Decoupling Natural and Anthropogenic Impacts on Ecosystem Services in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin of Xizang
Abstract
1. Introduction
2. Dataset and Methods
2.1. Study Area
2.2. Dataset
2.3. Methods
2.3.1. Ecosystem Service Assessment
- (1)
- Soil Conservation
- (2)
- Water Yield
- (3)
- Carbon Storage
- (4)
- Habitat Quality
2.3.2. Construction of the Comprehensive Ecosystem Service (CES) Index
2.3.3. Spatial Autocorrelation
2.3.4. Principal Component Analysis (PCA)
2.3.5. Partial Least Squares Structural Equation Modeling (PLS-SEM) Analysis
3. Results
3.1. Temporal and Spatial Characteristics of Land Use
3.2. Spatiotemporal Characteristics of Ecosystem Services
3.2.1. Spatiotemporal Patterns of Ecosystem Services
3.2.2. Spatiotemporal Characteristics of Comprehensive Ecosystem Services (CESs)
3.2.3. Spatial Clustering Characteristics of Comprehensive Ecosystem Services
3.3. Principal Component Analysis (PCA)
3.4. PLS-SEM Analysis
4. Discussion
4.1. Spatiotemporal Evolution Mechanisms of Ecosystem Services
4.2. Driving Role Analysis of Natural and Anthropogenic Factors
4.3. Policy Implications and Management Suggestions
4.4. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drupp, M.A.; Haensel, M.C.; Fenichel, E.P.; Freeman, M.; Gollier, C.; Groom, B.; Heal, G.M.; Howard, P.H.; Millner, A.; Moore, F.C.; et al. Accounting for the increasing benefits from scarce ecosystems. Science 2024, 383, 1062–1064. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Pang, D.Y.; Zhao, M.Y.; Cai, L.P.; Xu, Y.L.; Zhang, W.E. The trade-offs effect of ecosystem health and socio-economic development on tea production. Ecol. Indic. 2024, 166, 112416. [Google Scholar] [CrossRef]
- Dai, X.; Wang, L.C.; Huang, C.B.; Fang, L.L.; Wang, S.Q.; Wang, L.Z. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar] [CrossRef]
- Awuah, K.F.; Jegede, O.; Hale, B.; Siciliano, S.D. Introducing the Adverse Ecosystem Service Pathway as a Tool in Ecological Risk Assessment. Environ. Sci. Technol. 2020, 54, 8144–8157. [Google Scholar] [CrossRef]
- Larondelle, N.; Lauf, S. Balancing demand and supply of multiple urban ecosystem services on different spatial scales. Ecosyst. Serv. 2016, 22, 18–31. [Google Scholar] [CrossRef]
- Vihervaara, P.; Rönkä, M.; Walls, M. Trends in Ecosystem Service Research: Early Steps and Current Drivers. Ambio 2010, 39, 314–324. [Google Scholar] [CrossRef] [PubMed]
- An, Z.Y.; Sun, C.Z.; Hao, S. Exploration of ecological compensation standard: Based on ecosystem service flow path. Appl. Geogr. 2025, 178, 103588. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M. The links between biodiversity, ecosystem services and human well-being. In Ecosystem Ecology: A New Synthesis; Raffaelli, D.G., Frid, C.L.J., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 110–139. [Google Scholar]
- Sun, X.Y.; Shan, R.F.; Liu, F. Spatio-temporal quantification of patterns, trade-offs and synergies among multiple hydrological ecosystem services in different topographic basins. J. Clean. Prod. 2020, 268, 122338. [Google Scholar] [CrossRef]
- Kim, J.H.; Jobbÿgy, E.G.; Jackson, R.B. Trade-offs in water and carbon ecosystem services with land-use changes in grasslands. Ecol. Appl. 2016, 26, 1633–1644. [Google Scholar] [CrossRef]
