Fine-Scale Classification of Dominant Vegetation Communities in Coastal Wetlands Using Color-Enhanced Aerial Images
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Study Data
2.3. Method
2.3.1. Image Color Characteristics
2.3.2. Multi-Resolution Segmentation
2.3.3. Vegetation Classification
2.3.4. Accuracy Evaluation Metrics
3. Results
3.1. Image Segment Results
3.2. Results of Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guo, M.; Li, J.; Sheng, C.L.; Xu, J.W.; Wu, L. A Review of Wetland Remote Sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef]
- Vehmaa, A.; Lanari, M.; Jutila, H.; Mussaari, M.; Pätsch, R.; Telenius, A.; Banta, G.; Eklöf, J.; Jensen, K.; Krause-Jensen, D.; et al. Harmonization of Nordic coastal marsh habitat classification benefits conservation and management. Ocean Coast. Manage 2024, 252, 107104. [Google Scholar] [CrossRef]
- Dutkiewicz, S.; Hickman, A.E.; Jahn, O.; Henson, S.; Beaulieu, C.; Monier, E. Ocean colour signature of climate change. Nat. Commun. 2019, 10, 578. [Google Scholar] [CrossRef] [PubMed]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Tornqvist, T.E. Global-scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef]
- Wang, X.X.; Xiao, X.M.; Xu, X.; Zou, Z.H.; Chen, B.Q.; Qin, Y.W.; Zhang, X.; Dong, J.W.; Liu, D.Y.; Pan, L.H.; et al. Rebound in China’s coastal wetlands following conservation and restoration. Nat. Sustain. 2021, 4, 1076–1083. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Murray, N.J.; Clemens, R.S.; Phinn, S.R.; Possingham, H.P.; Fuller, R.A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 2014, 12, 267–272. [Google Scholar] [CrossRef]
- Gedan, K.B.; Silliman, B.R.; Bertness, M.D. Centuries of Human-Driven Change in Salt Marsh Ecosystems. Annu. Rev. Mar. Sci. 2009, 1, 117–141. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Cui, B.S.; He, Q.; Gu, B.H.; Bai, J.H.; Liu, X.H. China’s Coastal Wetlands: Understanding Environmental Changes and Human Impacts for Management and Conservation. Wetlands 2016, 36, S1–S9. [Google Scholar] [CrossRef]
- He, X.H.; Hörmann, G.; Strehmel, A.; Guo, H.L.; Fohrer, N. Natural and Anthropogenic Causes of Vegetation Changes in Riparian Wetlands Along the Lower Reaches of the Yellow River, China. Wetlands 2015, 35, 391–399. [Google Scholar] [CrossRef]
- Deng, T.F.; Fu, B.L.; Liu, M.; He, H.C.; Fan, D.L.; Li, L.L.; Huang, L.K.; Gao, E.T. Comparison of multi-class and fusion of multiple single-class SegNet model for mapping karst wetland vegetation using UAV images. Sci. Rep. 2022, 12, 13270. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Change 2004, 14, 69–86. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, S.L.; Pan, S.Q.; Fan, Y.S.; Ji, H.Y. Geomorphic evolution of the Yellow River Delta: Quantification of basin scale natural and anthropogenic impacts. Catena 2018, 163, 361–377. [Google Scholar] [CrossRef]
- Li, H.; Liu, Q.S.; Huang, C.; Zhang, X.; Wang, S.X.; Wu, W.; Shi, L. Variation in Vegetation Composition and Structure across Mudflat Areas in the Yellow River Delta, China. Remote Sens. 2024, 16, 3495. [Google Scholar] [CrossRef]
