LiDAR and GPR Data Reveal the Holocene Evolution of a Strandplain in a Tectonically Active Coast
Abstract
1. Introduction
2. Study Area
3. Materials and Methods
3.1. LiDAR Data and Other Remote Sensing Data
3.2. GPR and Terrain Data Collection
4. Results
4.1. LCS Geomorphology Revealed by LiDAR Data
4.2. LCS Stratigraphy Revealed by Radargrams Obtained from GPR Survey Lines
5. Discussion
5.1. Holocene Sedimentation, Erosion and Evolution of the LCS
5.2. Climatic Signatures in Sedimentary Facies
5.3. Origin and Dynamics of Dune Field
5.4. Tectonic Influence on Coastal Accretion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Table of Climate Changes in South-Central Chile During the Middle and Late Holocene
Study Authors | Proxy | Location (Lat) | Type of Period (Drier or Wetter, Possibly than Present) | Ages |
---|---|---|---|---|
Maldonado and Villagrán [52] | Pollen dating in paleo swamps and forests | 32°S | Dry period | 8.7–5.7 ka BP |
Frugone-Álvarez et al. [51] | Multiple proxies dating in lake sediments (Vichuquén Lake) | 34°50′S | Dry period | 7–6.2 ka BP |
Jenny et al. [48]; Villa-Martínez et al. [49] | Multiple proxies dating in lagoon sediments (Aculeo Lake) | 33°50′S | Dry period | 5.7 ka BP |
Lamy [46] | Multiple proxies dating in continental slope sediments | 33°S | Dry period | 5.5 ka BP |
Sterken et al. [50] | Multiple proxies dating in lake sediments (Puyehue Lake) | 40°S | Dry period | 8.1–5 ka BP |
Francois et al. [55] | Pollen dating in lagoon sediments (Aculeo Lake) | 36°47′S | Wet period | 4 ka BP–close to the present |
Villa-Martínez and Villagrán [53] | Pollen dating in paleo swamps and forests | 32°S | Wet period | 2 ka BP–close to the present (ca. 1400–1600 a.c. wetter than present) |
Jenny et al. [48] | Pollen dating in lagoon sediments (Aculeo Lake) | 33°50′S | Wet period | 2.2 ka BP–close to the present |
Bertrand et al. [54] | Multiple proxies dating in lake sediments (Puyehue Lake) | 40°S | Wet period | ca. 1490 y 1700 d.c. (wetter than present) |
References
- Roy, P.S.; Cowell, P.J.; Ferland, M.A.; Thom, B.G. Wave-dominated coasts. In Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Cambridge University Press: Cambridge, UK, 1994; pp. 121–186. [Google Scholar]
- Otvos, E.G. Beach Ridges—Definitions and Significance. Geomorphology 2000, 32, 83–108. [Google Scholar] [CrossRef]
- Neal, A.; Richards, J.; Pye, K. Sedimentology of coarse-clastic beach-ridge deposits, Essex, southeast England. Sediment Geol. 2003, 162, 167–198. [Google Scholar] [CrossRef]
- Kinsela, M.A.; Daley, M.J.A.; Cowell, P.J. Origins of Holocene Coastal Strandplains in Southeast Australia: Shoreface Sand Supply Driven by Disequilibrium Morphology. Mar. Geol. 2016, 374, 14–30. [Google Scholar] [CrossRef]
- Dillenburg, S.R.; Hesp, P.A. Geology and Geomorphology of Holocene Coastal Barriers of Brazil; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; Volume 107. [Google Scholar]
