Landslide Displacement Intelligent Dynamic Inversion: Technical Framework and Engineering Application
Abstract
1. Introduction
2. Study Area and Data
2.1. Geological Background of the Dawanzi Landslide
2.2. Monitoring Data
- (1)
- Environmental monitoring
- (2)
- GNSS monitoring
3. Methodology
3.1. Overall Architecture
- (1)
- Data preparation and numerical modeling
- (2)
- Construction of the ML surrogate model
- (3)
- Optimization of observational data using RANSAC
- (4)
- Bayesian dynamic displacement back-analysis
3.2. Bayesian Displacement Back-Analysis
3.3. LSTM-Based Surrogate Modeling
- (1)
- Prepare training samples. Suppose a total of i training samples are available. Each sample consists of m input features and n corresponding target responses . The initial input matrix can be expressed as follows:
- (2)
- Normalize the input data. To eliminate differences in scale among input features, normalization techniques such as min–max scaling or Z-score standardization are applied. This results in a dimensionless matrix suitable for model training.
- (3)
- Configure the LSTM network. Key model parameters include the input dimension m, the output dimension n, the number of network layers K, and the number of neurons S per layer. These parameters define the overall structure of the LSTM model.
- (4)
- Train the network. The LSTM model is trained using the back propagation algorithm, which iteratively updates the connection weights between neurons through forward and backward passes to minimize the loss function, typically measured by the mean squared error.
3.4. RANSAC Algorithm
- (1)
- Random sampling. Randomly select a minimal subset consisting of k observations from the full dataset. This subset is used to generate an initial estimate of the model parameters.
- (2)
- Posterior estimation. Using compute the posterior distribution of the uncertain parameters based on Equation (2). The mean of the posterior distribution is then used to calculate predicted displacements for all monitoring points.
- (3)
- Residual computation and inlier identification. For each observation, compute the residual between the observed displacement and the predicted displacements:
- (4)
- Iteration and optimal set selection. Repeat steps 1–3 for n iterations. At the end of the process, select the inlier subset that yields the maximum number of inliers. This optimal inlier set is subsequently used to construct the likelihood function for the formal Bayesian updating.
3.5. Data Processing Workflow
4. Results
4.1. 3D Numerical Modeling
4.2. Deformation Characteristics and Mechanism
- (1)
- Deformation Characteristics
- (2)
- Deformation Mechanism
- (1)
- A solid mechanics model was used to compute the initial stress field and achieve geostatic equilibrium under gravity;
- (2)
- A steady-state seepage model simulated pore pressure and effective stress conditions under the low water level (775 m), with all grid displacements reset to zero;
- (3)
- Reservoir levels were then elevated to 785 m, 795 m, 805 m, 815 m, and 825 m, and the resulting displacement fields were computed. Simulation results are shown in Figure 10.
- The toe region, being highly permeable, responds quickly to reservoir impoundment by raising the internal groundwater level, thereby increasing the buoyant force acting on the landslide mass;
- Submergence also leads to a rise in pore water pressure, which reduces the effective stress and consequently the shear strength along the slip surface;
- These changes collectively lower the normal stress and increase the driving shear stress along the slip surface, leading to failure initiation at the toe and progressive mobilization of the entire landslide mass.
4.3. Hydrologically Driven Surrogate Model
4.4. Dynamic Inversion of Shear Strength Parameters in the Slip Zone
- (1)
- Sample Consistency Check
- (2)
- Inversion Results and Analysis
4.5. Stability Analysis Under the Highest Reservoir Water Level
5. Conclusions
- The LSTM surrogate model achieved an R2 of 0.99 and improved computational efficiency by approximately 50,000 times, enabling rapid and accurate displacement prediction.
- Integration of the RANSAC algorithm effectively identified and excluded gross errors in GNSS observations, significantly enhanced the robustness of the inversion model.
- The proposed framework enabled dynamic and high-precision inversion of shear strength parameters, with calibrated simulations closely matching field measurements within a 10 mm margin.
