Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards
Abstract
1. Introduction
2. Methods
2.1. Principle
- (i)
- TITLE-ABS-KEY (“Aral”)
- (ii)
- TITLE-ABS-KEY (“Aral”) AND TITLE-ABS-KEY (“remote sensing”)
- (iii)
- TITLE-ABS-KEY (“Aral”) AND TITLE-ABS-KEY (“remote sensing”) AND (LIMIT-TO (DOCTYPE, “ar”))
2.2. Main Statistical Trends
3. Study Area
3.1. Geography
3.2. Geology
4. Remote Sensing-Based Results
4.1. Satellites and Sensors
4.2. Precipitation and Temperature
4.3. Water Surface
4.4. Water Surface Altimetry
4.5. Water Volume of the Water Bodies and Irrigation Systems
4.6. Snow and Ice
4.7. Geology and Seismicity
4.8. Salinisation (Minerals and Soils)
4.9. Dust
4.10. Landslides
4.11. Flooding
4.12. Glacial Lake Outburst Floods (GLOFs)
5. Discussion
5.1. Numerical Overview
5.2. Some Remote-Sensing Data Limitations
5.3. Remote Sensing Data Used
5.4. The Question of the Origin of the Aral Sea Disaster
5.5. Comparison with Similar Case Studies Worldwide
5.6. Paths of Research
5.7. An Example of Future Challenge: The Qosh Tepa Canal
6. Conclusions
- -
- The survey of the Aral Sea’s drying, particularly from the 1980s onwards, utilised a range of high- to mid-resolution satellites (Landsat TM, MODIS, NOAA-AVHRR, altimetric data, etc.) for estimating the surface and volume of water bodies.
- -
- The analysis of the temperature evolution of the Aral Sea, and more generally all the ASB, is conducted using MODIS data.
- -
- The estimation of the water stored in the glaciers of the Pamir and Tien Shan mountains, which are the primary sources for the ASB, is to be conducted using multisource data, and includes lake inventories.
- -
- The analyses of landslides and GLOFs—two geological risks that are becoming more common as the climate changes—in the upstream area of the ASB by employing very high-resolution satellite data and digital elevation models (DEMs).
- -
- The investigation of the impact of dust and aerosols, generated by the new mineral surface that has formed in the area that was previously occupied by the Aral Sea. This investigation will be primarily conducted using specialised sensors at a large scale, such as the NOAA AVHRR.
Funding
Acknowledgments
Conflicts of Interest
References
- Micklin, P.P. Desiccation of the Aral Sea: A Water Management Disaster in the Soviet Union (FTA). Science 1988, 241, 1170–1176. [Google Scholar] [CrossRef] [PubMed]
- Létolle, R.; Mainguet, M. Aral; Springer: Paris, France, 1993; pp. 1–357. [Google Scholar]
- Létolle, R. La Mer d’Aral; L’Harmattan: Paris, France, 2008; pp. 1–313. [Google Scholar]
- Micklin, P.; Aladin, N.V.; Plotnikov, I.S. The Aral Sea: The Devastation and Partial Rehabilitation of a Great Lake; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–445. [Google Scholar]
- Crétaux, J.F.; Kostianoy, A.; Bergé-Nguyen, M.; Kouraev, A. Present-day water balance of the Aral Sea seen from satellite. In Remote Sensing of the Asian Seas; Barale, V., Gade, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 523–539. [Google Scholar]
- Xenarios, S.; Schmidt-Vogt, D.; Qadir, M.; Janusz-Pawletta, B.; Abdullaev, I. The Aral Sea Basin: Water for Sustainable Development in Central Asia; Routledge Taylor and Francis Group: London, UK, 2020; pp. 1–222. [Google Scholar]
- Narbayep, M.; Pavlova, V. The Aral Sea, Central Asian Countries and Climate Change in the 21st Century; IDD, Working Paper Series, Part 1: Aral Sea; United Nations ESCAP: Bangkok, Thailand, 2022; pp. 1–58. [Google Scholar]
- Nagabhatla, N.; Brahmbhatt, R. Geospatial assessment of water-migration scenarios in the context of sustainable development goals (SDGs) 6, 11, and 16. Remote Sens. 2020, 12, 1376. [Google Scholar] [CrossRef]
- Wang, X.; Cui, B.; Chen, Y.; Feng, T.; Li, Z.; Fang, G. Dynamic changes in water resources and comprehensive assessment of water resource utilization efficiency in the Aral Sea basin, Central Asia. J. Environ. Manag. 2024, 353, 120198. [Google Scholar] [CrossRef]
- Reclus, E. L’Asie russe. Versant de l’Aral et de la Caspienne. In Nouvelle Géographie Universelle; Hachette: Paris, France, 1881; Volume 6, pp. 374–429. [Google Scholar]
- Nouveau Larousse Illustré, Dictionnaire Universel Encyclopédique; Librairie Larousse: Paris, France, 1895; p. 401.