- Che, L.; Guo, S.D.; Li, Y.L. Discerning changes and drivers of water yield ecosystem service: A case study of Chongqing-Chengdu District, Southwest China. Ecol. Indic. 2024, 160, 111767. [Google Scholar] [CrossRef]
- Sang, H.B.; Liu, Y.; Sun, Z.X.; Han, W.Y. Three-dimensional analysis and drivers of relationships among multiple ecosystem services: A case study in the Nansi Lake Basin, China. Environ. Impact Assess. Rev. 2024, 106, 107521. [Google Scholar] [CrossRef]
- Wang, B.; Hu, C.G.; Zhang, Y.S. Multi-Scenario Simulation of the Impact of Land Use Change on the Ecosystem Service Value in the Suzhou-Wuxi-Changzhou Metropolitan Area, China. Chin. Geogr. Sci. 2024, 34, 79–92. [Google Scholar] [CrossRef]
- Balvanera, P.; Pfisterer, A.B.; Buchmann, N.; He, J.S.; Nakashizuka, T.; Raffaelli, D.; Schmid, B. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 2006, 9, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.; de Jong, R.; Schaepman, M.E.; Furrer, R.; Hein, L.; Kienast, F.; Damm, A. Ecosystem service change caused by climatological and non-climatological drivers: A Swiss case study. Ecol. Appl. 2019, 29, e01901. [Google Scholar] [CrossRef]
- Liu, H.; Deng, Y.; Liu, X.Q. The contribution of forest and grassland change was greater than that of cropland in human-induced vegetation greening in China, especially in regions with high climate variability. Sci. Total Environ. 2021, 792, 148408. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.Y.; Shao, Q.Q.; Liu, J.Y.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China. Catena 2014, 121, 151–163. [Google Scholar] [CrossRef]
- Natural Capital Project, 2025. InVEST 3.16.2. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre and the Royal Swedish Academy of Sciences. Available online: https://natcap.github.io/invest.release-metadata/3.16.2.html (accessed on 10 December 2024).
- Jia, Z.X.; Wang, X.F.; Feng, X.M.; Ma, J.H.; Wang, X.X.; Zhang, X.R.; Zhou, J.T.; Sun, Z.C.; Yao, W.J.; Tu, Y. Exploring the spatial heterogeneity of ecosystem services and influencing factors on the Qinghai Tibet Plateau. Ecol. Indic. 2023, 154, 110521. [Google Scholar] [CrossRef]
- Haq, S.M.; Rashid, I.; Calixto, E.S.; Ali, A.; Kumar, M.; Srivastava, G.; Bussmann, R.W.; Khuroo, A.A. Unravelling patterns of forest carbon stock along a wide elevational gradient in the Himalaya: Implications for climate change mitigation. For. Ecol. Manag. 2022, 521, 120442. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Song, W.; Yin, L.C. Responses in ecosystem services to projected land cover changes on the Tibetan Plateau. Ecol. Indic. 2022, 142, 109228. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.L.; Wang, F.F.; Liu, Y.X.; Liu, Y.X.; Sun, J.; McConkey, K.R.; Tran, L.S.P.; Dong, Y.H.; Yu, L.; et al. Identifying ecological compensation areas for ecosystem services degradation on the Qinghai-Tibet Plateau. J. Clean. Prod. 2023, 423, 138626. [Google Scholar] [CrossRef]
- Gong, D.H.; Dong, D.J.; Du, H.Q.; Zhou, Y.F.; Fu, S.; Fujioka, Y. Spatiotemporal coupling mechanisms and driving forces of ecosystem services and human activity from a multidimensional perspective. Int. J. Digit. Earth 2025, 18, 2512061. [Google Scholar] [CrossRef]
- Wu, L.L.; Fan, F.L. Assessment of ecosystem services in new perspective: A comprehensive ecosystem service index (CESI) as a proxy to integrate multiple ecosystem services. Ecol. Indic. 2022, 138, 108800. [Google Scholar] [CrossRef]