- Mahdavi, S.; Salehi, B.; Granger, J.; Amani, M.; Brisco, B.; Huang, W.M. Remote sensing for wetland classification: A comprehensive review. Gisci. Remote Sens. 2018, 55, 623–658. [Google Scholar] [CrossRef]
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280, 113195. [Google Scholar] [CrossRef]
- Sá, C.; Grieco, J. Open Data for Science, Policy, and the Public Good. Rev. Policy Res. 2016, 33, 526–543. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Ren, G.B.; Wang, J.P.; Wang, J.B.; Hu, Y.B.; Lin, Z.Y.; Li, W.; Zhao, Y.J.; Li, S.B.; Wang, N. Monitoring the Invasive Plant in Jiangsu Coastal Wetland Using MRCNN and Long-Time Series Landsat Data. Remote Sens. 2022, 14, 2630. [Google Scholar] [CrossRef]
- Feng, K.D.; Mao, D.H.; Qiu, Z.Q.; Zhao, Y.X.; Wang, Z.M. Can time-series Sentinel images be used to properly identify wetland plant communities? Gisci. Remote Sens. 2022, 59, 2202–2216. [Google Scholar] [CrossRef]
- Ke, L.A.; Lu, Y.; Tan, Q.; Zhao, Y.; Wang, Q.M. Precise mapping of coastal wetlands using time-series remote sensing images and deep learning model. Front. Glob. Change 2024, 7, 1409985. [Google Scholar] [CrossRef]
- Li, H.Y.; Wan, J.H.; Liu, S.W.; Sheng, H.; Xu, M.M. Wetland Vegetation Classification through Multi-Dimensional Feature Time Series Remote Sensing Images Using Mahalanobis Distance-Based Dynamic Time Warping. Remote Sens. 2022, 14, 501. [Google Scholar] [CrossRef]
- Li, C.; Cui, H.W.; Tian, X.L. A Novel CA-RegNet Model for Macau Wetlands Auto Segmentation Based on GF-2 Remote Sensing Images. Appl. Sci. 2023, 13, 12178. [Google Scholar] [CrossRef]
- Liu, Q.S.; Huang, C.; Liu, G.H.; Yu, B.W. Comparison of CBERS-04, GF-1, and GF-2 Satellite Panchromatic Images for Mapping Quasi-Circular Vegetation Patches in the Yellow River Delta, China. Sensors 2018, 18, 2733. [Google Scholar] [CrossRef] [PubMed]
- Zweig, C.L.; Burgess, M.A.; Percival, H.F.; Kitchens, W.M. Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland Vegetation Communities. Wetlands 2015, 35, 303–309. [Google Scholar] [CrossRef]
- González, E.; Sher, A.A.; Tabacchi, E.; Masip, A.; Poulin, M. Restoration of riparian vegetation: A global review of implementation and evaluation approaches in the international, peer-reviewed literature. J. Environ. Manag. 2015, 158, 85–94. [Google Scholar] [CrossRef]
- Fan, Y.S.; Yu, S.B.; Wang, J.H.; Li, P.; Chen, S.L.; Ji, H.Y.; Li, P.; Dou, S.T. Changes of Inundation Frequency in the Yellow River Delta and Its Response to Wetland Vegetation. Land 2022, 11, 1647. [Google Scholar] [CrossRef]
- Dronova, I.; Kislik, C.; Dinh, Z.; Kelly, M. A Review of Unoccupied Aerial Vehicle Use in Wetland Applications: Emerging Opportunities in Approach, Technology, and Data. Drones 2021, 5, 45. [Google Scholar] [CrossRef]
- Dronova, I. Object-Based Image Analysis in Wetland Research: A Review. Remote Sens. 2015, 7, 6380–6413. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Hao, Y.Y.; Wang, Y.C.; Zhou, S.Q.; Wu, W.B.; Yuan, Q.; Gao, Y.; Guo, H.Q.; Cai, X.X.; Zhao, B. Coastal Wetland Vegetation Classification Using Pixel-Based, Object-Based and Deep Learning Methods Based on RGB-UAV. Land 2022, 11, 2039. [Google Scholar] [CrossRef]