- Crétaux, J.F.; Létolle, R.; Bergé-Nguyen, M. History of Aral sea level variability and current scientific debates. Glob. Planet. Change 2013, 110, 99–113. [Google Scholar] [CrossRef]
- Gaybullaev, B.; Chen, S.C.; Gaybullaev, D. Changes in water volume of the Aral Sea after 1960. Appl. Water Sci. 2012, 2, 285–291. [Google Scholar] [CrossRef]
- O’Hara, S.L. Irrigation and land degradation: Implications for agriculture in Turkmenistan, central Asia. J. Arid Environ. 1997, 37, 165–179. [Google Scholar] [CrossRef]
- Saiko, T.A.; Zonn, I.S. Irrigation expansion and dynamics of desertification in the Circum-Aral region of Central Asia. Appl. Geogr. 2000, 20, 349–367. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.P.A.; Tischbein, B. Remote sensing and hydrological measurement based irrigation performance assessments in the upper Amu Darya Delta, Central Asia. Phys. Chem. Earth 2013, 61–62, 52–62. [Google Scholar] [CrossRef]
- Tischbein, B.; Manschadi, A.M.; Conrad, C.; Hornidge, A.; Bhaduri, A.; Hassan, M.U.; Lamers, J.P.A.; Awan, U.K.; Vlek, P.L.G. Adapting to water scarcity: Constraints and opportunities for improving irrigation management in Khorezm, Uzbekistan. Water Sci. Technol. Water Supply 2013, 13, 337–348. [Google Scholar] [CrossRef]
- Bekchanov, M.; Lamers, J.P.A. Economic costs of reduced irrigation water availability in Uzbekistan (Central Asia). Reg. Environ. Change 2016, 16, 2369–2387. [Google Scholar] [CrossRef]
- Bekchanov, M.; Ringler, C.; Bhaduri, A.; Jeuland, M. Optimizing irrigation efficiency improvements in the Aral Sea Basin. Water Resour. Econ. 2016, 13, 30–45. [Google Scholar] [CrossRef]
- Jin, Q.; Wei, J.; Yang, Z.L.; Lin, P. Irrigation-induced environmental changes around the Aral Sea: An integrated view from multiple satellite observations. Remote Sens. 2017, 9, 900. [Google Scholar] [CrossRef]
- Conrad, C.; Usman, M.; Morper-Busch, L.; Schönbrodt-Stitt, S. Remote sensing-based assessments of land use, soil and vegetation status, crop production and water use in irrigation systems of the Aral Sea Basin. A review. Water Secur. 2020, 11, 100078. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Ran, Y.; Feng, M.; Nian, Y.; Tan, M.; Chen, X. Investigate the relationships between the Aral Sea shrinkage and the expansion of cropland and reservoir in its drainage basins between 2000 and 2020. Int. J. Digit. Earth 2021, 14, 661–677. [Google Scholar] [CrossRef]
- Propastin, P.; Kappas, M.; Muratova, N.R. A remote sensing based monitoring system for discrimination between climate and human-induced vegetation change in Central Asia. Manag. Environ. Qual. Int. J. 2008, 19, 579–596. [Google Scholar] [CrossRef]
- Bernauer, T.; Siegfried, T. Climate change and international water conflict in Central Asia. J. Peace Res. 2012, 49, 227–239. [Google Scholar] [CrossRef]
- Siegfried, T.; Bernauer, T.; Guiennet, R.; Sellars, S.; Robertson, A.W.; Mankin, J.; Bauer-Gottwein, P.; Yakovlev, A. Will climate change exacerbate water stress in Central Asia? Clim. Change 2012, 112, 881–899. [Google Scholar] [CrossRef]
- Sommer, R.; Glazirina, M.; Yuldashev, T.; Otarov, A.; Ibraeva, M.; Martynova, L.; Bekenov, M.; Kholov, B.; Ibragimov, N.; Kobilov, R.; et al. Impact of climate change on wheat productivity in Central Asia. Agric. Ecosyst. Environ. 2013, 178, 78–99. [Google Scholar] [CrossRef]
- Fallah, B.; Didovets, I.; Rostami, M.; Hamidi, M. Climate change impacts on Central Asia: Trends, extremes and future projections. Int. J. Climatol. 2024, 4, 3191–3213. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Pan, M.; Beck, H.; Coccia, G.; Serrat-Capdevila, A.; Verbist, K. Satellite remote sensing for water resources management: Potential for supporting sustainable development in data-poor regions. Water Resour. Res. 2018, 54, 9724–9758. [Google Scholar] [CrossRef]
- Micklin, P. Using satellite remote sensing to study and monitor the Aral Sea and adjacent zone. In Environmental Problems of Central Asia and their Economic, Social and Security Impacts; NATO Security Through Science Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Dukhovny, V.A. Comprehensive Remote Sensing and Ground-Based Studies of the Dried Aral Sea Bed; Scientific-Information Center of the Interstate Commission for Water Coordination of Central Asia (SIC ICWC): Tashkent, Uzbekistan, 2008; pp. 1–172. [Google Scholar]
- Ginzburg, A.I.; Kostianoy, A.G.; Sheremet, N.A.; Kravtsova, V.I. Satellite monitoring of the Aral Sea Region. In The Aral Sea Environment; Kostianoy, A.G., Kosarev, A.N., Eds.; The Handbook of Environmental Chemistry, 7; Springer: Berlin/Heidelberg, Germany, 2010; pp. 147–179. [Google Scholar]
- Khasanov, S.; Juliev, M.; Uzbekov, U.; Aslanov, I.; Agzamova, I.; Normatova, N.; Islamov, S.; Goziev, G.; Khodjaeva, S.; Holov, N. Landslides in Central Asia: A review of papers published in 2000–2020 with a particular focus on the importance of GIS and remote sensing techniques. GeoScape 2021, 15, 134–145. [Google Scholar] [CrossRef]
- Howard, K.W.F.; Howard, K.K. The new “Silk Road Economic Belt” as a threat to the sustainable management of Central Asia’s transboundary water resources. Environ. Earth Sci. 2016, 75, 976. [Google Scholar] [CrossRef]
