Application of Remote Sensing and Geographic Information Systems for Monitoring and Managing Chili Crops: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Scope
2.2. Search
2.3. Screening
2.4. Data Extraction and Analysis
3. Results
3.1. Annual Distribution of Selected Studies
3.2. Geographic Distribution of Selected Studies
3.3. GIS and RS Application in Chili Monitoring
3.4. RS Applied in Chili Monitoring and Management
3.4.1. Platform and Sensors
3.4.2. RS Data Analysis Methods
3.5. GIS Applied in Chili Monitoring
4. Discussion
4.1. Temporal and Geographic Distribution of Studies of RS and GIS-Based Chili Monitoring and Management
4.2. Platforms, Sensors, and Approaches of RS in Chili Crop Monitoring
4.3. GIS Application in Chili Crop Suitability and Spatial Analysis
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duranova, H.; Valkova, V.; Gabriny, L. Chili peppers (Capsicum spp.): The spice not only for cuisine purposes: An update on current knowledge. Phytochem. Rev. 2022, 21, 1379–1413. [Google Scholar] [CrossRef]
- Govindarajan, V.S.; Salzer, U.J. Capsicum-production, technology, chemistry, and quality part 1: History, botany, cultivation, and primary processing. CRC Crit. Rev. Food Sci. Nutr. 1985, 22, 109–176. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Raghuwanshi, R.; Gupta, V.K.; Singh, H.B. Chilli Anthracnose: The Epidemiology and Management. Front. Microbiol. 2016, 7, 1527. [Google Scholar] [CrossRef]
- FAO. FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 February 2025).
- Mariyono, J.; Sumarno, S. Chilli production and adoption of chilli-based agribusiness in Indonesia. J. Agribus. Dev. Emerg. Econ. 2015, 5, 57–75. [Google Scholar] [CrossRef]
- Tripathi, A.; Sardar, S.; Shyam, H.S. Hybrid crops, income, and food security of smallholder families: Empirical evidence from poor states of India. Technol. Forecast. Soc. Change 2023, 191, 122532. [Google Scholar] [CrossRef]
- (BPS), B.P.S. Statistik Hortikultura 2023. Available online: https://www.bps.go.id/id/publication/2024/06/10/790c957ba8892f9771aeefb7/statistik-hortikultura-2023.html (accessed on 21 May 2025).
- Rais, M.U.N.; Solangi, A.W.; Wagan, H. Climate change affects chilli production, profitability, and costs: Implications for sustainable agriculture. J. Agric. Food 2023, 4, 102–113. Available online: https://jaf.su.edu.pk/uploads/journals/JAF4(2)_Yaseen_sb.pdf (accessed on 10 August 2025).
- Yashu; Kukreja, V.; Madan, K. Automated Red Chilli Disease Recognition using Combined CNN-SVM Model: Enhancing Crop Management and Yield Optimization. In Proceedings of the 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India, 6–8 October 2023; pp. 1–4. [Google Scholar]
- Prabhakar, M.; Thirupathi, M.; Kumar, G.S.; Sravan, U.S.; Kalpana, M.; Gopinath, K.A.; Kumar, N.R. Damage assessment of chilli thrips using high resolution multispectral satellite data. J. Agrometeorol. 2019, 21, 480–487. [Google Scholar] [CrossRef]
- Kshirsagar, A.V.; Deshmukh, R.R.; Janse, P.V.; Gupta, R.; Kayte, J.N. Detection of disease from Chilly Plant Using Vegetation Indices. Int. J. Comput. Sci. Eng. 2019, 7, 333–337. [Google Scholar] [CrossRef]