- Zaabar, N.; Niculescu, S.; Kamel, M.M. Application of Convolutional Neural Networks With Object-Based Image Analysis for Land Cover and Land Use Mapping in Coastal Areas: A Case Study in Ain Temouchent, Algeria. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5177–5189. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Salehi, B.; Rezaee, M.; Mohammadimanesh, F.; Zhang, Y. Very Deep Convolutional Neural Networks for Complex Land Cover Mapping Using Multispectral Remote Sensing Imagery. Remote Sens. 2018, 10, 1119. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. Gisci. Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Zhang, C.; Gong, Z.N.; Qiu, H.C.; Zhang, Y.; Zhou, D.M. Mapping typical salt-marsh species in the Yellow River Delta wetland supported by temporal-spatial-spectral multidimensional features. Sci. Total Environ. 2021, 783, 147061. [Google Scholar] [CrossRef]
- Chang, D.; Wang, Z.Y.; Ning, X.G.; Li, Z.J.; Zhang, L.; Liu, X.T. Vegetation changes in Yellow River Delta wetlands from 2018 to 2020 using PIE-Engine and short time series Sentinel-2 images. Front. Mar. Sci. 2022, 9, 77050. [Google Scholar] [CrossRef]
- Wan, L.; Li, Y.J.; Cen, H.Y.; Zhu, J.P.; Yin, W.X.; Wu, W.K.; Zhu, H.Y.; Sun, D.W.; Zhou, W.J.; He, Y. Combining UAV-Based Vegetation Indices and Image Classification to Estimate Flower Number in Oilseed Rape. Remote Sens. 2018, 10, 1484. [Google Scholar] [CrossRef]
- Boutiche, Y.; Abdesselam, A.; Chetih, N.; Khorchef, M.; Ramou, N. Robust vegetation segmentation under field conditions using new adaptive weights for hybrid multichannel images based on the Chan-Vese model. Ecol. Inform. 2022, 72, 101850. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Nonparametric Discrimination: Small-Sample Performance in Normal Populations. Ann. Math. Stat. 1951, 22, 487. [Google Scholar]
- Bruzzone, L.; Prieto, D.F. Unsupervised retraining of a maximum-likelihood classifier for the analysis of multitemporal remote-sensing images. In Proceedings of the SPIE Image and Signal Processing for Remote Sensing V, Florence, Italy, 20–24 September 1999; Volume 3871, pp. 169–174. [Google Scholar] [CrossRef]
- Hamuda, E.; Glavin, M.; Jones, E. A survey of image processing techniques for plant extraction and segmentation in the field. Comput. Electron. Agric. 2016, 125, 184–199. [Google Scholar] [CrossRef]
- Meyer, G.E.; Neto, J.C. Verification of color vegetation indices for automated crop imaging applications. Comput. Electron. Agric. 2008, 63, 282–293. [Google Scholar] [CrossRef]
- Mardanisamani, S.; Eramian, M. Segmentation of vegetation and microplots in aerial agriculture images: A survey. Plant Phenome J. 2022, 5, e20042. [Google Scholar] [CrossRef]
- Lee, M.K.; Golzarian, M.R.; Kim, I. A new color index for vegetation segmentation and classification. Precis. Agric. 2021, 22, 179–204. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Vonbargen, K.; Mortensen, D.A. Color Indexes for Weed Identification under Various Soil, Residue, and Lighting Conditions. Trans. Am. Soc. Agric. Biol. Eng. 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.; Laksmi, K. Machine vision detection parameters for plant species identification. In Proceedings of the SPIE Precision Agriculture and Biological Quality, Boston, MA, USA, 1–6 November 1998; Volume 3543, pp. 327–335. [Google Scholar] [CrossRef]