- Stability analysis revealed that rapid reservoir impoundment substantially reduces the anti-sliding resistance at the slope toe due to buoyancy effects, emphasizing the critical need for continuous deformation monitoring under high-water-level conditions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Notation | |
uncertain parameter (geotechnical parameter) | |
observed displacement | |
model response; predicted displacement | |
Gaussian noise | |
time state | |
probability density function | |
likelihood function | |
standard deviation of corresponding measurement | |
mean of logarithm parameter | |
standard deviation of logarithm parameter | |
mean of parameter | |
standard deviation of parameter | |
number of samples | |
number of input features; input dimension of the LSTM | |
number of target responses; output dimension of the LSTM | |
input features | |
target responses | |
minimal subset | |
number of sample observations | |
posterior distribution using to compute | |
residual between the observed displacement and the predicted displacement | |
predefined threshold | |
number of inliers | |
inlier subset | |
elastic modulus | |
cohesion | |
internal friction angle | |
saturated permeability coefficient | |
coefficient of determination | |
Abbreviations | |
LDIDIF | Landslide Displacement Intelligent Dynamic Inversion Framework |
BBA | Bayesian displacement Back-Analysis |
LSTM | Long Short-Term Memory |
RANSAC | RANdom SAmple Consensus |
GNSS | Global Navigation Satellite System |
InSAR | Interferometric Synthetic Aperture Radar |
UAV | Unmanned Aerial Vehicle |
DEM | Digital Elevation Model |
MCMC | Markov Chain Monte Carlo |
MH | Metropolis–Hastings |
DREAM | Differential Evolution Adaptive Metropolis |
SVR | Support Vector Regression |
BPNN | Back Propagation Neural Networks |
XGBoost | eXtreme Gradient Boosting |
LHS | Latin Hypercube Sampling |
RMSE | Root Mean Square Error |
CV | Coefficient of Variation |
BHT | Baihetan |
TDG | Tuandigou |
XJS | Xiaojiasha |
DWZ | Dawanzi |
LM | Landslide Mass |
SZ | Slip Zone |
ML | Machine Learning |
References
- Nava, L.; Carraro, E.; Reyes-Carmona, C.; Puliero, S.; Bhuyan, K.; Rosi, A.; Monserrat, O.; Floris, M.; Meena, S.R.; Galve, J.P.; et al. Landslide displacement forecasting using deep learning and monitoring data across selected sites. Landslides 2023, 20, 2111–2129. [Google Scholar] [CrossRef]
- Zhang, Q.; Bai, Z.W.; Huang, G.W.; Kong, J.X.; Du, Y.; Wang, D.; Jing, C.; Xie, W. Innovative landslide disaster monitoring: Unmanned aerial vehicle-deployed GNSS technology. Geomat. Nat. Hazards Risk 2024, 15, 2366374. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, P.; Xiu, D.; Zhong, Y.; Peng, D.; Xu, Q. Monitoring tilting angle of the slope surface to predict loess fall landslide: An on-site evidence from Heifangtai loess fall landslide in Gansu Province, China. Landslides 2022, 19, 719–729. [Google Scholar] [CrossRef]
- Hu, X.; Tan, F.; Tang, H.; Zhang, G.; Su, A.; Xu, C.; Zhang, Y.; Xiong, C. In-situ monitoring platform and preliminary analysis of monitoring data of Majiagou landslide with stabilizing piles. Eng. Geol. 2017, 228, 323–336. [Google Scholar] [CrossRef]
