef]
- de Queiroz, L.P.; Cardoso, D.; Fernandes, M.F.; Moro, M.F. Diversity and Evolution of Flowering Plants of the Caatinga Domain. In Caatinga: The Largest Tropical Dry Forest Region in South America; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Goodland, R. A Physiognomic Analysis of the ‘Cerrado’ Vegetation of Central Brasil. J. Ecol. 1971, 59, 411–419. [Google Scholar] [CrossRef]
- de Miranda, S.d.C.; Bustamante, M.; Palace, M.; Hagen, S.; Keller, M.; Ferreira, L.G. Regional Variations in Biomass Distribution in Brazilian Savanna Woodland. Biotropica 2014, 46, 125–138. [Google Scholar] [CrossRef]
- Peichl, M.; Sonnentag, O.; Nilsson, M.B. Bringing Color into the Picture: Using Digital Repeat Photography to Investigate Phenology Controls of the Carbon Dioxide Exchange in a Boreal Mire. Ecosystems 2015, 18, 115–131. [Google Scholar] [CrossRef]
- Schaaf, C.; Wang, Z. “MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global—500m V061.” NASA Land Processes Distributed Active Archive Center. 2021. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mcd43a4-061 (accessed on 22 June 2024).
- Poggio, L.; Gimona, A.; Brown, I. Spatio-Temporal MODIS EVI Gap Filling under Cloud Cover: An Example in Scotland. ISPRS J. Photogramm. Remote Sens. 2012, 72, 56–72. [Google Scholar] [CrossRef]
- Didan, K. “MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061.” NASA Land Processes Distributed Active Archive Center. 2021. Available online: https://www.earthdata.nasa.gov/data/catalog/lpcloud-mod13q1-061 (accessed on 22 June 2024).
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); University of Arizona, Vegetation Index and Phenology Lab: Tucson, AZ, USA, 2015; Volume 35, pp. 2–33. [Google Scholar]
- Keenan, T.F.; Darby, B.; Felts, E.; Sonnentag, O.; Friedl, M.A.; Hufkens, K.; O’Keefe, J.; Klosterman, S.; Munger, J.W.; Toomey, M.; et al. Tracking Forest Phenology and Seasonal Physiology Using Digital Repeat Photography: A Critical Assessment. Ecol. Appl. 2014, 24, 1478–1489. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.4.0; R Core Team: Vienna, Austria, 2024. Available online: https://www.R-project.org/ (accessed on 22 June 2024).
- Kreyszig, E. Advanced Engineering Mathematics, 10th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2011. [Google Scholar]
- Wood, S. R Package, version 1.9-1. Package ‘mgcv’. R Core Team: Vienna, Austria, 2015. Available online: https://cran.r-project.org/web/packages/mgcv/index.html (accessed on 22 June 2024).
- Moussus, J.-P.; Julliard, R.; Jiguet, F. Featuring 10 Phenological Estimators Using Simulated Data. Methods Ecol. Evol. 2010, 1, 140–150. [Google Scholar] [CrossRef]
- Thapa, S.; Garcia Millan, V.E.; Eklundh, L. Assessing Forest Phenology: A Multi-Scale Comparison of Near-Surface (UAV, Spectral Reflectance Sensor, PhenoCam) and Satellite (MODIS, Sentinel-2) Remote Sensing. Remote Sens. 2021, 13, 1597. [Google Scholar] [CrossRef]
- Tian, F.; Cai, Z.; Jin, H.; Hufkens, K.; Scheifinger, H.; Tagesson, T.; Smets, B.; Van Hoolst, R.; Bonte, K.; Ivits, E.; et al. Calibrating Vegetation Phenology from Sentinel-2 Using Eddy Covariance, PhenoCam, and PEP725 Networks across Europe. Remote Sens. Environ. 2021, 260, 112456. [Google Scholar] [CrossRef]