- Guijarro, M.; Pajares, G.; Riomoros, I.; Herrera, P.J.; Burgos-Artizzu, X.P.; Ribeiro, A. Automatic segmentation of relevant textures in agricultural images. Comput. Electron. Agric. 2011, 75, 75–83. [Google Scholar] [CrossRef]
- Dragut, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Li, Y.R.; Yu, X.; Zhang, J.H.; Zhang, S.C.; Wang, X.P.; Kong, D.L.; Yao, L.L.; Lu, H. Improved Classification of Coastal Wetlands in Yellow River Delta of China Using ResNet Combined with Feature-Preferred Bands Based on Attention Mechanism. Remote Sens. 2024, 16, 1860. [Google Scholar] [CrossRef]
- Ba, Q.; Wang, B.D.; Zhu, L.B.; Fu, Z.M.; Wu, X.; Wang, H.J.; Bi, N.S. Rapid change of vegetation cover in the Huanghe (Yellow River) mouth wetland and its biogeomorphological feedbacks. CATENA 2024, 238, 107875. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (Savi). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Peng, K.F.; Jiang, W.G.; Hou, P.; Wu, Z.F.; Ling, Z.Y.; Wang, X.Y.; Niu, Z.G.; Mao, D.H. Continental-scale wetland mapping: A novel algorithm for detailed wetland types classification based on time series Sentinel-1/2 images. Ecol. Indic. 2023, 148, 110113. [Google Scholar] [CrossRef]
- Han, Y.F.; Chi, H.; Huang, J.L.; Shi, X.M.; Qiu, J.; Shao, Q.H.; Li, Y.F.; Cheng, C.; Ling, F. Long-term wetland mapping at 10 m resolution using super-resolution and hierarchical classification—A case study in Jianghan Plain, China. Int. J. Digit. Earth 2025, 18, 2498605. [Google Scholar] [CrossRef]
- Liu, Q.S.; Huang, C.; Li, H. Mapping plant communities within quasi-circular vegetation patches using tasseled cap brightness, greenness, and topsoil grain size index derived from GF-1 imagery. Earth Sci. Inform. 2021, 14, 975–984. [Google Scholar] [CrossRef]
- Cruz, C.; O’Connell, J.; McGuinness, K.; Martin, J.R.; Perrin, P.M.; Connolly, J. Assessing the effectiveness of UAV data for accurate coastal dune habitat mapping. Eur. J. Remote Sens. 2023, 56, 2191870. [Google Scholar] [CrossRef]
- Zheng, B.; Shi, Y.S.; Wang, Q.; Zheng, J.W.; Lu, J. Fine Classification of Vegetation Under Complex Surface Cover Conditions with Hyperspectral and High-Spatial Resolution: A Case Study of the Xisha Area, Chongming District, Shanghai. J. Indian Soc. Remote Sens. 2025, 53, 1615–1626. [Google Scholar] [CrossRef]
- Bhatnagar, S.; Gill, L.; Regan, S.; Waldren, S.; Ghosh, B. A nested drone-satellite approach to monitoring the ecological conditions of wetlands. ISPRS J. Photogramm. Remote Sens. 2021, 174, 151–165. [Google Scholar] [CrossRef]
- Steenvoorden, J.; Bartholomeus, H.; Limpens, J. Less is more: Optimizing vegetation mapping in peatlands using unmanned aerial vehicles (UAVs). Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103220. [Google Scholar] [CrossRef]
- Fu, B.L.; Liu, M.; He, H.C.; Lan, F.W.; He, X.; Liu, L.L.; Huang, L.K.; Fan, D.L.; Zhao, M.; Jia, Z.L. Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102553. [Google Scholar] [CrossRef]
- Dragut, L.; Eisank, C. Automated object-based classification of topography from SRTM data. Geomorphology 2012, 141, 21–33. [Google Scholar] [CrossRef]