- Ju, L.Y.; Xiao, T.; He, J.; Xu, W.F.; Xiao, S.H.; Zhang, L.M. A simulation-enabled slope digital twin for real-time assessment of rain-induced landslides. Eng. Geol. 2025, 353, 108116. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.; Zhang, Y.; Guo, Z.; Liu, Y.; Zhou, X.; Guo, Z.; Guo, W.; Wan, L.; Duan, L.; et al. Landslide Hazard Prediction Based on UAV Remote Sensing and Discrete Element Model Simulation-Case from the Zhuangguoyu Landslide in Northern China. Remote Sens. 2024, 16, 3887. [Google Scholar] [CrossRef]
- Wang, H.; Tian, G.; Zhao, Y.; Xie, Y.; Zhang, Q.; Xu, A.; Li, X. Dynamic modeling of Meiping landslide process. Nat. Hazards 2019, 96, 879–892. [Google Scholar] [CrossRef]
- Yang, H.Q.; Zhang, L.L. Bayesian back analysis of unsaturated hydraulic parameters for rainfall-induced slope failure: A review. Earth-Sci. Rev. 2024, 251, 104714. [Google Scholar] [CrossRef]
- Li, D.Q.; Zang, H.H.; Tang, X.S.; Rong, G. Efficient Bayesian updating for deformation prediction of high rock slopes induced by excavation with monitoring data. Eng. Geol. 2024, 342, 107772. [Google Scholar] [CrossRef]
- Liu, Q.; Lei, Y.; Yin, X.; Lei, J.; Pan, Y.; Sun, L. Development and application of a novel probabilistic back-analysis framework for geotechnical parameters in shield tunneling based on the surrogate model and Bayesian theory. Acta Geotech. 2023, 18, 4899–4921. [Google Scholar] [CrossRef]
- Dong, K.; Yang, D.; Chen, J.; Zhou, J.; Li, J.; Lu, X.; Pei, L.; Kou, Q. Monitoring-data mechanism-driven dynamic evaluation method for slope safety. Comput. Geotech. 2022, 148, 104850. [Google Scholar] [CrossRef]
- Dai, Y.; Dai, W.; Yu, W.; Bai, D. Determination of Landslide Displacement Warning Thresholds by Applying DBA-LSTM and Numerical Simulation Algorithms. Appl. Sci. 2022, 12, 6690. [Google Scholar] [CrossRef]
- Robson, E.; Milledge, D.; Utili, S.; Dattola, G. A Computationally Efficient Method to Determine the Probability of Rainfall-Triggered Cut Slope Failure Accounting for Upslope Hydrological Conditions. Rock Mech. Rock Eng. 2024, 57, 2421–2443. [Google Scholar] [CrossRef]
- Marzouk, I.; Brinkgreve, R.; Lengkeek, A.; Tschuchnigg, F. APD: An automated parameter determination system based on in-situ tests. Comput. Geotech. 2024, 176, 106799. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, Y. A novel framework for calibrating DEM parameters: A case study of sand and soil-rock mixture. Comput. Geotech. 2024, 174, 106619. [Google Scholar] [CrossRef]
- Li, X.; Huang, F.; Yang, Z. Multisource monitoring data-driven slope stability prediction using ensemble learning techniques. Comput. Geotech. 2024, 169, 106255. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Jin, W.; Sloan, S.W.; Jiang, Q. Bayesian updating for progressive excavation of high rock slopes using multi-type monitoring data. Eng. Geol. 2019, 252, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Koo, R.C.H.; Kwan, J.S.H. Development of a slope digital twin for predicting temporal variation of rainfall-induced slope instability using past slope performance records and monitoring data. Eng. Geol. 2022, 308, 106825. [Google Scholar] [CrossRef]