- Rossi, M.; Niedrist, G.; Asam, S.; Tonon, G.; Tomelleri, E.; Zebisch, M. A Comparison of the Signal from Diverse Optical Sensors for Monitoring Alpine Grassland Dynamics. Remote Sens. 2019, 11, 296. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.J. Leaf Green-up in a Semi-Arid African Savanna-Separating Tree and Grass Responses to Environmental Cues. J. Veg. Sci. 2007, 18, 583–594. [Google Scholar]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, Interpretation, and Assessment of Spring Phenology in North America Estimated from Remote Sensing for 1982–2006. Glob. Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Ramos, D.M.; Andrade, J.M.; Alberton, B.C.; Moura, M.S.B.; Domingues, T.F.; Neves, N.; Lima, J.R.S.; Souza, R.; Souza, E.; Silva, J.R.; et al. Multiscale Phenology of Seasonally Dry Tropical Forests in an Aridity Gradient. Front. Environ. Sci. 2023, 11, 1275844. [Google Scholar] [CrossRef]
- Testa, S.; Soudani, K.; Boschetti, L.; Borgogno Mondino, E. MODIS-Derived EVI, NDVI and WDRVI Time Series to Estimate Phenological Metrics in French Deciduous Forests. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 132–144. [Google Scholar] [CrossRef]
- Ryan, C.M.; Williams, M.; Grace, J.; Woollen, E.; Lehmann, C.E.R. Pre-Rain Green-up Is Ubiquitous across Southern Tropical Africa: Implications for Temporal Niche Separation and Model Representation. New Phytol. 2017, 213, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Schwartz, M.D.; Fei, S. Validating Satellite Phenology through Intensive Ground Observation and Landscape Scaling in a Mixed Seasonal Forest. Remote Sens. Environ. 2011, 115, 143–157. [Google Scholar] [CrossRef]
- Jose, K.; Chaturvedi, R.K.; Jeganathan, C.; Behera, M.D.; Singh, C.P. Plugging the Gaps in the Global PhenoCam Monitoring of Forests—The Need for a PhenoCam Network across Indian Forests. Remote Sens. 2023, 15, 5642. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hufkens, K.; Milliman, T.; Frolking, S. Intercomparison of Phenological Transition Dates Derived from the PhenoCam Dataset V1.0 and MODIS Satellite Remote Sensing. Sci. Rep. 2018, 8, 5679. [Google Scholar] [CrossRef]
- Medeiros, R.; Andrade, J.; Ramos, D.; Moura, M.; Pérez-Marin, A.M.; Dos Santos, C.A.C.; da Silva, B.B.; Cunha, J. Remote Sensing Phenology of the Brazilian Caatinga and Its Environmental Drivers. Remote Sens. 2022, 14, 2637. [Google Scholar] [CrossRef]
- Wang, J.; Song, G.; Liddell, M.; Morellato, P.; Lee, C.K.F.; Yang, D.; Alberton, B.; Detto, M.; Ma, X.; Zhao, Y.; et al. An Ecologically-Constrained Deep Learning Model for Tropical Leaf Phenology Monitoring Using PlanetScope Satellites. Remote Sens. Environ. 2023, 286, 113429. [Google Scholar] [CrossRef]
- Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A. Determining Land Surface Fractional Cover from NDVI and Rainfall Time Series for a Savanna Ecosystem. Remote Sens. Environ. 2002, 82, 376–388. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, X.; Zhang, B.; Liu, L.; Liu, X.; Huete, A.R.; Huang, W.; Wang, S.; Luo, S.; Zhang, X.; et al. Scaling Effects on Spring Phenology Detections from MODIS Data at Multiple Spatial Resolutions over the Contiguous United States. ISPRS J. Photogramm. Remote Sens. 2017, 132, 185–198. [Google Scholar] [CrossRef]
- Park, D.S.; Newman, E.A.; Breckheimer, I.K. Scale Gaps in Landscape Phenology: Challenges and Opportunities. Trends Ecol. Evol. 2021, 36, 709–721. [Google Scholar] [CrossRef]
- Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Sonnentag, O.; Humphreys, E.; Hufkens, K.; Ryu, Y.; Verfaillie, J.; Morra di Cella, U.; et al. NDVI Derived from Near-Infrared-Enabled Digital Cameras: Applicability across Different Plant Functional Types. Agric. For. Meteorol. 2018, 249, 275–285. [Google Scholar] [CrossRef]