- Atshan, L.A.; Brown, P.; Xu, C.; White, S. Early detection of disease infection in chilli crops using sensors. Acta Hortic. 2020, 1279, 263–270. [Google Scholar] [CrossRef]
- Vyas, R.D.V.; Patil, P.; Hebbara, M.; Rajkumara, S. Assessment of Soil-site Suitability for Major Horticulture Crops in Chikkumbi-3 Micro-watershed (4D7C5O2f), Karnataka Using Remote Sensing and GIS Techniques. Asian J. Soil Sci. Plant Nutr. 2024, 10, 268–279. [Google Scholar] [CrossRef]
- Mandal, S.; Choudhury, B.U.; Satpati, L. Soil site suitability analysis using geo-statistical and visualization techniques for selected winter crops in Sagar Island, India. Appl. Geogr. 2020, 122, 102249. [Google Scholar] [CrossRef]
- Touch, V.; Tan, D.K.Y.; Cook, B.R.; Liu, L.; Cross, R.; Tran, T.A.; Utomo, A.; Yous, S.; Grunbuhel, C.; Cowie, A. Smallholder farmers’ challenges and opportunities: Implications for agricultural production, environment and food security. J. Environ. Manag. 2024, 370, 122536. [Google Scholar] [CrossRef] [PubMed]
- Biju, D.S.; Tantia, V. The path to resilience: Exploring household financial vulnerability. In Contemporary Research and Practices for Promoting Financial Literacy and Sustainability; IGI Global: Hershey, PA, USA, 2024; pp. 20–49. [Google Scholar]
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Gutiérrez-Lazcano, L.; Camacho-Bello, C.J.; Cornejo-Velazquez, E.; Arroyo-Núñez, J.H.; Clavel-Maqueda, M. Cuscuta spp. Segmentation Based on Unmanned Aerial Vehicles (UAVs) and Orthomasaics Using a U-Net Xception-Style Model. Remote Sens. 2022, 14, 4315. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Dunaieva, I.; Mirschel, W.; Popovych, V.; Pashtetsky, V.; Golovastova, E.; Vecherkov, V.; Melnichuk, A.; Terleev, V.; Nikonorov, A.; Ginevsky, R.; et al. International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies Emmft 2018; Pasetti, M., Murgul, V., Eds.; Springer International Publishing AG: Cham, Switzerland, 2019; Volume 983, pp. 236–246. [Google Scholar]
- Wu, B.; Zhang, M.; Zeng, H.; Tian, F.; Potgieter, A.B.; Qin, X.; Yan, N.; Chang, S.; Zhao, Y.; Dong, Q. Challenges and opportunities in remote sensing-based crop monitoring: A review. Natl. Sci. Rev. 2023, 10, nwac290. [Google Scholar] [CrossRef]
- Ballesteros, R.; Ortega, J.F.; Hernandez, D.; del Campo, A.; Moreno, M.A. Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 66–75. [Google Scholar] [CrossRef]
- Brewer, K.; Clulow, A.; Sibanda, M.; Gokool, S.; Naiken, V.; Mabhaudhi, T. Predicting the Chlorophyll Content of Maize over Phenotyping as a Proxy for Crop Health in Smallholder Farming Systems. Remote Sens. 2022, 14, 518. [Google Scholar] [CrossRef]
- Baret, F.; Houlès, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Shi, S.; Ye, Y.; Xiao, R. Evaluation of Food Security Based on Remote Sensing Data—Taking Egypt as an Example. Remote Sens. 2022, 14, 2876. [Google Scholar] [CrossRef]
- Wu, B.; Gommes, R.; Zhang, M.; Zeng, H.; Yan, N.; Zou, W.; Zheng, Y.; Zhang, N.; Chang, S.; Xing, Q.; et al. Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sens. 2015, 7, 3907–3933. [Google Scholar] [CrossRef]