- Peng, Y.L.; Chen, W.X.; Pan, S.P.; Gu, T.C.; Zeng, J. Identifying the driving forces of global ecosystem services balance, 2000–2020. J. Clean. Prod. 2023, 426, 139019. [Google Scholar] [CrossRef]
- Mahmoudi, M.R.; Heydari, M.H.; Qasem, S.N.; Mosavi, A.; Band, S.S. Principal component analysis to study the relations between the spread rates of COVID-19 in high risks countries. Alex. Eng. J. 2021, 60, 457–464. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F.; Dewan, S. Why PLS-SEM is suitable for complex modelling? An empirical illustration in big data analytics quality. Prod. Plan. Control 2017, 28, 1011–1021. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Cheah, J.H.; Ting, H.R.; Moisescu, O.; Radomir, L. Structural model robustness checks in PLS-SEM. Tour. Econ. 2020, 26, 531–554. [Google Scholar] [CrossRef]
- Chin, W.; Cheah, J.H.; Liu, Y.D.; Ting, H.; Lim, X.J.; Cham, T.H. Demystifying the role of causal-predictive modeling using partial least squares structural equation modeling in information systems research. Ind. Manag. Data Syst. 2020, 120, 2161–2209. [Google Scholar] [CrossRef]
- Hair, J.F.; Sarstedt, M. Factors versus Composites: Guidelines for Choosing the Right Structural Equation Modeling Method. Proj. Manag. J. 2019, 50, 619–624. [Google Scholar] [CrossRef]
- Yao, T.D.; Masson-Delmotte, V.; Gao, J.; Yu, W.S.; Yang, X.X.; Risi, C.; Sturm, C.; Werner, M.; Zhao, H.B.; He, Y.; et al. A Review of Climatic Controls on Δ18o in Precipitation Over the Tibetan Plateau: Observations and Simulations. Rev. Geophys. 2013, 51, 525–548. [Google Scholar] [CrossRef]
- Gao, J.; Yao, T.D.; Masson-Delmotte, V.; Steen-Larsen, H.C.; Wang, W.C. Collapsing glaciers threaten Asia’s water supplies. Nature 2019, 565, 19–21. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.J.; Xu, M.J.; Zhu, J.T.; Chen, N.; Jiang, Y.B.; Huang, K.; Zu, J.X.; Liu, Y.J.; Yu, G.R. Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agric. For. Meteorol. 2018, 256, 22–31. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.J.; Jiang, J.; Chu, L.; Zhang, J.C. Threshold effect of ecosystem services in response to climate change and vegetation coverage change in the Qinghai-Tibet Plateau ecological shelter. J. Clean. Prod. 2021, 318, 128592. [Google Scholar] [CrossRef]
- Guo, D.L.; Wang, H.J. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol. 2012, 32, 1775–1781. [Google Scholar] [CrossRef]
- Li, P.L.; Zhu, D.; Wang, Y.L.; Liu, D. Elevation dependence of drought legacy effects on vegetation greenness over the Tibetan Plateau. Agric. For. Meteorol. 2020, 295, 108190. [Google Scholar] [CrossRef]
- Xu, B.N.; Li, J.J.; Pei, X.J.; Yang, H.L. Decoupling the response of vegetation dynamics to asymmetric warming over the Qinghai-Tibet plateau from 2001 to 2020. J. Environ. Manag. 2023, 347, 119131. [Google Scholar] [CrossRef] [PubMed]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Responses of carbon sequestration service for landscape dynamics in the Kaffa biosphere reserve, southwest Ethiopia. Environ. Impact Assess. Rev. 2023, 98, 106960. [Google Scholar] [CrossRef]