- Oliver, T.S.N.; Tamura, T.; Brooke, B.P.; Short, A.D.; Kinsela, M.A.; Woodroffe, C.D.; Thom, B.G. Holocene Evolution of the Wave-Dominated Embayed Moruya Coastline, Southeastern Australia: Sediment Sources, Transport Rates and Alongshore Interconnectivity. Quat. Sci. Rev. 2020, 247, 106566. [Google Scholar] [CrossRef]
- FitzGerald, D.M.; Cleary, W.J.; Buynevich, I.V.; Hein, C.J.; Klein, A.H.F.; Asp, N.; Angulo, R. Strandplain Evolution along the Southern Coast of Santa Catarina, Brazil. J. Coast. Res. 2007, 152–156. [Google Scholar]
- Woodroffe, C.D. Coasts: Form, Process and Evolution; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Scheffers, A.; Engel, M.; Scheffers, S.; Squire, P.; Kelletat, D. Beach Ridge Systems—Archives for Holocene Coastal Events? Prog. Phys. Geogr. Earth Environ. 2012, 36, 5–37. [Google Scholar] [CrossRef]
- Nelson, A.R.; Manley, W.F. Holocene Coseismic and Aseismic Uplift of Isla Mocha, South-Central Chile. Quat. Int. 1992, 15, 61–76. [Google Scholar] [CrossRef]
- Monecke, K.; Templeton, C.K.; Finger, W.; Houston, B.; Luthi, S.; McAdoo, B.G.; Sudrajat, S.U. Beach Ridge Patterns in West Aceh, Indonesia, and Their Response to Large Earthquakes along the Northern Sunda Trench. Quat. Sci. Rev. 2015, 113, 159–170. [Google Scholar] [CrossRef]
- Aedo, D.; Melnick, D.; Cisternas, M.; Brill, D. Tectonic Control on Great Earthquake Periodicity in South-Central Chile. Commun. Earth Environ. 2024, 5, 703. [Google Scholar] [CrossRef]
- Tamura, T. Beach Ridges and Prograded Beach Deposits as Palaeoenvironment Records. Earth Sci. Rev. 2012, 114, 279–297. [Google Scholar] [CrossRef]
- Hede, M.U.; Bendixen, M.; Clemmensen, L.B.; Kroon, A.; Nielsen, L. Joint Interpretation of Beach-Ridge Architecture and Coastal Topography Show the Validity of Sea-Level Markers Observed in Ground-Penetrating Radar Data. Holocene 2013, 23, 1238–1246. [Google Scholar] [CrossRef]
- Silva, A.P.; Klein, A.H.F.; Fetter-Filho, A.F.H.; Hein, C.J.; Méndez, F.J.; Broggio, M.F.; Dalinghaus, C. Climate-Induced Variability in South Atlantic Wave Direction over the Past Three Millennia. Sci. Rep. 2020, 10, 18553. [Google Scholar] [CrossRef]
- FRASER, C.; HILL, P.R.; ALLARD, M. Morphology and Facies Architecture of a Falling Sea Level Strandplain, Umiujaq, Hudson Bay, Canada. Sedimentology 2005, 52, 141–160. [Google Scholar] [CrossRef]
- Hein, C.J.; Fitzgerald, D.M.; Cleary, W.J.; Albernaz, M.B.; De Menezes, J.T.; da F. Klein, A.H. Evidence for a Transgressive Barrier within a Regressive Strandplain System: Implications for Complex Coastal Response to Environmental Change. Sedimentology 2013, 60, 469–502. [Google Scholar] [CrossRef]
- Dillenburg, S.R.; Barboza, E.G.; Rosa, M.L.C.C.; Caron, F.; Sawakuchi, A.O. The Complex Prograded Cassino Barrier in Southern Brazil: Geological and Morphological Evolution and Records of Climatic, Oceanographic and Sea-Level Changes in the Last 7–6 Ka. Mar. Geol. 2017, 390, 106–119. [Google Scholar] [CrossRef]
- Kelsey, H.M.; Witter, R.C.; Engelhart, S.E.; Briggs, R.; Nelson, A.; Haeussler, P.; Corbett, D.R. Beach Ridges as Paleoseismic Indicators of Abrupt Coastal Subsidence during Subduction Zone Earthquakes, and Implications for Alaska-Aleutian Subduction Zone Paleoseismology, Southeast Coast of the Kenai Peninsula, Alaska. Quat. Sci. Rev. 2015, 113, 147–158. [Google Scholar] [CrossRef]