- Corti, M.; Cavalli, D.; Cabassi, G.; Marino Gallina, P.; Bechini, L. Does remote and proximal optical sensing successfully estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. [Google Scholar] [CrossRef]
- Zheng, J.; Song, X.; Yang, G.; Du, X.; Mei, X.; Yang, X. Remote Sensing Monitoring of Rice and Wheat Canopy Nitrogen: A Review. Remote Sens. 2022, 14, 5712. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sohrabi, C.; Franchi, T.; Mathew, G.; Kerwan, A.; Nicola, M.; Griffin, M.; Agha, M.; Agha, R. PRISMA 2020 statement: What’s new and the importance of reporting guidelines. Int. J. Surg. 2021, 88, 105918. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Rifani, A.; Nugroho, A.D.; Winaryo; Tyas, D.W.; Masduqi, E.; Topo, A.H.; Hidayanti, R.; Masithah, R.A.; Romadhon, R.D.; Sulissetiyo, T.; et al. Spatial distribution of agriculture commodity in Cilacap Regency. In Proceedings of the International Conference on Smart and Innovative Agriculture, Yogyakarta, Indonesia, 4–5 November 2021. [Google Scholar]
- Rameash, K.; Pandravada, S.R.; Sivaraj, N.; Sararth Babu, B.; Chakrabarty, S.K. Screening chilli (Capsicum annuum L.) genotypes for resistance to broad mite (Polyphagotarsonemus latus Banks) and analysing the geographic distribution of resistance. Electron. J. Plant Breed. 2015, 6, 928–937. [Google Scholar] [CrossRef]
- Kumalawati, R.; Salamiah, S.; Yuliarti, A.; Murliawan, K.H. Potential Mapping Agricultural Commodities to Mitigation of Food Problem in the Future. Geoj. Tour. Geosites 2020, 33, 1480–1485. [Google Scholar] [CrossRef]
- Kowshika, N.; Kowshika, N.; Geethalakshmi, V.; Arumugam, T.; Jagadeeswaran, R. Performance of rainfed chilli crop in Tamil Nadu under climate change in RCP4.5. J. Agrometeorol. 2021, 23, 324–329. [Google Scholar] [CrossRef]
- Aini, L.; Putra, B.; Aditama, F. Identification of land characteristics to increase red chili productivity in Mangunan, Bantul, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2024, 1302, 012025. [Google Scholar] [CrossRef]
- MacDonald, R.B.; Hall, F.G. Global crop forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Muflikh, Y.; Smith, C.; Brown, C.; Aziz, A. Analysing price volatility in agricultural value chains using systems thinking: A case study of the Indonesian chilli value chain. Agric. Syst. 2021, 192, 103179. [Google Scholar] [CrossRef]
- Phang, S.K.; Chiang, T.H.A.; Happonen, A.; Chang, M.M.L. From satellite to UAV-based remote sensing: A review on precision agriculture. IEEE Access 2023, 11, 127057–127076. [Google Scholar] [CrossRef]
- Jiang, J.; Atkinson, P.M.; Chen, C.; Cao, Q.; Tian, Y.; Zhu, Y.; Liu, X.; Cao, W. Combining UAV and Sentinel-2 satellite multi-spectral images to diagnose crop growth and N status in winter wheat at the county scale. Field Crops Res. 2023, 294, 108860. [Google Scholar] [CrossRef]
- Gonzalez-Perez, J.L.; Espino-Gudiflo, M.C.; Gudifto-Bazaldua, J.; Rojas-Renteria, J.L.; Rodriguez-Hernandez, V.; Castaflo, V.M. Color image segmentation using perceptual spaces through applets for determining and preventing diseases in chili peppers. Afr. J. Biotechnol. 2013, 12, 679–688. Available online: https://www.ajol.info/index.php/ajb/article/view/126668 (accessed on 10 August 2025).