- Xu, B.N.; Li, J.J.; Pei, X.J.; Bian, L.J.; Zhang, T.B.; Yi, G.H.; Bie, X.J.; Peng, P.H. Dominance of Topography on Vegetation Dynamics in the Mt. Qomolangma National Nature Reserve: A UMAP and PLS-SEM Analysis. Forests 2023, 14, 1415. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.F.; Li, Y.S.; Zhang, Z.H.; Meng, Q.X. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai-Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2020, 253, 119803. [Google Scholar] [CrossRef]
- Shi, Y.; Feng, C.C.; Yu, Q.R.; Han, R.; Guo, L. Contradiction or coordination? The spatiotemporal relationship between landscape ecological risks and urbanization from coupling perspectives in China. J. Clean. Prod. 2022, 363, 132557. [Google Scholar] [CrossRef]
- Lyu, R.F.; Clarke, K.C.; Zhang, J.M.; Feng, J.L.; Jia, X.H.; Li, J.J. Spatial correlations among ecosystem services and their socio-ecological driving factors: A case study in the city belt along the Yellow River in Ningxia, China. Appl. Geogr. 2019, 108, 64–73. [Google Scholar] [CrossRef]
- Xu, B.N.; Li, J.J.; Liu, Y.G.; Zhang, T.B.; Luo, Z.Y.; Pei, X.J. Disentangling the response of vegetation dynamics to natural and anthropogenic drivers over the Qinghai-Tibet Plateau using dimensionality reduction and structural equation model. For. Ecol. Manag. 2024, 554, 121677. [Google Scholar] [CrossRef]
- Kang, Y.J.; Wang, Z.Q.; Xu, B.N.; Shen, W.J.; Chen, Y.; Zhou, X.H.; Liu, Y.G.; Zhang, T.B.; Wang, G.Y.; Jia, Y.L.; et al. Disentangling the Response of Vegetation Dynamics to Natural and Anthropogenic Drivers over the Minjiang River Basin Using Dimensionality Reduction and a Structural Equation Model. Forests 2024, 15, 1438. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long. Range Plan. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, D.S.; Chen, X.; Zhang, Y.M.; Maisupova, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Piao, S.L.; Yin, G.D.; Tan, J.G.; Cheng, L.; Huang, M.T.; Li, Y.; Liu, R.G.; Mao, J.F.; Myneni, R.B.; Peng, S.S.; et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Glob. Change Biol. 2015, 21, 1601–1609. [Google Scholar] [CrossRef]
- Shen, M.G.; Piao, S.L.; Jeong, S.J.; Zhou, L.M.; Zeng, Z.Z.; Ciais, P.; Chen, D.L.; Huang, M.T.; Jin, C.S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, W.; Xue, K.; Wang, S.; Zhang, L.; Hu, R.; Zeng, H.; Xu, X.; Li, Y.; Jiang, L.; et al. Grassland changes and adaptive management on the Qinghai—Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Yu, W.B.; Lu, Y.; Chen, L. Identification and Correlation Analysis of Engineering Environmental Risk Factors along the Qinghai-Tibet Engineering Corridor. Remote Sens. 2022, 14, 908. [Google Scholar] [CrossRef]
- Liu, J.; Milne, R.I.; Cadotte, M.W.; Wu, Z.Y.; Provan, J.; Zhu, G.F.; Gao, L.M.; Li, D.Z. Protect Third Pole’s fragile ecosystem. Science 2018, 362, 1368. [Google Scholar] [CrossRef]
- Fan, K.; Zhang, Q.; Singh, V.P.; Sun, P.; Song, C.; Zhu, X.; Yu, H.; Shen, Z. Spatiotemporal impact of soil moisture on air temperature across the Tibet Plateau. Sci. Total Environ. 2019, 649, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kang, J.; Wang, Y. Exploring the interactions and driving factors among typical ecological risks based on ecosystem services: A case study in the Sichuan-Yunnan ecological barrier area. Ecol. Indic. 2025, 170, 113000. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45. [Google Scholar] [CrossRef]