- Belcore, E.; Latella, M.; Piras, M.; Camporeale, C. Enhancing precision in coastal dunes vegetation mapping: Ultra-high resolution hierarchical classification at the individual plant level. Int. J. Remote Sens. 2024, 45, 4527–4552. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
Categories | Abbreviation | Description |
---|---|---|
Spectral features | R | red band |
G | green band | |
B | blue band | |
NIR | near-infrared band | |
Texture features | GLCM_A | Angular Second Moment |
GLCM_Cor | Correlation | |
GLCM_Con | Contrast | |
GLCM_E | Entropy | |
GLCM_V | Variance | |
Vegetation features | NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index | |
SAVI | Soil Adjusted Vegetation Index |
Classification Method | P.a | S.s | T.c | I.c | Water | Bare Land | OA (%) | Kappa | ||
---|---|---|---|---|---|---|---|---|---|---|
Group1 | RF | PA (%) | 93.83 | 92.50 | 89.03 | 96.88 | 99.40 | 99.38 | 95.24 | 0.9429 |
UA (%) | 94.41 | 91.93 | 93.24 | 96.27 | 98.24 | 96.99 | ||||
SVM | PA (%) | 93.83 | 90.00 | 86.45 | 96.25 | 98.21 | 98.77 | 94.00 | 0.9280 | |
UA (%) | 94.41 | 86.23 | 91.78 | 98.72 | 98.21 | 94.67 | ||||
MLC | PA (%) | 92.59 | 89.38 | 84.52 | 95.62 | 97.02 | 98.15 | 92.86 | 0.9144 | |
UA (%) | 91.46 | 85.63 | 89.12 | 98.08 | 97.60 | 95.18 | ||||
KNN | PA (%) | 91.36 | 88.12 | 83.87 | 95.00 | 97.02 | 98.15 | 92.35 | 0.9082 | |
UA (%) | 92.50 | 84.94 | 88.44 | 98.70 | 96.45 | 92.98 | ||||
Group2 | RF | PA (%) | 95.68 | 94.38 | 93.55 | 97.50 | 99.40 | 99.38 | 96.69 | 0.9603 |
UA (%) | 96.27 | 96.18 | 95.39 | 96.89 | 98.24 | 96.99 | ||||
SVM | PA (%) | 93.83 | 93.12 | 88.39 | 96.88 | 98.21 | 98.77 | 94.93 | 0.9392 | |
UA (%) | 95.60 | 88.69 | 92.57 | 98.73 | 98.21 | 95.81 | ||||
MLC | PA (%) | 93.83 | 91.25 | 87.10 | 96.25 | 97.62 | 98.15 | 94.11 | 0.9293 | |
UA (%) | 92.68 | 87.95 | 92.47 | 98.72 | 97.62 | 95.21 | ||||
KNN | PA (%) | 91.36 | 90.00 | 85.81 | 96.25 | 97.02 | 98.15 | 93.17 | 0.9181 | |
UA (%) | 93.08 | 86.23 | 90.48 | 98.72 | 97.60 | 92.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Y.; Zhang, X.; Che, C.; Huang, C.; Li, H.; Peng, Y.; Li, Z.; Liu, Q. Fine-Scale Classification of Dominant Vegetation Communities in Coastal Wetlands Using Color-Enhanced Aerial Images. Remote Sens. 2025, 17, 2848. https://doi.org/10.3390/rs17162848
Liu Y, Zhang Y, Zhang X, Che C, Huang C, Li H, Peng Y, Li Z, Liu Q. Fine-Scale Classification of Dominant Vegetation Communities in Coastal Wetlands Using Color-Enhanced Aerial Images. Remote Sensing. 2025; 17(16):2848. https://doi.org/10.3390/rs17162848
Chicago/Turabian StyleLiu, Yixian, Yiheng Zhang, Xin Zhang, Chunguang Che, Chong Huang, He Li, Yu Peng, Zishen Li, and Qingsheng Liu. 2025. "Fine-Scale Classification of Dominant Vegetation Communities in Coastal Wetlands Using Color-Enhanced Aerial Images" Remote Sensing 17, no. 16: 2848. https://doi.org/10.3390/rs17162848
APA StyleLiu, Y., Zhang, Y., Zhang, X., Che, C., Huang, C., Li, H., Peng, Y., Li, Z., & Liu, Q. (2025). Fine-Scale Classification of Dominant Vegetation Communities in Coastal Wetlands Using Color-Enhanced Aerial Images. Remote Sensing, 17(16), 2848. https://doi.org/10.3390/rs17162848