- Pitman, S.J.; Jol, H.M.; Shulmeister, J.; Hart, D.E. Storm Response of a Mixed Sand Gravel Beach Ridge Plain under Falling Relative Sea Levels: A Stratigraphic Investigation Using Ground Penetrating Radar. Earth Surf. Process. Landf. 2019, 44, 1610–1617. [Google Scholar] [CrossRef]
- Prasad, P.; Loveson, V.J.; Kumar, V.; Shukla, A.D.; Chandra, P.; Verma, S.; Yadav, R.; Magotra, R.; Tirodkar, G.M. Reconstruction of Holocene Relative Sea-Level from Beach Ridges of the Central West Coast of India Using GPR and OSL Dating. Geomorphology 2023, 442, 108914. [Google Scholar] [CrossRef]
- Aedo, D.; Cisternas, M.; Melnick, D.; Esparza, C.; Winckler, P.; Saldaña, B. Decadal Coastal Evolution Spanning the 2010 Maule Earthquake at Isla Santa Maria, Chile: Framing Darwin’s Accounts of Uplift over a Seismic Cycle. Earth Surf. Process. Landf. 2023, 48, 2319–2333. [Google Scholar] [CrossRef]
- Nielsen, L.; Clemmensen, L.B. Sea-level Markers Identified in Ground-penetrating Radar Data Collected across a Modern Beach Ridge System in a Microtidal Regime. Terra Nova 2009, 21, 474–479. [Google Scholar] [CrossRef]
- Clemmensen, L.B.; Nielsen, L. Internal Architecture of a Raised Beach Ridge System (Anholt, Denmark) Resolved by Ground-Penetrating Radar Investigations. Sediment. Geol. 2010, 223, 281–290. [Google Scholar] [CrossRef]
- Costas, S.; Ferreira, Ó.; Plomaritis, T.A.; Leorri, E. Coastal Barrier Stratigraphy for Holocene High-Resolution Sea-Level Reconstruction. Sci. Rep. 2016, 6, 38726. [Google Scholar] [CrossRef]
- da Rocha, T.B.; Fernandez, G.B.; de Oliveira Peixoto, M.N. Applications of Ground-Penetrating Radar to Investigate the Quaternary Evolution of the South Part of the Paraiba Do Sul River Delta (Rio de Janeiro, Brazil). J. Coast. Res. 2013, 65, 570–575. [Google Scholar] [CrossRef]
- Pinegina, T.K.; Bourgeois, J.; Bazanova, L.I.; Zelenin, E.A.; Krasheninnikov, S.P.; Portnyagin, M.V. Coseismic Coastal Subsidence Associated with Unusually Wide Rupture of Prehistoric Earthquakes on the Kamchatka Subduction Zone: A Record in Buried Erosional Scarps and Tsunami Deposits. Quat. Sci. Rev. 2020, 233, 106171. [Google Scholar] [CrossRef]
- Rodríguez-Santalla, I.; Gomez-Ortiz, D.; Martín-Crespo, T.; Sánchez, M.J.; Montoya-Montes, I.; Martín-Velázquez, S.; Barrio, F.; Serra, J.; Ramírez-Cuesta, J.M.; Gracia, F.J. Study and Evolution of the Dune Field of La Banya Spit in Ebro Delta (Spain) Using LiDAR Data and GPR. Remote Sens. 2021, 13, 802. [Google Scholar] [CrossRef]
- Brooke, B.P.; Huang, Z.; Nicholas, W.A.; Oliver, T.S.N.; Tamura, T.; Woodroffe, C.D.; Nichol, S.L. Relative Sea-Level Records Preserved in Holocene Beach-Ridge Strandplains—An Example from Tropical Northeastern Australia. Mar. Geol. 2019, 411, 107–118. [Google Scholar] [CrossRef]