- Fernandes, R.; Plummer, S.; Nightingale, J.; Baret, F.; Camacho, F.; Fang, H.; Garrigues, S.; Gobron, N.; Lang, M.; Lacaze, R.; et al. Global Leaf Area Index Product Validation Good Practices. In Best Practice for Satellite-Derived Land Product Validation, 2nd ed.; Schaepman-Strub, G., Román, M., Nickeson, J., Eds.; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2014. [Google Scholar] [CrossRef]
- Morisette, J.T.; Privette, J.L.; Justice, C.O. A Framework for the Validation of MODIS Land Products. Remote Sens. Environ. 2002, 83, 77–96. [Google Scholar] [CrossRef]
- Yang, B.; He, M.; Shishov, V.; Tychkov, I.; Vaganov, E.; Rossi, S.; Ljungqvist, F.C.; Bräuning, A.; Grießinger, J. New Perspective on Spring Vegetation Phenology and Global Climate Change Based on Tibetan Plateau Tree-Ring Data. Proc. Natl. Acad. Sci. USA 2017, 114, 6966–6971. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Bu, K.; Yan, F.; Yang, J.; Chang, L.; Zhang, S. Monitoring the Long Term Vegetation Phenology Change in Northeast China from 1982 to 2015. Sci. Rep. 2017, 7, 14770. [Google Scholar] [CrossRef]
- Narasimhan, R.; Stow, D. Daily MODIS Products for Analyzing Early Season Vegetation Dynamics across the North Slope of Alaska. Remote Sens. Environ. 2010, 114, 1251–1262. [Google Scholar] [CrossRef]
- Watson, C.J.; Restrepo-Coupe, N.; Huete, A.R. Multi-Scale Phenology of Temperate Grasslands: Improving Monitoring and Management with near-Surface Phenocams. Front. Environ. Sci. 2019, 7, 14. [Google Scholar] [CrossRef]
- Haddad, I.; Galvão, L.S.; Breunig, F.M.; Dalagnol, R.; Bourscheidt, V.; Jacon, A.D. On the Combined Use of Phenological Metrics Derived from Different PlanetScope Vegetation Indices for Classifying Savannas in Brazil. Remote Sens. Appl. Soc. Environ. 2022, 26, 100764. [Google Scholar] [CrossRef]
- Pham-Duc, B.; Nguyen, H.; Nguyen-Quoc, H. Unveiling the Research Landscape of Planetscope Data in Addressing Earth-Environmental Issues: A Bibliometric Analysis. Earth Sci. Inform. 2024, 18, 52. [Google Scholar] [CrossRef]
- Norton, A.J.; Bloom, A.A.; Parazoo, N.C.; Levine, P.A.; Ma, S.; Braghiere, R.K.; Smallman, T.L. Improved Process Representation of Leaf Phenology Significantly Shifts Climate Sensitivity of Ecosystem Carbon Balance. Biogeosciences 2023, 20, 2455–2484. [Google Scholar] [CrossRef]
- Seiler, C.; Melton, J.R.; Arora, V.K.; Sitch, S.; Friedlingstein, P.; Anthoni, P.; Goll, D.; Jain, A.K.; Joetzjer, E.; Lienert, S.; et al. Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink? J. Adv. Model. Earth Syst. 2022, 14, e2021MS002946. [Google Scholar] [CrossRef]
- Scheiter, S.; Langan, L.; Higgins, S.I. Next-Generation Dynamic Global Vegetation Models: Learning from Community Ecology. New Phytol. 2013, 198, 957–969. [Google Scholar] [CrossRef]
- Scheiter, S.; Higgins, S.I. Impacts of Climate Change on the Vegetation of Africa: An Adaptive Dynamic Vegetation Modelling Approach. Glob. Change Biol. 2009, 15, 2224–2246. [Google Scholar] [CrossRef]
- Whitley, R.; Beringer, J.; Hutley, L.B.; Abramowitz, G.; De Kauwe, M.G.; Evans, B.; Haverd, V.; Li, L.; Moore, C.; Ryu, Y.; et al. Challenges and Opportunities in Land Surface Modelling of Savanna Ecosystems. Biogeosciences 2017, 14, 4711–4732. [Google Scholar] [CrossRef]