- Dilinuer, T.; Yao, J.Q.; Chen, J.; Mao, W.Y.; Yang, L.M.; Yeernaer, H.; Chen, Y.H. Regional drying and wetting trends over Central Asia based on Köppen climate classification in 1961-2015. Adv. Clim. Change Res. 2021, 12, 363–372. [Google Scholar] [CrossRef]
- He, H.; Luo, G.; Cai, P.; Hamdi, R.; Termonia, P.; De Maeyer, P.; Kurban, A.; Li, J. Assessment of climate change in Central Asia from 1980 to 2100 using the Köppen-Geiger climate classification. Atmosphere 2021, 12, 123. [Google Scholar] [CrossRef]
- Berdimbetov, T. Spatio-temporal variations of climate variables and extreme indices over the Aral Sea Basin during 1960–2017. Trends Sci. 2023, 20, 5664. [Google Scholar]
- Berdimbetov, T.; Pushpawela, B.; Murzintcev, N.; Nietullaeva, S.; Gafforov, K.; Tureniyazova, A.; Madetov, D. Unraveling the intricate links between the dwindling Aral Sea and climate variability during 2002–2017. Climate 2024, 12, 105. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; King, O.; Menounos, B.; Kapitsa, V.; Neckel, N.; Yang, W.; Yao, T. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 2021, 12, 4133. [Google Scholar] [CrossRef] [PubMed]
- Leuchs, K. Der Block von Ust-Urt. Geol. Rundsch. 1935, 26, 248–258. [Google Scholar] [CrossRef]
- Rubanov, I.V.; Bogdanova, N.M. Quantitative assessment of salt deflation on drying bottom of the Aral Sea. Probl. Ovs. Pustyn 1987, 3, 9–16. [Google Scholar]
- Létolle, R.; Mainguet, M. History of the Aral Sea (central Asia) since the most recent maximum glaciation. Bull. Geol. Soc. France 1997, 168, 387–398. [Google Scholar]
- Tingdong, L.I.; Daukeev, S.Z.; Kim, B.C.; Tomurtogoo, O.; Petrov, O.V. (Eds.) Atlas of Geological Maps of Central Asia and Adjacent Areas; Geological Publishing House: Beijing, China, 2008. [Google Scholar]
- Burr, G.S.; Kuzmin, Y.V.; Krivonogov, S.K.; Gusskov, S.A.; Cruz, R.J. A history of the modern Aral Sea (Central Asia) since the Late Pleistocene. Quat. Sci. Rev. 2019, 206, 141–149. [Google Scholar] [CrossRef]
- Brunet, M.F.; McCann, T.; Sobel, E.R. Geological evolution of Central Asian Basins and the Western Tien Shan Range. Geol. Soc. Sp. 2017, 427, 1–17. [Google Scholar] [CrossRef]
- Robert, A.M.M.; Letouzey, J.; Kavoosi, M.A.; Sherkati, S.; Müller, C.; Vergés, J.; Aghababaei, A. Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Mar. Petrol. Geol. 2014, 57, 68–87. [Google Scholar] [CrossRef]
- Hosseinyar, G.; Moussavi-Harami, R.; Fard, I.A.; Mahboubi, A.; Rad, R.N. Seismic geomorphology and stratigraphic trap analyses of the Lower Cretaceous siliciclastic reservoir in the Kopeh Dagh-Amu Darya Basin. Pet. Sci. 2019, 16, 776–793. [Google Scholar] [CrossRef]
- Boomer, I.; Wünnemann, B.; Mackay, A.W.; Austin, P.; Sorrel, P.; Reinhardt, C.; Keyser, D.; Guichard, F.; Fontugne, M. Advances in understanding the late Holocene history of the Aral Sea region. Quat. Int. 2009, 194, 79–90. [Google Scholar] [CrossRef]
- Sala, R. Quantitative evaluation of the impact on Aral Sea levels by anthropogenic water withdrawal and Syr Darya course diversion during the Medieval period (1.0–0.8 ka BP). In Socio-Environmental Dynamics Along the Historical Silk Road; Yang, L.E., Bork, H.-R., Fang, X., Mischke, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 95–121. [Google Scholar]
- Boroffka, N.; Oberhänsli, H.; Sorrel, P.; Demory, F.; Reinhardt, C.; Wünnemann, B.; Alimov, K.; Baratov, S.; Rakhimov, K.; Saparov, N.; et al. Archaeology and climate: Settlement and lake-level changes at the Aral Sea. Geoarchaeology 2006, 21, 721–734. [Google Scholar] [CrossRef]
- Mainguet, M.; Létolle, R.; Dumay, F. The regional Aeolian action system of the Aral Basin. Comptes Rendus Geosci. 2002, 334, 475–480. [Google Scholar] [CrossRef]
- Pohl, E.; Knoche, M.; Gloaguen, R.; Andermann, C.; Krause, P. Sensitivity analysis and implications for surface processes from a hydrological modelling approach in the Gunt catchment, high Pamir Mountains. Earth Surf. Dynam. 2015, 3, 333–362. [Google Scholar] [CrossRef]
- Ma, X.; Zhu, J.; Yan, W.; Zhao, C. Projections of desertification trends in Central Asia under global warming scenarios. Sci. Total Environ. 2021, 781, 146777. [Google Scholar] [CrossRef]
- Nezlin, N.P.; Kostianoy, A.G.; Li, B.L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. J. Arid. Environ. 2005, 62, 677–700. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001-2013. Remote Sens. Environ. 2015, 170, 48–60. [Google Scholar] [CrossRef]
- Shen, H.; Abuduwaili, J.; Ma, L.; Samat, A. Remote sensing-based land surface change identification and prediction in the Aral Sea bed, Central Asia. Int. J. Environ. Sci. Technol. 2018, 16, 2031–2046. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, Z.Y.; Do, N.T.; Avdan, U. Assessment of human-induced environmental disaster in the Aral Sea using Landsat satellite images. Environ. Earth Sci. 2020, 79, 471. [Google Scholar] [CrossRef]
- Tao, D.; Shi, H.; Gao, C.; Zhan, J.; Ke, X. Water storage monitoring in the Aral Sea and its endorheic basin from multisatellite data and a hydrological model. Remote Sens. 2020, 12, 2408. [Google Scholar] [CrossRef]