- Ciarletta, D.J.; Shawler, J.L.; Tenebruso, C.; Hein, C.J.; Lorenzo-Trueba, J. Reconstructing Coastal Sediment Budgets From Beach- and Foredune-Ridge Morphology: A Coupled Field and Modeling Approach. J. Geophys. Res. Earth Surf. 2019, 124, 1398–1416. [Google Scholar] [CrossRef]
- Tamura, T.; Oliver, T.S.N.; Cunningham, A.C.; Woodroffe, C.D. Recurrence of Extreme Coastal Erosion in SE Australia Beyond Historical Timescales Inferred from Beach Ridge Morphostratigraphy. Geophys. Res. Lett. 2019, 46, 4705–4714. [Google Scholar] [CrossRef]
- Switzer, A.D.; Gouramanis, C.; Bristow, C.S.; Simms, A.R. Ground-Penetrating Radar (GPR) in Coastal Hazard Studies. In Geological Records of Tsunamis and Other Extreme Waves; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–168. [Google Scholar]
- Doyle, T.B.; Woodroffe, C.D. The Application of LiDAR to Investigate Foredune Morphology and Vegetation. Geomorphology 2018, 303, 106–121. [Google Scholar] [CrossRef]
- Angermann, D.; Klotz, J.; Reigber, C. Space-Geodetic Estimation of the Nazca-South America Euler Vector. Earth Planet Sci. Lett. 1999, 171, 329–334. [Google Scholar] [CrossRef]
- Davis, R.A. 10.16 Evolution of Coastal Landforms. Treatise Geomorphol. 2013, 10, 417–448. [Google Scholar] [CrossRef]
- Araya-Vergara, J.F. Análisis de La Localización de Los Procesos y Formas Predominantes de La Linea Litoral de Chile: Observación Preliminar. Investig. Geográficas Una Mirada Desde 1982, 29, 35–55. [Google Scholar] [CrossRef]
- San Martín, J.; Calisto, I.; Quezada, J.; Stewart, D.; Ely, L.; Cifuentes-Lobos, R.; Moreno, M. Characterization of Historical Megathrust Earthquake Ruptures in Central Chile Using Logic Tree Analysis. Nat. Hazards 2024, 120, 5411–5427. [Google Scholar] [CrossRef]
- Moreno, M.; Rosenau, M.; Oncken, O. 2010 Maule Earthquake Slip Correlates with Pre-Seismic Locking of Andean Subduction Zone. Nature 2010, 467, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Hayes, G.P.; Moore, G.L.; Portner, D.E.; Hearne, M.; Flamme, H.; Furtney, M.; Smoczyk, G.M. Slab2, a Comprehensive Subduction Zone Geometry Model. Science 2018, 362, 58–61. [Google Scholar] [CrossRef]
- GEBCO. The GEBCO_2019 Grid-a Continuous Terrain Model of the Global Oceans and Land. In British Oceanographic Data Centre; National Oceanography Centre: Liverpool, UK, 2019. [Google Scholar]
- Isla, M.F.; Moyano-Paz, D.; FitzGerald, D.M.; Simontacchi, L.; Veiga, G.D. Contrasting Beach-Ridge Systems in Different Types of Coastal Settings. Earth Surf. Process. Landf. 2023, 48, 47–71. [Google Scholar] [CrossRef]
- Isla, F.I.; Flory, J.Q.; Martínez, C.; Fernández, A.; Jaque, E. The evolution of the bío bío delta and the coastal plains of the Arauco Gulf, bío bío region: The holocene sea-level Curve of Chile. J. Coast. Res. 2012, 28, 102–111. [Google Scholar] [CrossRef]
- Jara-Muñoz, J.; Melnick, D.; Zambrano, P.; Rietbrock, A.; González, J.; Argandoña, B.; Strecker, M.R. Quantifying Offshore Fore-arc Deformation and Splay-fault Slip Using Drowned Pleistocene Shorelines, Arauco Bay, Chile. J. Geophys. Res. Solid Earth 2017, 122, 4529–4558. [Google Scholar] [CrossRef]