- Shao, Y.; Ji, S.; Xuan, G.; Ren, Y.; Feng, W.; Jia, H.; Wang, Q.; He, S. Detection and Analysis of Chili Pepper Root Rot by Hyperspectral Imaging Technology. Agronomy 2024, 14, 226. [Google Scholar] [CrossRef]
- Kalkan, H.; Beriat, P.; Yardimci, Y.; Pearson, T.C. Detection of contaminated hazelnuts and ground red chili pepper flakes by multispectral imaging. Comput. Electron. Agric. 2011, 77, 28–34. [Google Scholar] [CrossRef]
- Naresh, V.; Yogeswararao, G.; Nageswararao Naik, B.; Malmathanraj, R.; Palanisamy, P. Empirical Analysis of Squeeze and Excitation-Based Densely Connected CNN for Chili Leaf Disease Identification. IEEE Trans. Artif. Intell. 2024, 5, 1681–1692. [Google Scholar] [CrossRef]
- Dozono, K.; Amalathas, S.; Saravanan, R. Proceedings of Sixth International Congress on Information and Communication Technology; Sherratt, S., Joshi, A., Dey, N., Yang, X.-S., Eds.; Springer: Singapore, 2021; Volume 235, pp. 557–569. [Google Scholar]
- Lafta, A. Multispectral and Thermal Imagery Approaches to Insect Pest and Disease Detection in Horticultural Crops. Ph.D. Thesis, Central Queensland University, Gardens, Australia, 2022. [Google Scholar]
- Prabhakar, M.; Thirupathi, M.; Mani, M. Trends in Horticultural Entomology; Mani, M., Ed.; Springer Nature: Singapore, 2022; pp. 157–183. [Google Scholar]
- Kursun, R.; Koklu, M. ViT-AlexNet: A Hybrid Approach for Chili Leaf Disease Classification. In Proceedings of the International Conference, Abu Dhabi, United Arab Emirates, 24 December 2024; p. 26. [Google Scholar]
- Jayasuriya, K.; Kotapolage, D.; Gamage, S.; Haddela, P.; Pemadasa, N. Plant Stresses and Pest Attack Detection Using Convolutional Neural Networks with Advance Preprocessing Techniques in Chili Plants. In Proceedings of the Future Technologies Conference (FTC), Vancouver, BC, Canada, 28–29 October 2021; Volume 2, pp. 17–33. [Google Scholar]
- Kior, A.; Yudina, L.; Zolin, Y.; Sukhov, V.; Sukhova, E. RGB imaging as a tool for remote sensing of characteristics of terrestrial plants: A review. Plants 2024, 13, 1262. [Google Scholar] [CrossRef]
- Berger, K.; Machwitz, M.; Kycko, M.; Kefauver, S.C.; Van Wittenberghe, S.; Gerhards, M.; Verrelst, J.; Atzberger, C.; van der Tol, C.; Damm, A.; et al. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review. Remote Sens. Environ. 2022, 280, 113198. [Google Scholar] [CrossRef]
- Su, W.H.; Sun, D.W. Multispectral Imaging for Plant Food Quality Analysis and Visualization. Compr. Rev. Food Sci. Food Saf. 2018, 17, 220–239. [Google Scholar] [CrossRef] [PubMed]
- Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; Ferraz, R.P.D.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R. Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Foster, A.; Kakani, V.; Mosali, J. Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression. Precis. Agric. 2017, 18, 192–209. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of multi-/Hyperspectral thermal infrared remote sensing for crop water-stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef]
- Degen, C.L.; Reinhard, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef]
- Sun, L.; Chen, J.; Guo, S.; Deng, X.; Han, Y. Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas. Remote Sens. 2020, 12, 158. [Google Scholar] [CrossRef]
- Sosa-Herrera, J.A.; Vallejo-Perez, M.R.; Alvarez-Jarquin, N.; Cid-Garcia, N.M.; Lopez-Araujo, D.J. Geographic Object-Based Analysis of Airborne Multispectral Images for Health Assessment of Capsicum annuum L. Crops. Sensors 2019, 19, 4817. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat, F. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in vegetation remote sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Karaca, C.; Thompson, R.B.; Peña-Fleitas, M.T.; Gallardo, M.; Padilla, F.M. Evaluation of absolute measurements and normalized indices of proximal optical sensors as estimators of yield in muskmelon and sweet pepper. Remote Sens. 2023, 15, 2174. [Google Scholar] [CrossRef]