- Jiang, S.H.; Papaioannou, I.; Straub, D. Bayesian updating of slope reliability in spatially variable soils with in-situ measurements. Eng. Geol. 2018, 239, 310–320. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhang, L.M.; Jiang, S.H.; Li, D.Q.; Zhou, C.B. Assessment of Slope Stability in the Monitoring Parameter Space. J. Geotech. Geoenviron. Eng. 2016, 142, 04016029. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, F.; Zheng, Y.; Chen, L.; Zhang, J.; Li, X. Probabilistic calibration of a coupled hydro-mechanical slope stability model with integration of multiple observations. Georisk 2018, 12, 169–182. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, L.; Zhang, J.; Zheng, J.; Yu, Y. Multi-objective probabilistic inverse analysis of rainfall-induced landslide based on time-varied data. Rock Soil Mech. 2017, 38, 3371–3377+3384. [Google Scholar] [CrossRef]
- Dai, W.; Dai, Y.; Xie, J.; Shen, S.; Shen, G.; Wang, Y. Enhancing Bayesian probabilistic back-analysis efficiency using multi-type surface and subsurface monitoring data: Case study of the Baihetan left bank slope. Comput. Geotech. 2025, 182, 107174. [Google Scholar] [CrossRef]
- Xu, Q.; Zhao, B.; Dai, K.; Dong, X.; Li, W.; Zhu, X.; Yang, Y.; Xiao, X.; Wang, X.; Huang, J.; et al. Remote sensing for landslide investigations: A progress report from China. Eng. Geol. 2023, 321, 107156. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Dou, J.; Hou, S.; Xiang, Z.; Wang, H.; Yang, P.; Liu, X. Advancing reservoir landslide stability assessment via TS-InSAR and airborne LiDAR observations in the Daping landslide group, Three Gorges Reservoir Area, China. Landslides 2025, 22, 169–188. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J.; Lu, Z.; Hu, X.; Sun, Q.; Liu, J.; Zhu, J.; Li, Z. Enhanced Kinematic Inversion of 3-D Displacements, Geometry, and Hydraulic Properties of a North-South Slow-Moving Landslide in Three Gorges Reservoir. J. Geophys. Res. Solid Earth 2023, 128, e2022JB026232. [Google Scholar] [CrossRef]
- Ye, X.; Zhu, H.; Wang, J.; Zhang, Q.; Bin, S.; Schenato, L.; Pasuto, A. Subsurface Multi-Physical Monitoring of a Reservoir Landslide With the Fiber-Optic Nerve System. Geophys. Res. Lett. 2022, 49, e2022GL098211. [Google Scholar] [CrossRef]
- Ebrahim, K.M.P.; Gomaa, S.; Zayed, T.; Alfalah, G. Recent Phenomenal and Investigational Subsurface Landslide Monitoring Techniques: A Mixed Review. Remote Sens. 2024, 16, 385. [Google Scholar] [CrossRef]
- Deng, L.; Yuan, H.; Chen, J.; Zhang, M.; Su, G.; Zhou, Y.; Chen, Y. Experimental investigation and field application of acoustic emission array for landslide monitoring. Landslides 2024, 21, 71–81. [Google Scholar] [CrossRef]
- Shi, J.B.; Huang, Y.S.; Ouyang, C.H. A GPS relative positioning quality control algorithm considering both code and phase observation errors. J. Geod. 2019, 93, 1419–1433. [Google Scholar] [CrossRef]
- Song, J.; Li, H.; He, X. A High-Precision Distributed Microdisplacement Monitoring System: System Design and Data Processing Algorithms. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Wen, Y.; Dai, W.; Yu, W.; Chen, B.; Pan, L. An enhanced RANSAC-RTK algorithm in GNSS-challenged environments. J. Spat. Sci. 2025, 70, 65–84. [Google Scholar] [CrossRef]
- Peng, M.; Li, X.; Li, D.; Jiang, S.; Zhang, L. Slope safety evaluation by integrating multi-source monitoring information. Struct. Saf. 2014, 49, 65–74. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, Q.; Yin, T.; Zhou, C. A back-analysis method using an intelligent multi-objective optimization for predicting slope deformation induced by excavation. Eng. Geol. 2018, 239, 214–228. [Google Scholar] [CrossRef]