- Liu, Q.; Lee, Y.K.; Grassotti, C.; Liang, X.M.; Kidder, S.Q.; Kusselson, S. The challenge of surface type changes over the Aral Sea for satellite remote sensing of precipitation. IEEE J. Sel. Top. Appl. 2022, 15, 8650–8655. [Google Scholar] [CrossRef]
- Kravtsova, V.I. Analysis of changes in the Aral Sea coastal zone in 1975–1999. Water Resour. 2001, 28, 596–603. [Google Scholar] [CrossRef]
- Zhou, J.; Ke, L.; Ding, X.; Wang, R.; Zeng, F. Monitoring spatial–temporal variations in river width in the Aral Sea Basin with Sentinel-2 imagery. Remote Sens. 2024, 16, 822. [Google Scholar] [CrossRef]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. App. Earth Obs. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M.; Guo, W. Long-term hydrological changes of the Aral Sea observed by satellite. J. Geophys. Res. Oceans 2014, 119, 3313–3326. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Birkett, C. Lake studies from satellite radar altimetry. Comptes Rendus Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Kostianoy, A.G.; Lebedev, S.A. Ice cover and sea level of the Aral Sea from satellite altimetry and radiometry (1992–2006). J. Mar. Syst. 2009, 76, 272–286. [Google Scholar] [CrossRef]
- Zmijewski, K.; Becker, R. Estimating the effects of anthropogenic modification on water balance in the Aral Sea watershed using GRACE: 2003–12. Earth Interact. 2013, 18, 1–16. [Google Scholar] [CrossRef]
- Singh, A.; Seitz, F.; Schwatke, C. Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE. Remote Sens. Environ. 2012, 123, 187–195. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Létolle, R.; Calmant, S. Investigations on Aral Sea regressions from mirabilite deposits and remote sensing. Aquat. Geochem. 2009, 15, 277–291. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, N.; Yang, X.; Mao, Z. The dynamic changes of Lake Issyk-Kul from 1958 to 2020 based on multi-source satellite data. Remote Sens. 2022, 14, 1575. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Bergé-Nguyen, M.; Calmant, S.; Jamangulova, N.; Satylkanov, R.; Lyard, F.; Perosanz, F.; Verron, J.; Samine Montazem, A.; Le Guilcher, G.; et al. Absolute calibration or validation of the altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan). Remote Sens. 2018, 10, 1679. [Google Scholar] [CrossRef]
- Yang, X.; Wang, N.; Chen, A.; He, J.; Hua, T.; Qie, Y. Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960–2018 and their causes. Catena 2020, 191, 104566. [Google Scholar] [CrossRef]
- Singh, A.; Behrangi, A.; Fisher, J.B.; Reager, J.T. On the desiccation of the South Aral Sea observed from spaceborne missions. Remote Sens. 2018, 10, 793. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, Y.; Liu, T.; Li, J.; Xing, W.; Akmalov, S.; Peng, J.; Pan, X.; Guo, C.; Duan, Y. Water balance analysis based on a quantitative evapotranspiration inversion in the Nukus irrigation area, Lower Amu River Basin. Remote Sens. 2020, 12, 2317. [Google Scholar] [CrossRef]
- Oberhänsli, H.; Weise, S.M.; Stanichny, S. Oxygen and hydrogen isotopic water characteristics of the Aral Sea, Central Asia. J. Marine Syst. 2009, 76, 310–321. [Google Scholar] [CrossRef]
- Thevs, N.; Ovezmuradov, K.; Zanjani, L.V.; Zerbe, S. Water consumption of agriculture and natural ecosystems at the Amu Darya in Lebap Province, Turkmenistan. Environ. Earth Sci. 2015, 73, 731–741. [Google Scholar] [CrossRef]
- Shi, J.; Guo, Q.; Zhao, S.; Su, Y.; Shi, Y. The effect of farmland on the surface water of the Aral Sea region using multi-source satellite data. PeerJ 2022, 10, e12920. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Rittger, K.; Bormann, K.J.; Bair, E.H.; Dozier, J.; Painter, T.H. Evaluation of VIIRS and MODIS Snow Cover Fraction in High-Mountain Asia Using Landsat 8 OLI. Front. Remote Sens. 2021, 2, 647154. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Papa, F.; Mognard, N.M.; Buharizin, P.I.; Cazenave, A.; Crétaux, J.-F.; Dozortseva, J.; Remy, F. Synergy of active and passive satellite microwave data for the study of first-year sea ice in the Caspian and Aral Seas. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2170–2176. [Google Scholar] [CrossRef]
- Vydra, C.; Dietz, A.J.; Roessler, S.; Conrad, C. The influence of snow cover variability on the runoff in Syr Darya headwater catchments between 2000 and 2022 based on the analysis of remote sensing time series. Water 2024, 16, 1902. [Google Scholar] [CrossRef]
- Mergili, M.; Müller, J.P.; Schneider, J.F. Spatio-temporal development of high-mountain lakes in the headwaters of the Amu Darya River (Central Asia). Glob. Planet. Change 2013, 107, 13–24. [Google Scholar] [CrossRef]
- Sadov, A.V.; Krapilskaya, N.M.; Revzon, A.L. Aerospace methods of examining aeration zone in sandy deserts. Int. Geol. Rev. 1980, 23, 297–301. [Google Scholar] [CrossRef]
- Revzon, A.L.; Burleshin, M.I.; Krapilskaya, N.M.; Sadov, A.V.; Svitneva, T.V.; Semina, N.S. Desert geology studied through air and space methods. Probl. Ovs. Pustyn 1982, 1, 20–28. [Google Scholar]