- Garrett, E.; Melnick, D.; Dura, T.; Cisternas, M.; Ely, L.L.; Wesson, R.L.; Whitehouse, P.L. Holocene Relative Sea-Level Change along the Tectonically Active Chilean Coast. Quat. Sci. Rev. 2020, 236, 106281. [Google Scholar] [CrossRef]
- Winckler, P.; Martín, R.A.; Esparza, C.; Melo, O.; Sactic, M.I.; Martínez, C. Projections of Beach Erosion and Associated Costs in Chile. Sustainability 2023, 15, 5883. [Google Scholar] [CrossRef]
- Lamy, F.; Hebbeln, D.; Wefer, G. High-Resolution Marine Record of Climatic Change in Mid-Latitude Chile during the Last 28,000 Years Based on Terrigenous Sediment Parameters. Quat. Res. 1999, 51, 83–93. [Google Scholar] [CrossRef]
- Lamy, F.; Hebbeln, D.; Röhl, U.; Wefer, G. Holocene Rainfall Variability in Southern Chile: A Marine Record of Latitudinal Shifts of the Southern Westerlies. Earth Planet Sci. Lett. 2001, 185, 369–382. [Google Scholar] [CrossRef]
- Jenny, B.; Valero-Garcés, B.L.; Urrutia, R.; Kelts, K.; Veit, H.; Appleby, P.G.; Geyh, M. Moisture Changes and Fluctuations of the Westerlies in Mediterranean Central Chile during the Last 2000 Years: The Laguna Aculeo Record (33 50′ S). Quat. Int. 2002, 87, 3–18. [Google Scholar] [CrossRef]
- Villa-Martínez, R.; Villagrán, C.; Jenny, B. The Last 7500 Cal Yr BP of Westerly Rainfall in Central Chile Inferred from a High-Resolution Pollen Record from Laguna Aculeo. Quat. Res. 2003, 60, 284–293. [Google Scholar] [CrossRef]
- Sterken, M.; Verleyen, E.; Sabbe, K.; Terryn, G.; Charlet, F.; Bertrand, S.; Vyverman, W. Late Quaternary Climatic Changes in Southern Chile, as Recorded in a Diatom Sequence of Lago Puyehue (40 40′ S). J. Paleolimnol 2008, 39, 219–235. [Google Scholar] [CrossRef]
- Frugone-Álvarez, M.; Latorre, C.; Giralt, S.; Polanco-Martínez, J.; Bernárdez, P.; Oliva-Urcia, B.; Valero-Garcés, B. A 7000-year High-resolution Lake Sediment Record from Coastal Central Chile (Lago Vichuquén, 34° S): Implications for Past Sea Level and Environmental Variability. J. Quat. Sci. 2017, 32, 830–844. [Google Scholar] [CrossRef]
- Maldonado, A.; Villagrán, C. Climate Variability over the Last 9900 Cal Yr BP from a Swamp Forest Pollen Record along the Semiarid Coast of Chile. Quat. Res. 2006, 66, 246–258. [Google Scholar] [CrossRef]
- Villa-Martínez, R.; Villagrán, C. Historia de la vegetación de bosques pantanosos de la costa de Chile central durante el Holoceno medio y tardío. Rev. Chil. Hist. Nat. 1997, 70, 391–401. [Google Scholar]
- Bertrand, S.; Boës, X.; Castiaux, J.; Charlet, F.; Urrutia, R.; Espinoza, C.; Fagel, N. Temporal Evolution of Sediment Supply in Lago Puyehue (Southern Chile) during the Last 600 Yr and Its Climatic Significance. Quat. Res. 2005, 64, 163–175. [Google Scholar] [CrossRef]
- Francois, J.P.; Hernandez, P.; Schneider, I.; Cerda, J. Nuevos datos en torno a la historia paleoambiental del centro-sur de Chile. El registro sedimentario y palinológico del Humedal Laguna Verde (36°47′ S), Península Hualpén, Región del Bío-Bío, Chile. Rev. Geogr. Norte Gd. 2024, 87, 1–22. [Google Scholar] [CrossRef]