- Yin, X.; Wu, Y.; Zhao, W.; Liu, S.; Zhao, F.; Chen, J.; Qiu, L.; Wang, W. Spatiotemporal responses of net primary productivity of alpine ecosystems to flash drought: The Qilian Mountains. J. Hydrol. 2023, 624, 129865. [Google Scholar] [CrossRef]
- Xu, B.N.; Li, J.J.; Luo, Z.Y.; Wu, J.H.; Liu, Y.G.; Yang, H.L.; Pei, X.J. Analyzing the Spatiotemporal Vegetation Dynamics and Their Responses to Climate Change along the Ya’an-Linzhi Section of the Sichuan-Tibet Railway. Remote Sens. 2022, 14, 3584. [Google Scholar] [CrossRef]
- Su, D.; Cao, Y.; Dong, X.Y.; Wu, Q.; Fang, X.Q.; Cao, Y. Evaluation of ecosystem services budget based on ecosystem services flow: A case study of Hangzhou Bay area. Appl. Geogr. 2024, 162, 103150. [Google Scholar] [CrossRef]
- Jiang, W.; Lü, Y.H.; Liu, Y.X.; Gao, W.W. Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25 years. Ecosyst. Serv. 2020, 44, 101146. [Google Scholar] [CrossRef]
- Hua, F.Y.; Wang, X.Y.; Zheng, X.L.; Fisher, B.; Wang, L.; Zhu, J.G.; Tang, Y.; Yu, D.W.; Wilcove, D.S. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 2016, 7, 12717. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.Y.; Song, C.S.; Zheng, H.; Polasky, S.; Xiao, Y.; Bateman, I.J.; Liu, J.G.; Ruckelshaus, M.; Shi, F.Q.; Xiao, Y.; et al. Using gross ecosystem product (GEP) to value nature in decision making. Proc. Natl. Acad. Sci. USA 2020, 117, 14593–14601. [Google Scholar] [CrossRef]
- Wright, W.C.C.; Eppink, F.V.; Greenhalgh, S. Are ecosystem service studies presenting the right information for decision making? Ecosyst. Serv. 2017, 25, 128–139. [Google Scholar] [CrossRef]
- Dong, K.; Wang, S.N.; Hu, H.Q.; Guan, N.N.; Shi, X.L.; Song, Y. Financial development, carbon dioxide emissions, and sustainable development. Sustain. Dev. 2024, 32, 348–366. [Google Scholar] [CrossRef]
- Zhao, T.; Pan, J.; Bi, F. Can human activities enhance the trade-off intensity of ecosystem services in arid inland river basins? Taking the Taolai River asin as an example. Sci. Total Environ. 2023, 861, 160662. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Zhang, P.Y.; Li, G.H.; Yang, D.; Qin, M.Z. The Response of Composite Ecosystem Services to Urbanization: From the Perspective of Spatial Relevance and Spatial Spillover. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8204–8214. [Google Scholar] [CrossRef]
Type | Spatial Resolution | Data Source | Use |
---|---|---|---|
Land use | 30 m | Landsat-5 TM and Landsat-8 (https://earthexplorer.usgs.gov/) | Soil Conservation; Water Conservation; Carbon Storage; Habitat Quality |
Soil type | 1000 m | The National Soil Survey of China | Soil Conservation; Water Conservation; Driving Factor |
Elevation | 30 m | The Geospatial Data Cloud platform (https://www.gscloud.cn/) | Driving factor |
Temperature | 1000 m | The National Earth System Science Data Center (http://www.geodata.cn/) | |
Precipitation | 1000 m | ||
Evapotranspiration | 1000 m | The National Tibetan Plateau Data Center (https://data.tpdc.ac.cn/) | |
GDP | 1000 m | The Resource and Environment Science and Data Center, the Chinese Academy of Sciences (https://www.resdc.cn/) | |
Population | 1000 m |
Lucode | LULC_Desc | Usle_c | Usle_p |
---|---|---|---|
1 | Desert | 1 | 1 |
2 | Glacier | 1 | 0 |
3 | Grassland | 0.3 | 1 |
4 | Cropland | 0.2 | 0.15 |
5 | Forest | 0.05 | 1 |
6 | Urban area | 1 | 0 |
7 | Shrubland | 0.14 | 1 |
8 | Wetland | 0.05 | 0 |
Lucode | LULC_Desc | Kc | Root_Depth | LULC_Veg |
---|---|---|---|---|