- Vitkovskaya, T.P.; Mansimov, M.; Shekhter, L.G. Dynamics of the Sarykamysh Lake development based on space photography. Probl. Ovs. Pustyn 1985, 6, 38–43. [Google Scholar]
- Borodin, L.F.; Bortnik, V.N.; Krapivin, V.F.; Kuznetsov, N.T.; Kulikov, Y.N.; Minaeva, E.N. Some general questions of changes, appraisal elaboration of functioning and the remote sensing monitoring models for aqua- and geosystems of the Aral Sea Basin. Probl. Osv. Pustyn 1987, 1, 71–80. [Google Scholar]
- Kes, A.S. History of the Sarykamysh Lake in the light of the new data obtained by the distant technique. Probl. Ovs. Pustyn 1987, 1, 36–41. [Google Scholar]
- Sadov, A.V.; Krasnikov, V.V. Remote sensing in detection of local subaqueous discharge of ground water into the Aral Sea. Probl. Ovs. Pustyn 1987, 1, 28–36. [Google Scholar]
- Mackenzie, D.; Walker, R.; Abdrakhmatov, K.; Campbell, G.; Carr, A.; Gruetzner, C.; Mukambayev, A.; Rizza, M. A creeping intracontinental thrust fault: Past and present slip-rates on the Northern edge of the Tien Shan, Kazakhstan. Geophys. J. Int. 2018, 215, 1148–1170. [Google Scholar] [CrossRef]
- Grützner, C.; Walker, R.T.; Abdrakhmatov, K.E.; Mukambaev, A.; Elliott, A.J.; Elliott, J.R. Active tectonics around Almaty and along the Zailisky Alatau rangefront. Tectonics 2017, 36, 2192–2226. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Zhou, J.; Han, L.; Xu, X. Gold-copper deposits in Wushitala, Southern Tianshan, Northwest China: Application of ASTER data for mineral Exploration. Geol. J. 2018, 53, 362–371. [Google Scholar] [CrossRef]
- Zheentaev, E. Application of remote sensing technologies for the environmental impact analysis in Kumtor gold mining company. Int. J. Geoinf. 2015, 12, 31–39. [Google Scholar]
- Jiang, Y.; Lin, W.; Wu, M.; Liu, K.; Yu, X.; Gao, J. Remote sensing monitoring of ecological-economic impacts in the Belt and Road Initiatives mining project: A case study in Sino Iron and Taldybulak Levoberezhny. Remote Sens. 2022, 14, 3308. [Google Scholar] [CrossRef]
- He, B.; Xue, Y.; Lu, X.; Zhao, L.; Jin, C.; Wang, P.; Li, P.; Liu, W.; Yin, W.; Yuan, T. Monitoring oil and gas field CH4 leaks by Sentinel-5P and Sentinel-2. Fuel 2025, 383, 133889. [Google Scholar] [CrossRef]
- Sánchez-García, E.; Gorroño, J.; Irakulis-Loitxate, I.; Varon, D.J.; Guanter, L. Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite. Atmos. Meas. Tech. 2022, 15, 1657–1674. [Google Scholar] [CrossRef]
- Sichugova, L.; Fazilova, D. The lineaments as one of the precursors of earthquakes: A case study of Tashkent geodynamical polygon in Uzbekistan. Geod. Geodyn. 2021, 12, 399–404. [Google Scholar] [CrossRef]
- Jing, F.; Jiang, M.; Singh, R.P. Detection of seismic microwave radiation anomalies in snow-covered mountainous terrain: Insights from two recent earthquakes in the Pamir–Tien Shan Region. IEEE J. Sel. Top. Appl. 2024, 17, 18156–18166. [Google Scholar] [CrossRef]
- Gorny, V.I.; Salman, A.G.; Tronin, A.A.; Shilin, B.V. Terrestrial outgoing infrared radiation as an indicator of seismic activity. Proc. Acad. Sci. USSR 1988, 301, 67–69. [Google Scholar]
- Oberhänsli, H.; Novotná, K.; Píšková, A.; Chabrillat, S.; Nourgaliev, D.K.; Kurbaniyazov, A.K.; Grygar, T.M. Variability in precipitation, temperature and river runoff inW Central Asia during the past ~2000 yrs. Glob. Planet. Change 2011, 76, 95–104. [Google Scholar] [CrossRef]
- Schettler, G.; Oberhänsli, H.; Stulina, G.; Mavlonov, A.A.; Naumann, R. Hydrochemical water evolution in the Aral Sea Basin. Part I: Unconfined groundwater of the Amu Darya Delta—Interactions with surface waters. J. Hydrol. 2013, 495, 267–284. [Google Scholar] [CrossRef]
- Schettler, G.; Oberhänsli, H.; Stulina, G.; Djumanov, J.H. Hydrochemical water evolution in the Aral Sea Basin. Part II: Confined groundwater of the Amu Darya Delta—Evolution from the headwaters to the delta and SiO2 geothermometry. J. Hydrol. 2013, 495, 285–303. [Google Scholar] [CrossRef]
- Bishimbayev, V.K.; Issayeva, A.U.; Nowak, I.; Serzhanov, G.; Tleukeyeva, A.Y. Prospects for rational use of mineral resources of the Dzhaksy-Klych deposit, the Aral region. News Nat. Acad. Sci. Rep. Kazakhstan Ser. Geol. Techn. Sci. 2020, 443, 196–203. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, H.; Chen, X.; Bao, A.; Lei, J.; Xu, W.; Luo, G.; Guan, Q. Desertification extraction based on a microwave backscattering contribution decomposition model at the dry bottom of the Aral Sea. Remote Sens. 2021, 13, 4850. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Martius, C.; Park, S.J.; Hendrickx, J.M.H. Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma 2011, 163, 55–62. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, X.; Sun, L. Monitoring and mapping of soil salinity on the exposed seabed of the Aral Sea, Central Asia. Water 2022, 14, 1438. [Google Scholar] [CrossRef]
- Grigoryev, A.A.; Lipatov, V.B. Distribution of dust pollution in the Circum-Aral region by space monitoring. Proc. Acad. Sci. USSR Geogr. Ser. 1983, 4, 73–77. [Google Scholar]
- Grigoryev, A.A.; Jogova, M.L. Strong dust blowouts in Aral region in 1985–1990. Proc. Russ. Acad. Sci. 1992, 324, 672–675. [Google Scholar]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002. [Google Scholar] [CrossRef]