- Lamy, F.; Kilian, R.; Arz, H.W.; Francois, J.P.; Kaiser, J.; Prange, M.; Steinke, T. Holocene Changes in the Position and Intensity of the Southern Westerly Wind Belt. Nat. Geosci. 2010, 3, 695–699. [Google Scholar] [CrossRef]
- Moreno, M.; Melnick, D.; Rosenau, M.; Baez, J.; Klotz, J.; Oncken, O.; Hase, H. Toward Understanding Tectonic Control on the Mw 8.8 2010 Maule Chile Earthquake. Earth Planet Sci. Lett. 2012, 321, 152–165. [Google Scholar] [CrossRef]
- Lin, Y.N.N.; Sladen, A.; Ortega-Culaciati, F.; Simons, M.; Avouac, J.P.; Fielding, E.J.; Socquet, A. Coseismic and Postseismic Slip Associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula Barrier Effect. J. Geophys. Res. Solid Earth 2013, 118, 3142–3159. [Google Scholar] [CrossRef]
- Melnick, D.; Cisternas, M.; Moreno, M.; Norambuena, R. Estimating Coseismic Coastal Uplift with an Intertidal Mussel: Calibration for the 2010 Maule Chile Earthquake (Mw = 8.8). Quat. Sci. Rev. 2012, 42, 29–42. [Google Scholar] [CrossRef]
- Quezada, J.; Jaque, E.; Fernández, A.; Vásquez, D. Cambios en el relieve generados como consecuencia del terremoto Mw = 8,8 del 27 de febrero de 2010 en el centro-sur de Chile. Rev. Geogr. Norte Gd. 2012, 53, 35–55. [Google Scholar] [CrossRef]
- Martínez, C.; Rojas, D.; Quezada, M.; Quezada, J.; Oliva, R. Post-Earthquake Coastal Evolution and Recovery of an Embayed Beach in Central-Southern Chile. Geomorphology 2015, 250, 321–333. [Google Scholar] [CrossRef]
- Cisternas, M.; Melnick, D.; Ely, L.; Wesson, R.; Norambuena, R. Similarities between the Great Chilean Earthquakes of 1835 and 2010. In Proceedings of the Chapman Conference on Giant Earthquakes and their Tsunamis, AGU, Viña del Mar and Valparaíso, Chile, 16–20 May 2010; Volume 19. [Google Scholar]
- Fitzroy, R. Narrative of the Surveying Voyages of His Majesty’s Ships Adventure and Beagle Between the Years 1826 and 1836: Describing Their Examination of the Southern Shores of South America and the Beagle’s Circumnavigation of the Globe: Proceedings of the Second Expedition; Henry Colburn, Great Marlborough Street: London, UK, 1839. [Google Scholar]
- Giorgini, E.; Orellana, F.; Arratia, C.; Tavasci, L.; Montalva, G.; Moreno, M.; Gandolfi, S. InSAR Monitoring Using Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) Techniques for Ground Deformation Measurement in Metropolitan Area of Concepción, Chile. Remote Sens. 2023, 15, 5700. [Google Scholar] [CrossRef]
- Wesson, R.L.; Melnick, D.; Cisternas, M.; Moreno, M.; Ely, L.L. Vertical Deformation through a Complete Seismic Cycle at Isla Santa María, Chile. Nat. Geosci. 2015, 8, 547–551. [Google Scholar] [CrossRef]
- Kelson, K.; Witter, R.C.; Tassara, A.; Ryder, I.; Ledezma, C.; Montalva, G.; Frost, D.; Sitar, N.; Moss, R.; Johnson, L. Coseismic Tectonic Surface Deformation during the 2010 Maule, Chile, Mw 8.8 Earthquake. Earthq. Spectra 2012, 28, 39–54. [Google Scholar] [CrossRef]
- Tzanis, A. MATGPR Release 2: A Freeware MATLAB ® Package for the Analysis & Interpretation of Common & Single Offset GPR Data. Geophys. Res. Abstr. 2010, 15, 17–43. [Google Scholar]