- Demirel, K.; Genc, L.; Bahar, E.; Inalpulat, M.; Smith, S.; Kizil, U. Yield estimate using spectral indices in eggplant and bell pepper grown under deficit irrigation. Fresenius Environ. Bull. 2014, 23, 106651. [Google Scholar] [CrossRef]
- Ligot, N.; Bogaert, P.; Biass, S.; Lobet, G.; Delmelle, P. Grain size modulates volcanic ash retention on crop foliage and potential yield loss. Nat. Hazards Earth Syst. Sci. 2023, 23, 1355–1369. [Google Scholar] [CrossRef]
- Muruganantham, P.; Wibowo, S.; Grandhi, S.; Samrat, N.H.; Islam, N. A systematic literature review on crop yield prediction with deep learning and remote sensing. Remote Sens. 2022, 14, 1990. [Google Scholar] [CrossRef]
- Singha, C.; Swain, K.C. Land suitability evaluation criteria for agricultural crop selection: A review. Agric. Rev. 2016, 37, 125–132. [Google Scholar] [CrossRef]
- Mayanda, D.P.; Ratna Adi, I.G.P.; Kusmiyarti, T.B. Evaluation of Land Suitability of Horticultural Crops in Sembalun Sub-district, East Lombok Regency, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Semarang, Indonesia, 29–30 August 2019. [Google Scholar]
- Ravikumar, D. Land evaluation by integrating remote sensing and GIS for rainfed agriculture in Koranahalli subwatershed. Nat. Environ. Pollut. Technol. 2019, 18, 735–746. [Google Scholar]
- Das, A.; Das, S.; Akanda, M.; Debnath, B.; Bhattacharya, R. Land suitability assessment for chilli using gis and satellite remote sensing data. J. Sylhet Agric. Univ. 2020, 7, 79–86. [Google Scholar]
- Sarkar, D.; Saha, S.; Mondal, P. Modelling agricultural land suitability for vegetable crops farming using RS and GIS in conjunction with bivariate techniques in the Uttar Dinajpur district of Eastern India. Green Technol. Sustain. 2023, 1, 100022. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- ESRI. How Inverse Distance Weighted (IDW) Interpolation Works. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/how-inverse-distance-weighted-interpolation-works.htm (accessed on 24 July 2025).
- Al-Gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Assiri, F.; Alblewi, B. Characterization of the spatial variability of surface topography and moisture content and its influence on potato crop yield. Int. J. Remote Sens. 2018, 39, 8572–8590. [Google Scholar] [CrossRef]
- Jung, J.; Maeda, M.; Chang, A.; Bhandari, M.; Ashapure, A.; Landivar-Bowles, J. The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems. Curr. Opin. Biotechnol. 2021, 70, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Bhavana, D.; Likhita, N.; Madhumitha, G.; Ratnam, D.V. Machine learning based object-level crop classification of PlanetScope data at South India Basin. Earth Sci. Inf. 2023, 16, 91–104. [Google Scholar] [CrossRef]
- Sinaga, S.; Kamal, M.; Kanniah, K.D. Object-Based Approach for Agricultural Vegetation Mapping using WorldView-2 (A Case Study in Part of Dieng Plateau, Central Java). In Proceedings of the Sixth International Symposium on Lapan-Ipb Satellite (LISAT 2019), Bogor, Indonesia, 17–18 September 2019. [Google Scholar]
- Farahani, B.V.; Direito, F.; Sousa, P.J.; Melo, F.Q.; Tavares, P.J.; Infante, V.; Moreira, P.M. Advancement on optical methods in stress dead-zone characterisation and SIF evaluation. Eng. Fail. Anal. 2022, 140, 106493. [Google Scholar] [CrossRef]
- Lambert, M.-J.; Traoré, P.C.S.; Blaes, X.; Baret, P.; Defourny, P. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt. Remote Sens. Environ. 2018, 216, 647–657. [Google Scholar] [CrossRef]
- Porcar-Castell, A.; Tyystjarvi, E.; Atherton, J.; van der Tol, C.; Flexas, J.; Pfundel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Z.; Wu, L.; Zhang, Y. Solar-induced chlorophyll fluorescence and its relationship with photosynthesis during waterlogging in a maize field. Agric. For. Meteorol. 2025, 363, 110404. [Google Scholar] [CrossRef]