- Löw, F.; Navratil, P.; Kotte, K.; Schöler, H.F.; Bubenzer, O. Remote-sensing-based analysis of landscape change in the desiccated seabed of the Aral Sea—A potential tool for assessing the hazard degree of dust and salt storms. Environ. Monit. Assess. 2013, 185, 8303–8319. [Google Scholar] [CrossRef]
- Hamidi, M.; Kavianpour, M.R.; Shao, Y. Numerical simulation of dust events in the Middle East. Aeolian Res. 2014, 13, 59–70. [Google Scholar] [CrossRef]
- Banks, J.R.; Heinold, B.; Schepanski, K. Impacts of the desiccation of the Aral Sea on the Central Asian dust life-cycle. J. Geoph. Res. Atm. 2022, 127, e2022JD036618. [Google Scholar] [CrossRef]
- Indoitu, R.; Kozhoridze, G.; Batyrbaeva, M.; Vitkovskaya, I.; Orlovsky, N.; Blumberg, D.; Orlovsky, L. Dust emission and environmental changes in the dried bottom of the Aral Sea. Aeolian Res. 2020, 17, 101–115. [Google Scholar] [CrossRef]
- Wang, W.; Samat, A.; Ge, Y.; Ma, L.; Tuheti, A.; Zou, S.; Abuduwaili, J. Quantitative soil wind erosion potential mapping for central Asia using the Google Earth engine platform. Remote Sens. 2020, 12, 3430. [Google Scholar] [CrossRef]
- Ubaidulloev, A.; Kaiheng, H.; Rustamov, M.; Kurbanova, M. Landslide inventory along a National Highway Corridor in the Hissar-Allay Mountains, Central Tajikistan. GeoHazards 2021, 2, 212–227. [Google Scholar] [CrossRef]
- Sidle, R.C.; Caiserman, A.; Jarihani, B.; Khojazoda, Z.; Kiesel, J.; Kulikov, M.; Qadamov, A. Sediment sources, erosion processes, and interactions with climate dynamics in the Vakhsh River Basin, Tajikistan. Water 2024, 16, 122. [Google Scholar] [CrossRef]
- Nardini, O.; Confuorto, P.; Intrieri, E.; Montalti, R.; Montanaro, T.; Garcia Robles, J.; Poggi, F.; Raspini, F. Integration of satellite SAR and optical acquisitions for the characterization of the Lake Sarez landslides in Tajikistan. Landslides 2024, 21, 1385–1401. [Google Scholar] [CrossRef]
- Behling, R.; Roessner, S.; Kaufmann, H.; Kleinschmit, B. Automated spatiotemporal landslide mapping over large areas using RapidEye time series data. Remote Sens. 2014, 6, 8026–8055. [Google Scholar] [CrossRef]
- Roessner, S.; Wetzel, H.U.; Kaufmann, H.; Sarnagoev, A. Potential of satellite remote sensing and GIS for landslide hazard assessment in Southern Kyrgyzstan (Central Asia). Nat. Hazards 2005, 35, 395–416. [Google Scholar] [CrossRef]
- Ozturk, U.; Pittore, M.; Behling, R.; Roessner, S.; Andreani, L.; Korup, O. How robust are landslide susceptibility estimates? Landslides 2021, 18, 681–695. [Google Scholar] [CrossRef]
- Teshebaeva, K.; Roessner, S.; Echtler, H.; Motagh, M.; Wetzel, H.U.; Molodbekov, B. ALOS/PALSAR InSAR time-series analysis for detecting very slow-moving landslides in Southern Kyrgyzstan. Remote Sens. 2015, 7, 8973–8994. [Google Scholar] [CrossRef]
- Piroton, V.; Schlögel, R.; Barbier, C.; Havenith, H.B. Monitoring the recent activity of landslides in the Mailuu-Suu Valley (Kyrgyzstan) using radar and optical remote sensing techniques. Geosciences 2020, 10, 164. [Google Scholar] [CrossRef]
- Wang, W.; Motagh, M.; Xia, Z.; Plank, S.; Li, Z.; Orynbaikyzy, A.; Zhou, C.; Roessner, S. A framework for automated landslide dating utilizing SAR-derived parameters time-series, an Enhanced Transformer Model, and Dynamic Thresholding. Int. J. Appl. Earth Obs. 2024, 129, 103795. [Google Scholar] [CrossRef]
- Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hübl, J. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci. Total Environ. 2019, 653, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Aslan, G.; de Michele, M.; Raucoules, D.; Renard, F.; Dehls, J.; Penna, I.; Hermann, R.; Cakir, Z. Dynamics of a giant slow landslide complex along the coast of the Aral Sea, Central Asia. Turk. J. Earth. Sci. 2023, 32, 819–832. [Google Scholar] [CrossRef]
- Tavus, B.; Kocaman, S.; Gokceoglu, C. Flood damage assessment with Sentinel-1 and Sentinel-2 data after Sardoba dam break with GLCM features and Random Forest method. Sci. Total Environ. 2022, 816, 151585. [Google Scholar] [CrossRef]
- Ouyang, Y.; Stanturf, J.A.; Williams, M.D.; Botmann, E.; Madsen, P. Quantification of Mountainous Hydrological Processes in the Aktash River Watershed of Uzbekistan, Central Asia, over the Past Two Decades. Hydrology 2023, 10, 161. [Google Scholar] [CrossRef]
- Kapitsa, V.; Shahgedanova, M.; Kasatkin, N.; Severskiy, I.; Kasenov, M.; Yegorov, A.; Tatkova, M. Bathymetries of proglacial lakes: A new data set from the northern Tien Shan, Kazakhstan. Front. Earth Sci. 2023, 11, 1192719. [Google Scholar] [CrossRef]
- Petrov, M.A.; Sabitov, T.Y.; Tomashevskaya, I.G.; Glazirin, G.E.; Chernomorets, S.S.; Savernyuk, E.A.; Tutubalina, O.V.; Petrakov, D.A.; Sokolov, L.S.; Dokukin, M.D.; et al. Glacial lake inventory and lake outburst potential in Uzbekistan. Sci. Total Environ. 2017, 592, 228–242. [Google Scholar] [CrossRef]
- Mergili, M.; Schneider, J.F. Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Nat. Hazards Earth Syst. Sci. 2011, 11, 1447–1462. [Google Scholar] [CrossRef]