- Browning, D.M.; Karl, J.W.; Morin, D.; Richardson, A.D.; Tweedie, C.E. Phenocams Bridge the Gap between Field and Satellite Observations in an Arid Grassland Ecosystem. Remote Sens. 2017, 9, 1071. [Google Scholar] [CrossRef]
- Higgins, S.I.; Delgado-Cartay, M.D.; February, E.C.; Combrink, H.J. Is There a Temporal Niche Separation in the Leaf Phenology of Savanna Trees and Grasses? J. Biogeogr. 2011, 38, 2165–2175. [Google Scholar] [CrossRef]
- Bowling, D.R.; Logan, B.A.; Hufkens, K.; Aubrecht, D.M.; Richardson, A.D.; Burns, S.P.; Anderegg, W.R.L.; Blanken, P.D.; Eiriksson, D.P. Limitations to Winter and Spring Photosynthesis of a Rocky Mountain Subalpine Forest. Agric. For. Meteorol. 2018, 252, 241–255. [Google Scholar] [CrossRef]
- Meir, P.; Pennington, R.T. Climatic Change and Seasonally Dry Tropical Forests. In Seasonally Dry Tropical Forests: Ecology and Conservation; Dirzo, R., Young, H.S., Mooney, H.A., Ceballos, G., Eds.; Island Press/Center for Resource Economics: Washington, DC, USA, 2011; pp. 279–299. ISBN 978-1-61091-021-7. [Google Scholar]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
Site | Latitude, Longitude | Location (City, State, Region) | Elevation (m) | Biome | Monitoring Period | Mean Annual Precipitation (Monitoring Period) (mm) | Length of Dry Season (Months) |
---|---|---|---|---|---|---|---|
Caatinga | −9.05, −40.32 | Petrolina, PE, Northeast Brazil | 390 | Tropical dry forest | 10 May 2013 to 31 December 2015 | 260 | 8 |
Shrubland Cerrado | −22.26, −47.88 | Itirapina, SP, Southeast Brazil | 700 | Savanna | 28 March 2013 to 28 May 2015 | 1478 | 6 |
Open woodland Cerrado | −22.18, −47.87 | Itirapina, SP, Southeast Brazil | 700 | Savanna | 2 October 2011 to 3 February 2015 | 1478 | 6 |
Closed woodland Cerrado | −21.62, −47.63 | Santa Rita do Passe Quatro, SP, Southeast, Brazil | 649 | Savanna | 26 August 2013 to 31 October 2015 | 1150 | 6 |
Site | % of Community ROI Which Is Grass | % of Community ROI with Deciduous Strategy | Remaining % of Community ROI (Evergreen and Semi- Deciduous Strategy) |
---|---|---|---|
Shrubland Cerrado | 23.7 | 16.2 | 60.1 |
Open woodland Cerrado | 0 | 5.4 | 94.6 |
Closed woodland Cerrado | 0 | 21.5 | 78.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koolen, S.P.; Godlee, J.L.; Alberton, B.; Ramos, D.M.; Moura, M.S.B.; Morellato, L.P.C.; Dexter, K.G. The Coexistence of Trees, Shrubs, and Grasses Creates a Complex Picture of Land Surface Phenology in Dry Tropical Ecosystems. Remote Sens. 2025, 17, 2883. https://doi.org/10.3390/rs17162883
Koolen SP, Godlee JL, Alberton B, Ramos DM, Moura MSB, Morellato LPC, Dexter KG. The Coexistence of Trees, Shrubs, and Grasses Creates a Complex Picture of Land Surface Phenology in Dry Tropical Ecosystems. Remote Sensing. 2025; 17(16):2883. https://doi.org/10.3390/rs17162883
Chicago/Turabian StyleKoolen, Stephanie P., John L. Godlee, Bruna Alberton, Desirée Marques Ramos, Magna Soelma Beserra Moura, Leonor Patricia C. Morellato, and Kyle G. Dexter. 2025. "The Coexistence of Trees, Shrubs, and Grasses Creates a Complex Picture of Land Surface Phenology in Dry Tropical Ecosystems" Remote Sensing 17, no. 16: 2883. https://doi.org/10.3390/rs17162883
APA StyleKoolen, S. P., Godlee, J. L., Alberton, B., Ramos, D. M., Moura, M. S. B., Morellato, L. P. C., & Dexter, K. G. (2025). The Coexistence of Trees, Shrubs, and Grasses Creates a Complex Picture of Land Surface Phenology in Dry Tropical Ecosystems. Remote Sensing, 17(16), 2883. https://doi.org/10.3390/rs17162883