- Li, Z.B.; Gong, W.P.; Zhang, L.; Wang, L. Multi-objective probabilistic back analysis for selecting the optimal updating strategy based on multi-source observations. Comput. Geotech. 2022, 151, 104959. [Google Scholar] [CrossRef]
- Huang, S.; Huang, J.S.; Kelly, R.; Jones, M.; Kamruzzaman, A.H.M. Predicting settlement of embankments built on PVD-improved soil using Bayesian back analysis and elasto-viscoplastic modelling. Comput. Geotech. 2023, 157, 105323. [Google Scholar] [CrossRef]
- Guo, J.; Ou, J.; Wang, H. Robust estimation for correlated observations: Two local sensitivity-based downweighting strategies. J. Geod. 2010, 84, 243–250. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Qu, X.; Zhang, S.; Shu, B.; Xu, H. A GPS multipath mitigation method in coordinate-domain considering the effects of gross errors and missing data. Measurement 2024, 225, 114035. [Google Scholar] [CrossRef]
- Zheng, H.; Mooney, M.; Gutierrez, M. Surrogate model for 3D ground and structural deformations in tunneling by the sequential excavation method. Comput. Geotech. 2023, 154, 105142. [Google Scholar] [CrossRef]
- Liu, X.; Kang, F.; Limongelli, M.P. Multi-zone parametric inverse analysis of super high arch dams using deep learning networks based on measured displacements. Adv. Eng. Inform. 2023, 56, 102002. [Google Scholar] [CrossRef]
- Ding, Q.; Guo, C.; Fan, X.; Liu, X.; Gong, X.; Zhou, W.; Ma, G. Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass. Eng. Geol. 2023, 325, 107281. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.D.; Yang, Z.Y.; Li, X.Y. A novel dimension reduction-based metamodel approach for efficient slope reliability analysis considering soil spatial variability. Comput. Geotech. 2024, 172, 106423. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Li, D. Bayesian perspective on geotechnical variability and site characterization. Eng. Geol. 2016, 203, 117–125. [Google Scholar] [CrossRef]
- Jiang, S.H.; Wang, L.; Ouyang, S.; Huang, J.S.; Liu, Y. A comparative study of Bayesian inverse analyses of spatially varying soil parameters for slope reliability updating. Georisk 2022, 16, 746–765. [Google Scholar] [CrossRef]
- Dai, Y.; Dai, W.; Xie, J. Slope multi-step excavation displacement prediction surrogate model based on a long short-term memory neural network: For small sample data and multi-feature multi-task learning. Georisk 2025, 19, 158–177. [Google Scholar] [CrossRef]
- Gordan, B.; Armaghani, D.J.; Hajihassani, M.; Monjezi, M. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Eng. Comput. 2016, 32, 85–97. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, H.-N.; Chen, R.-P.; Chan, T.H.T. Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: A comparative study. Tunn. Undergr. Space Technol. 2020, 99, 103383. [Google Scholar] [CrossRef]
- Chum, O.; Matas, J. Optimal Randomized RANSAC. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 1472–1482. [Google Scholar] [CrossRef]
- Xu, Y.; Boerner, R.; Yao, W.; Hoegner, L.; Stilla, U. Pairwise coarse registration of point clouds in urban scenes using voxel-based 4-planes congruent sets. ISPRS-J. Photogramm. Remote Sens. 2019, 151, 106–123. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Y.; Ding, X.; Fu, B.; Huang, S.; Xiong, R. 2-Entity Random Sample Consensus for Robust Visual Localization: Framework, Methods, and Verifications. IEEE Trans. Ind. Electron. 2021, 68, 4519–4528. [Google Scholar] [CrossRef]