- Du, K.; Jing, X.; Zeng, Y.; Ye, Q.; Li, B.; Huang, J. An improved approach to monitoring wheat stripe rust with sun-induced chlorophyll fluorescence. Remote Sens. 2023, 15, 693. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Ermon, S.; Lobell, D.B. Transfer learning in environmental remote sensing. Remote Sens. Environ. 2024, 301, 113924. [Google Scholar] [CrossRef]
- Antonijević, O.; Jelić, S.; Bajat, B.; Kilibarda, M. Transfer learning approach based on satellite image time series for the crop classification problem. J. Big Data 2023, 10, 54. [Google Scholar] [CrossRef]
- Lin, C.; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early-and in-season crop type mapping without current-year ground truth: Generating labels from historical information via a topology-based approach. Remote Sens. Environ. 2022, 274, 112994. [Google Scholar] [CrossRef]
- Paymode, A.S.; Malode, V.B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Reddy, U.S. Crop pest classification based on deep convolutional neural network and transfer learning. Comput. Electron. Agric. 2019, 164, 104906. [Google Scholar] [CrossRef]
- Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens. Environ. 2020, 247, 111952. [Google Scholar] [CrossRef]
- Khaki, S.; Pham, H.; Wang, L. Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning. Sci. Rep. 2021, 11, 11132. [Google Scholar] [CrossRef]
- Marshall, M.; Belgiu, M.; Boschetti, M.; Pepe, M.; Stein, A.; Nelson, A. Field-level crop yield estimation with PRISMA and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2022, 187, 191–210. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Upadhyay, A.; Chandel, N.S.; Singh, K.P.; Chakraborty, S.K.; Nandede, B.M.; Kumar, M.; Subeesh, A.; Upendar, K.; Salem, A.; Elbeltagi, A. Deep learning and computer vision in plant disease detection: A comprehensive review of techniques, models, and trends in precision agriculture. Artif. Intell. Rev. 2025, 58, 92. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, D.; Zhang, Y.; Zhang, Y.; Han, Y.; Zhang, Q.; Zhang, Q.; Zhang, C.; Liu, Z.; Wang, K. Prediction of corn variety yield with attribute-missing data via graph neural network. Comput. Electron. Agric. 2023, 211, 108046. [Google Scholar] [CrossRef]
- Zhao, S.; Chen, Z.; Xiong, Z.; Shi, Y.; Saha, S.; Zhu, X.X. Beyond Grid Data: Exploring graph neural networks for Earth observation. IEEE Geosci. Remote Sens. Mag. 2024, 13, 175–208. [Google Scholar] [CrossRef]
- Sharma, R.; Kamble, S.S.; Gunasekaran, A. Big GIS analytics framework for agriculture supply chains: A literature review identifying the current trends and future perspectives. Comput. Electron. Agric. 2018, 155, 103–120. [Google Scholar] [CrossRef]
- Liu, J. A GIS-based tool for modelling large-scale crop-water relations. Environ. Model. Softw. 2009, 24, 411–422. [Google Scholar] [CrossRef]
- Parry, M.L.; Rosenzweig, C.; Iglesias, A.; Livermore, M.; Fischer, G. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Glob. Environ. Change 2004, 14, 53–67. [Google Scholar] [CrossRef]
- Li, R.; Wei, C.; Afroz, M.D.; Lyu, J.; Chen, G. A GIS-based framework for local agricultural decision-making and regional crop yield simulation. Agric. Syst. 2021, 193, 103213. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Chen, G.; Wang, T.; Wang, Q.; Wang, K.; Miao, T. Spatio-Temporal Fusion of Landsat and MODIS Data for Monitoring of High-Intensity Fire Traces in Karst Landscapes: A Case Study in China. Remote Sens. 2025, 17, 1852. [Google Scholar] [CrossRef]