1 | Desert | 0.2 | 300 | 1 |
2 | Glacier | 1 | 500 | 1 |
3 | Grassland | 0.5 | 1000 | 1 |
4 | Cropland | 0.5 | 2000 | 0.65 |
5 | Forest | 1 | 7000 | 1 |
6 | Urban area | 0.1 | 500 | 0 |
7 | Shrubland | 0.8 | 2000 | 1 |
8 | Wetland | 1 | 1000 | 1 |
Lucode | LULC_Name | C_Above | C_Below | C_Soil | C_Dead |
---|---|---|---|---|---|
1 | Desert | 0.59 | 2.61 | 11 | 0 |
2 | Glacier | 0 | 0 | 1.10 | 0 |
3 | Grassland | 2.05 | 9.12 | 16.49 | 0.68 |
4 | Cropland | 2 | 0.4 | 6.56 | 0 |
5 | Forest | 51.87 | 15.03 | 21.84 | 4.1 |
6 | Urban area | 0 | 0 | 4.05 | 0 |
7 | Shrubland | 5.65 | 6.22 | 23.23 | 2.12 |
8 | Wetland | 10 | 8 | 7.32 | 4.48 |
Threat Factor | MAX_DIST/km | WEIGHT | Spatial Attenuation Type |
---|---|---|---|
Cropland | 4 | 0.6 | linear |
Urban area | 8 | 0.8 | exponential |
LULC | NAME | HABITAT | Cropland | Urban Area |
---|---|---|---|---|
1 | Desert | 0.2 | 0.1 | 0.2 |
2 | Glacier | 0.1 | 0.1 | 0.2 |
3 | Grassland | 0.7 | 0.5 | 0.4 |
4 | Cropland | 0.5 | 0.3 | 0.5 |
5 | Forest | 1 | 0.8 | 0.4 |
6 | Urban area | 0.3 | 0 | 0 |
7 | Shrubland | 0.8 | 0.7 | 0.4 |
8 | Wetland | 0.7 | 0.5 | 0.7 |
Critria | Value | Description |
---|---|---|
R2 | >0.67 | Substantial explanatory power |
>0.33 | Moderate explanatory power | |
>0.19 | Weak explanatory power |
Land Use Type | 2010–2000 | 2020–2010 | 2020–2000 | |||
---|---|---|---|---|---|---|
Area | Change Rate | Area | Change Rate | Area | Change Rate | |
Forest | 25.92 | 0.04 | 593.33 | 0.89 | 619.25 | 0.93 |
Shrubland | 857.52 | 1.29 | 2247.57 | 3.38 | 3105.09 | 4.67 |
Grassland | −2652.45 | −3.98 | −2004.18 | −3.01 | −4656.63 | −6.99 |
Wetland | −119.32 | −0.18 | −42.23 | −0.06 | −161.55 | −0.24 |
Cropland | −453.07 | −0.68 | −310.53 | −0.47 | −763.60 | −1.15 |
Urban land | 79.7 | 0.12 | 321.33 | 0.48 | 401.03 | 0.60 |
Desert | 3698.71 | 5.56 | −557.76 | −0.84 | 3140.95 | 4.72 |
Glacier | −1437 | −2.16 | −247.39 | −0.37 | −1684.39 | −2.53 |
Indicators | Year | Value |
---|---|---|
R2 | 2000 | 0.244 |
2010 | 0.291 | |
2020 | 0.248 | |
Mean | 0.320 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.; Wang, Z.; Yang, S.; Wei, H.; Yan, D.; Ouyang, H.; Tang, X.; Cao, L.; Peng, P.; Li, J. Decoupling Natural and Anthropogenic Impacts on Ecosystem Services in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin of Xizang. Remote Sens. 2025, 17, 2872. https://doi.org/10.3390/rs17162872
Su C, Wang Z, Yang S, Wei H, Yan D, Ouyang H, Tang X, Cao L, Peng P, Li J. Decoupling Natural and Anthropogenic Impacts on Ecosystem Services in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin of Xizang. Remote Sensing. 2025; 17(16):2872. https://doi.org/10.3390/rs17162872
Chicago/Turabian StyleSu, Chunbo, Ziqin Wang, Shurong Yang, Haijuan Wei, Dong Yan, Haijun Ouyang, Xiaolu Tang, Longxi Cao, Peihao Peng, and Jingji Li. 2025. "Decoupling Natural and Anthropogenic Impacts on Ecosystem Services in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin of Xizang" Remote Sensing 17, no. 16: 2872. https://doi.org/10.3390/rs17162872
APA StyleSu, C., Wang, Z., Yang, S., Wei, H., Yan, D., Ouyang, H., Tang, X., Cao, L., Peng, P., & Li, J. (2025). Decoupling Natural and Anthropogenic Impacts on Ecosystem Services in the Yarlung Tsangpo River, Lhasa River, and Nianchu River Basin of Xizang. Remote Sensing, 17(16), 2872. https://doi.org/10.3390/rs17162872