- Petrakov, D.A.; Chernomorets, S.S.; Viskhadzhieva, K.S.; Dokukin, M.D.; Savernyuk, E.A.; Petrov, M.A.; Erokhin, S.A.; Tutubalina, O.V.; Glazyrin, G.E.; Shpuntova, A.M.; et al. Putting the poorly documented 1998 GLOF disaster in Shakhimardan River valley (Alay Range, Kyrgyzstan/Uzbekistan) into perspective. Sci. Total Environ. 2020, 724, 138287. [Google Scholar] [CrossRef]
- Erokhin, S.A.; Zaginaev, V.V.; MeleshkoI, A.A.; Ruiz-Villanueva, V.; Petrakov, D.A.; Chernomorets, S.S.; Viskhadzhieva, K.S.; Tutubalina, O.V.; Stoffel, M. Debris flows triggered from non-stationary glacier lake outbursts: The case of the Teztor Lake complex (Northern Tian Shan, Kyrgyzstan). Landslides 2018, 15, 83–98. [Google Scholar] [CrossRef]
- Shangguan, D.; Ding, Y.; Liu, S.; Xie, Z.; Pieczonka, T.; Xu, J.; Moldobekov, B. Quick release of internal water storage in a glacier leads to underestimation of the hazard potential of glacial lake outburst floods from Lake Merzbacher in central Tian Shan Mountains. Geophys. Res. Lett. 2017, 44, 9786–9795. [Google Scholar] [CrossRef]
- Bolch, T.; Peters, J.; Yegorov, A.; Pradhan, B.; Buchroithner, M.; Blagoveshchensky, V. Identification of potentially dangerous glacial lakes in the northern Tien Shan. Nat. Hazards 2011, 59, 1691–1714. [Google Scholar] [CrossRef]
- Daiyrov, M.; Narama, C.; Kääb, A.; Tadono, T. Formation and outburst of the Toguz-Bulak glacial lake in the Northern Teskey Range, Tien Shan, Kyrgyzstan. Geosciences 2020, 10, 468. [Google Scholar] [CrossRef]
- Daiyrov, M.; Kattel, D.B.; Narama, C.; Wang, W. Evaluating the variability of glacial lakes in the Kyrgyz and Teskey ranges, Tien Shan. Front. Earth Sci. 2022, 10, 850146. [Google Scholar] [CrossRef]
- Zaginaev, V.; Petrakov, D.; Erokhin, S.; Meleshko, A.; Stoffel, M.; Ballesteros-Cánovas, J.A. Geomorphic control on regional glacier lake outburst flood and debris flow activity over northern Tien Shan. Glob. Planet. Change 2019, 176, 50–59. [Google Scholar] [CrossRef]
- Meyrat, G.; Munch, J.; Cicoira, A.; McArdell, B.; Müller, C.R.; Frey, H.; Bartelt, P. Simulating glacier lake outburst floods (GLOFs) with a two-phase/layer debris flow model considering fluid-solid flow transitions. Landslides 2024, 21, 479–497. [Google Scholar] [CrossRef]
- Luo, S.; Song, C.; Liu, K.; Ke, L.; Ma, R. An effective low-cost remote sensing approach to reconstruct the long-term and dense time series of area and storage variations for large lakes. Sensors 2019, 19, 4247. [Google Scholar] [CrossRef]
- O’Grady, D.; Leblanc, M.; Bass, A. The use of radar satellite data from multiple incidence angles improves surface water mapping. Remote Sens. Environ. 2014, 140, 652–664. [Google Scholar] [CrossRef]
- Gladkova, I.; Grossberg, M.D.; Shahriar, F.; Bonev, G.; Romanov, P. Quantitative restoration for MODIS band 6 on Aqua. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2409–2416. [Google Scholar] [CrossRef]
- Habibi, S.; Tasouji Hassanpour, S. An explainable machine learning framework for forecasting lakewater equivalent using satellite data: A 20-year analysis of the Urmia Lake Basin. Water 2025, 17, 1431. [Google Scholar] [CrossRef]
- Oren, A.; Plotnikov, I.S.; Sokolov, S.; Aladin, N.V. The Aral Sea and the Dead Sea: Disparate lakes with similar histories. Lake Reserv. Manag. 2010, 15, 223–236. [Google Scholar] [CrossRef]
- Edwin, I.E.; Chukwuka, O.; Ochege, F.U.; Ling, Q.; Chen, B.; Nzabarinda, V.; Ajaero, C.; Hamdi, R.; Luo, G. Quantifying land change dynamics, resilience and feedback: A comparative analysis of the lake Chad basin in Africa and Aral Sea basin in Central Asia. J. Environ. Manag. 2024, 361, 121218. [Google Scholar] [CrossRef] [PubMed]
- Court, R.; Lattuada, M.; Shumeyko, N.; Baimukanov, M.; Eybatov, T.; Kaidarova, A.; Mamedov, E.V.; Rustamov, E.; Tasmagambetova, A.; Prange, M.; et al. Rapid decline of Caspian Sea level threatens ecosystem integrity, biodiversity protection, and human infrastructure. Commun. Earth Environ. 2025, 6, 261. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, G.; Hu, J.; Yu, T.; Chen, S.; Zhang, Y.; Wang, Y.; Liu, H.; Zhao, X.; Chen, H. Spatiotemporal dynamics of northern Caspian shorelines (1985–2023) and implications for coastal management: Lessons from the Aral Sea. PLoS ONE 2025, 6, e0325546. [Google Scholar] [CrossRef] [PubMed]
- Yegizbayeva, A.; Koshim, A.G.; Bekmuhamedov, N.; Aliaskarov, D.T.; Alimzhanova, N.; Aitekeyeva, N. Satellite-based drought assessment in the endorheic basin of Lake Balkhash. Front. Environ. Sci. 2024, 11, 1291993. [Google Scholar] [CrossRef]
- Bedford, D. The Great Salt Lake. America’s Aral Sea? Environment 2009, 51, 8–21. [Google Scholar] [CrossRef]
- Hoelzle, M.; Barandun, M.; Bolch, T.; Fiddes, J.; Gafurov, A.; Muccione, V.; Saks, T.; Shahgedanova, M. The status and role of the alpine cryosphere in Central Asia. In The Aral Sea Basin, Water for Sustainable Development in Central Asia; Xenarios, S., Schmidt-Vogt, D., Qadir, M., Janusz-Pawletta, B., Abdullaev, I., Eds.; Routledge Taylor and Francis Group: London, UK, 2020; pp. 100–121. [Google Scholar]