- Goodchild, M.F. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Zipkin, E.F.; Zylstra, E.R.; Wright, A.D.; Saunders, S.P.; Finley, A.O.; Dietze, M.C.; Itter, M.S.; Tingley, M.W. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 2021, 19, 30–38. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Documents discuss and focus on the application of remote sensing and GIS in monitoring chili crop | Documents mention remote sensing and GIS technologies but do not use them as a tool to monitor chili crop |
Written in English | Not written in English |
The full document is available | Reviews, commentaries, news, and project studies |
Platform | Sensors | Spatial Resolution | Temporal Resolution |
---|---|---|---|
Landsat 5 | TM | 30 m | 16 days |
Landsat 8 | OLI | 30 m | 16 days |
Landsat 7 | ETM+ | 30 m | 16 days |
Sentinel-2A/B | MSI | 10 m | 5 days |
Terra/Aqua | MODIS | 250 m | 1–2 days |
WorldView-2 | WV110 | 1.84 m | 1.1 days |
QuickBird | QuickBird Imaging Sensor | 2.62 m | 1–3.5 days |
PlanetScope | PS2 | 3–5 m | 1 days |
NOAA | AVHRR | 11.1 km | 0.5 days |
IRS-P6 | LISS-IV | 5.8 m | 5 days |
EO-1 | Hyperion | 30 m | 16 days |
Sentinel-1A/B | C-SAR | 10 m | 6 days |
UAVs/ground-based | RGB camera | up to centimeters | Flexibility in data capture |
UAVs | Multispectral camera | up to centimeters | Flexibility in data capture |
UAVs | Hyperspectral camera | up to centimeters | Flexibility in data capture |
Ground-based | Hyperspectral camera | up to centimeters | Flexibility in data capture |
Ground-based | ASD FieldSpec Pro spectroradiometer | up to centimeters | Flexibility in data capture |
Ground-based/UAVs | Thermal camera | up to centimeters | Flexibility in data capture |
Ground-based | IL-190 Quantum | up to centimeters | Flexibility in data capture |
Algorithm | Mean Accuracy | Accuracy Range | Number of Studies |
---|---|---|---|
ResNet | 97.41% | - | 1 |
Prototypical network | 96.46% | - | 1 |
YOLOv4 and YOLOv4 tiny model | 88.11% | - | 1 |
CNN | 94.10% | 86–99% | 5 |
RF | 91.65% | 83.2–96% | 5 |
SVM | 92.08% | 82.69–97.32% | 6 |
Bayes | 77.90% | - | 1 |
Geographic Object-Based model | 78.92% | - | 3 |
TWDWS distances | 86.00% | - | 1 |
TwDTW and twDTWS | 80.00% | - | 1 |
SAM | 88.80% | - | 2 |
PLSDA | 88.50% | - | 1 |
LSSVM | 75.00% | - | 1 |
BPNN | 89.74% | - | 1 |
Two-dimensional local discriminant bases | 93.00% | - | 1 |
KNN | 63.00% | - | 1 |
RCNN | 89.31% | 82.61–96% | 2 |
ANN | 76.67% | - | 1 |
Geographic object-based image analysis (GEOBIA) | 80.00% | - | 1 |
Decision tree classification | 87.86% | - | 1 |
Unsupervised classification | 77.00% | - | 1 |
ViT-AlexNet | 94.80% | - | 1 |
YOLOv8 | 63.8% | - | 1 |
Application Category | GIS Database | Study Reference |
---|---|---|
Crop mapping | Location information | [33] |
Biotic stress | [34] | |
Land suitability | [14,35] | |
Crop yield prediction | [14,36] | |
Land suitability | Land cover or land use layers derived from google map, cadastral map, and satellite imagery (i.e., Cartosat-1 (PAN) or survey) | [13,14,37] |
Soil fertilizer | [37,38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Akber, M.A.; Aziz, A.A. Application of Remote Sensing and Geographic Information Systems for Monitoring and Managing Chili Crops: A Systematic Review. Remote Sens. 2025, 17, 2827. https://doi.org/10.3390/rs17162827
Wang Z, Akber MA, Aziz AA. Application of Remote Sensing and Geographic Information Systems for Monitoring and Managing Chili Crops: A Systematic Review. Remote Sensing. 2025; 17(16):2827. https://doi.org/10.3390/rs17162827
Chicago/Turabian StyleWang, Ziyue, Md Ali Akber, and Ammar Abdul Aziz. 2025. "Application of Remote Sensing and Geographic Information Systems for Monitoring and Managing Chili Crops: A Systematic Review" Remote Sensing 17, no. 16: 2827. https://doi.org/10.3390/rs17162827
APA StyleWang, Z., Akber, M. A., & Aziz, A. A. (2025). Application of Remote Sensing and Geographic Information Systems for Monitoring and Managing Chili Crops: A Systematic Review. Remote Sensing, 17(16), 2827. https://doi.org/10.3390/rs17162827