- Xing, H.; Zhang, H.; Liu, L.; Yao, D. Comprehensive monitoring of talus slope deformation and displacement back analysis of mechanical parameters based on back-propagation neural network. Landslides 2021, 18, 1889–1907. [Google Scholar] [CrossRef]
- Heidemann, M.; Bressani, L.A.; Flores, J.A. Hydrothermal clays and their influence on slope stability in residual soils of Southern Brazil. Bull. Eng. Geol. Environ. 2021, 80, 795–811. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes; Special Report; Transportation Research Board, U.S. National Academy of Sciences: Washington, DC, USA, 1996; Volume 247, pp. 36–75. [Google Scholar]
Model Parameter | Value |
---|---|
Constitutive model | Mohr–Coulomb |
Mesh size (m) | 30/50 |
Element type | Triangle |
Number of elements | 460,937 |
Number of nodes | 83,943 |
Boundary conditions | East, West, South, North, Bottom fixed |
Mechanical convergence ratio | 1 × 10−4 |
Fluid time (s) | t × 24 × 60 × 60 |
Water density (kg/m3) | 1000 |
Porosity | 0.3 |
Biot modulus (Pa) | 4.0 × 109 |
Group | E (MPa) | v | c (kPa) | f (°) | r (kN/m3) | Ks (m/s) | |||
---|---|---|---|---|---|---|---|---|---|
Natural | Saturated | Natural | Saturated | Natural | Saturated | ||||
LM | 500 | 0.30 | 240 | 220 | 24 | 22 | 23.0 | 24.0 | 4 × 10−6 |
SZ | 500 | 0.30 | 270 | 250 | 26 | 24 | 21.7 | 22.5 | 4 × 10−6 |
Bedrock | 25,000 | 0.24 | 1400 | 1200 | 47 | 42 | 26.0 | 26.8 | 1 × 10−10 |
GNSS Station | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Training sets | Horizontal | 0.85 | 1.44 | 0.78 | 0.75 | 0.79 | 0.93 | 0.79 | 0.96 | 0.79 |
Vertical | 1.08 | 1.17 | 0.64 | 0.65 | 0.82 | 0.75 | 0.74 | 0.73 | 0.60 | |
Testing sets | Horizontal | 0.82 | 1.43 | 0.78 | 0.75 | 0.78 | 0.93 | 0.80 | 0.97 | 0.79 |
Vertical | 1.04 | 1.10 | 0.68 | 0.71 | 0.92 | 0.83 | 0.79 | 0.81 | 0.71 |
Uncertain Parameter | Mean | Standard Deviation | CV | Distribution |
---|---|---|---|---|
c | 250 | 6.73 | 0.027 | Lognormal |
f | 24 | 0.66 | 0.027 | Lognormal |
GNSS Station | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Prior simulated | Horizontal | 44.91 | 83.23 | 23.08 | 23.65 | 28.25 | 23.62 | 18.73 | 26.45 | 26.82 |
Vertical | 52.35 | 75.28 | 28.29 | 26.13 | 26.92 | 24.06 | 29.37 | 20.78 | 17.50 | |
Updated simulated | Horizontal | 5.79 | 9.87 | 4.87 | 4.52 | 4.47 | 5.14 | 4.96 | 5.03 | 4.62 |
Vertical | 7.81 | 10.55 | 7.40 | 7.86 | 9.21 | 8.30 | 8.12 | 9.39 | 9.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Dai, W.; Chen, C.; Ao, M.; Li, J.; Huang, Q. Landslide Displacement Intelligent Dynamic Inversion: Technical Framework and Engineering Application. Remote Sens. 2025, 17, 2820. https://doi.org/10.3390/rs17162820
Dai Y, Dai W, Chen C, Ao M, Li J, Huang Q. Landslide Displacement Intelligent Dynamic Inversion: Technical Framework and Engineering Application. Remote Sensing. 2025; 17(16):2820. https://doi.org/10.3390/rs17162820
Chicago/Turabian StyleDai, Yue, Wujiao Dai, Chunhua Chen, Minsi Ao, Jiaxun Li, and Qian Huang. 2025. "Landslide Displacement Intelligent Dynamic Inversion: Technical Framework and Engineering Application" Remote Sensing 17, no. 16: 2820. https://doi.org/10.3390/rs17162820
APA StyleDai, Y., Dai, W., Chen, C., Ao, M., Li, J., & Huang, Q. (2025). Landslide Displacement Intelligent Dynamic Inversion: Technical Framework and Engineering Application. Remote Sensing, 17(16), 2820. https://doi.org/10.3390/rs17162820