- Xu, N.; Zhang, J.; Daccache, A.; Liu, C.; Ahmadi, A.; Zhou, T.; Gou, P. Assessing size shifts amidst a warming climate in lakes recharged by the Asian Water Tower through satellite imagery. Sci. Total Environ. 2024, 912, 68770. [Google Scholar] [CrossRef]
- Liu, C.; Sun, W.K. GRACE time-variable gravity and its application to geoscience: Quantitative analysis of relevant literature. Earth Planet. Phys. 2023, 7, 295–309. [Google Scholar] [CrossRef]
- Gautam, P. An overview of the Web of Science record of scientific publications (2004–2013) from Nepal: Focus on disciplinary diversity and international collaboration. Scientometrics 2017, 113, 1245–1267. [Google Scholar] [CrossRef]
- Santana, L.S.; Ferraz, G.A.e.S.; Teodoro, A.J.d.S.; Santana, M.S.; Rossi, G.; Palchetti, E. Advances in precision coffee growing research: A bibliometric review. Agronomy 2021, 11, 1557. [Google Scholar] [CrossRef]
- Valjarević, A.; Morar, C.; Brasanac-Bosanac, L.; Cirkovic-Mitrovic, T.; Djekic, T.; Mihajlović, M.; Milevski, I.; Culafic, G.; Luković, M.; Niemets, L.; et al. Sustainable land use in Moldova: GIS & remote sensing of forests and crops. Land Use Policy 2025, 152, 107515. [Google Scholar] [CrossRef]
- Oyarzabal, R.S.; Santos, L.B.L.; Cunningham, C.; Broedel, E.; de Lima, G.R.T.; Cunha-Zeri, G.; Peixoto, J.S.; Anochi, J.A.; Garcia, K.; Costa, L.C.O.; et al. Forecasting drought using machine learning: A systematic literature review. Nat. Hazards 2025, 121, 9823–9851. [Google Scholar] [CrossRef]
- Orlov, V.I.; Sokolova, N.V. To problem of preservation of Aral Sea. Gidrotekhnicheskoe Stroit. 1991, 11, 34–37. [Google Scholar]
Satellites | Launch | End | Sensors | Type | Use (Aral) |
---|---|---|---|---|---|
Corona | 1959 | 1972 | KH | VHR | 2 |
Cryosat-2 | 2010 | in operation | altimeter | - | 1 |
DMSP | 1962 | 2014 | SSM/I | LR | 1 |
ENVISAT | 2002 | 2012 | altimeter | - | 5 |
ENVISAT | 2002 | 2012 | ASAR | HR | 1 |
EOS | 1999 | in operation | MODIS | MR | 51 |
EOS | 1999 | in operation | ASTER | HR | 2 |
ERS 1–2 | 1991 | 2011 | GOME | - | 1 |
GEOS 3 | 1975 | 1979 | altimeter | - | 2 |
Geosat | 1985 | 1986 | altimeter | - | 2 |
Google Earth | 2010 | in operation | various | VHR-HR | 18 |
GRACE 1–2 | 2002 | 2018 | altimeter | - | 19 |
ICEsat 1–2 | 2003 | in operation | altimeter | - | 1 |
IKONOS-2 | 1999 | 2015 | OSA | VHR | 0 |
Jason-1 | 2001 | 2013 | altimeter | - | 5 |
Jason-2 | 2008 | 2019 | altimeter | - | 2 |
Jason-3 | 2016 | in operation | altimeter | - | 2 |
LANDSAT 1–3 | 1972 | 1983 | MSS | HR | 3 |
LANDSAT 4–5 | 1982 | 2013 | TM | HR | 19 |
LANDSAT 7 | 1999 | 2024 | ETM+ | HR | 11 |
LANDSAT 8–9 | 2013 | in operation | OLI | HR | 20 |
NIMBUS 7 | 1978 | 1995 | SMMR | LR | 1 |
NOAA 1–21 | 1970 | in operation | AVHRR | LR | 16 |
OrbView-3 | 2003 | 2007 | OHRIS | VHR | 0 |
RapidEye | 2008 | 2020 | JSS 56 | HR | 3 |
RESURS-O1 | 1985 | 2000 | MSU | HR | 2 |
Seasat | 1978 | 1978 | SAR | HR | 2 |
Sentinel-1 | 2014 | in operation | SAR | HR | 2 |
Sentinel-2 | 2015 | in operation | MSI | HR | 8 |
Sentinel-3 | 2016 | in operation | OLCI | MR | 1 |
Sentinel-5 | 2017 | in operation | UVNS | - | 6 |
Sentinel-6 | 2020 | in operation | altimeter | - | 1 |
Spot 1–5 | 1986 | 2015 | HRV, HRG | HR | 0 |
Spot 6–7 | 2012 | in operation | NAOMI | VHR | 0 |
SUOMI | 2011 | in operation | VIIRS | MR | 0 |
Topex-Poseidon | 1992 | 2005 | altimeter | - | 10 |
TRMM | 1997 | 2015 | radar | - | 3 |
Month/Year | Cloud-Free and Snow-Free Surface | Cloud-Free and Snow-Covered Surface | Partly Cloudy | Cloudy |
---|---|---|---|---|
August 2024 | 15 | 0 | 16 | 0 |
September 2024 | 17 | 0 | 11 | 2 |
October 2024 | 2 | 0 | 16 | 13 |
November 2024 | 7 | 0 | 12 | 11 |
December 2024 | 2 | 5 | 6 | 18 |
January 2025 | 0 | 9 | 4 | 18 |
February 2025 | 0 | 5 | 7 | 16 |
March 2025 | 5 | 3 | 14 | 9 |
April 2025 | 9 | 0 | 15 | 6 |
May 2025 | 14 | 0 | 13 | 4 |
June 2025 | 10 | 0 | 17 | 3 |
July 2025 | 17 | 0 | 12 | 2 |
Total | 98 | 22 | 143 | 102 |
In percent | 26.9 | 6.0 | 39.2 | 27.9 |
Lake/Sea | Maximum Area | Year of the Maximum Area | Current Area | Trend | Countries |
---|---|---|---|---|---|
Aral Sea | 68,700 | 1960 | 5250 | −92% | KZ, UZ |
Caspian Sea | 420,000 | 1960 | 371,000 | −12% | AZ, IR, KZ, RU, TK |
Lake Balkash | 20,000 | 1970 | 16,600 | −17% | KZ |
Lake Chad | 21,000 | 1960 | 1350 | −94% | CM, NE, NG, TD |
Great Salt Lake | 8500 | 1985 | 2500 | −71% | US |
Lake Urmia | 5250 | 1990 | <500 | −90% | IR |
Dead Sea | 1050 | 1930 | 605 | −42% | IL, JO, PS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deroin, J.-P. Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards. Remote Sens. 2025, 17, 2814. https://doi.org/10.3390/rs17162814
Deroin J-P. Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards. Remote Sensing. 2025; 17(16):2814. https://doi.org/10.3390/rs17162814
Chicago/Turabian StyleDeroin, Jean-Paul. 2025. "Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards" Remote Sensing 17, no. 16: 2814. https://doi.org/10.3390/rs17162814
APA StyleDeroin, J.-P. (2025). Use of Remote Sensing Data to Study the Aral Sea Basin in Central Asia—Geoscience and Geological Hazards. Remote Sensing, 17(16), 2814. https://doi.org/10.3390/rs17162814