- Bristow, C.S.; Neil Chroston, P.; Bailey, S.D. The Structure and Development of Foredunes on a Locally Prograding Coast: Insights from Ground-Penetrating Radar Surveys, Norfolk, UK. Sedimentology 2000, 47, 923–944. [Google Scholar] [CrossRef]
- Oliver, T.S.; Dougherty, A.J.; Gliganic, L.A.; Woodroffe, C.D. Towards More Robust Chronologies of Coastal Progradation: Optically Stimulated Luminescence Ages for the Coastal Plain at Moruya, South-Eastern Australia. Holocene 2014, 25, 536–546. [Google Scholar] [CrossRef]
- Hein, C.J.; Fitzgerald, D.M.; De Souza, L.H.P.; Georgiou, I.Y.; Buynevich, I.V.; Klein, A.H.D.F.; De Menezes, J.T.; Cleary, W.J.; Scolaro, T.L. Complex Coastal Change in Response to Autogenic Basin Infilling: An Example from a Sub-Tropical Holocene Strandplain. Sedimentology 2016, 63, 1362–1395. [Google Scholar] [CrossRef]
- Ribolini, A.; Bertoni, D.; Bini, M.; Sarti, G. Ground-Penetrating Radar Prospections to Image the Inner Structure of Coastal Dunes at Sites Characterized by Erosion and Accretion (Northern Tuscany, Italy). Appl. Sci. 2021, 11, 11260. [Google Scholar] [CrossRef]
- Silva Figueiredo, M.; Rocha, T.; Brill, D.; Borges Fernandez, G. Morphostratigraphy of Barrier Spits and Beach Ridges at the East Margin of Salgada Lagoon (Southeast Brazil). J. South Am. Earth Sci. 2022, 116, 103850. [Google Scholar] [CrossRef]
- Flores-Aqueveque, V.; Arias, P.A.; Gómez-Fontealba, C.; González-Arango, C.; Apaestegui, J.; Evangelista, H.; Guerra, L.; Latorre, C. The South American Climate During the Last Two Millennia. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: New York, NY, USA, 2024. [Google Scholar]
- Fanucci, F.; Amore, C.; Pineda, V. Characteristics and Dynamics of the Coasts in the Araugo Gulf (Central Chile). Boll. Oceanol. Teor. Ed Appl. 1992, 10, 265–271. [Google Scholar]
- Pye, K.; Tsoar, H. Aeolian Sand and Sand Dunes. In Aeolian Sand and Sand Dunes; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Albert, F. Las Dunas Del Centro de Chile. Edición de la Pontifica Universidad Católica de Chile; Biblioteca Fundamentos de la Construcción de Chile: Santiago, Chile, 1900. [Google Scholar]
- Lamy, F.; Kaiser, J.; Lamy, F. Glacial to Holocene Paleoceanographic and Continental Paleoclimate Reconstructions Based on ODP Site 1233/GeoB 3313 Off Southern Chile. In Past Climate Variability in South America and Surrounding Regions: From the Last Glacial Maximum to the Holocene; Springer: Dordrecht, The Netherlands, 2009; pp. 129–156. [Google Scholar] [CrossRef]
- Rojas, O.; Latorre, T.; Pacheco, F.; Araya, M.; López, J. Inundaciones Fluviales En Cuencas Costeras Mediterráneas de Chile: Recurrencia, Factores Físicos y Efectos Hidrogeomorfológicos de Su Gestión. In La Zona Costera en Chile: Adaptación y Planificación Para la Resiliencia; Hidalgo, R., Martinez, C., Henriquez, C., Arenas, F., Rangel-Buitrago, N., Contreras-Lopez, M., Eds.; Instituto de Geografía-Serie GEOlibros: Santiago, Chile, 2019; pp. 285–307. [Google Scholar]
- Schoener, G.; Muñoz, E.; Arumí, J.L.; Stone, M.C. Impacts of Climate Change Induced Sea Level Rise, Flow Increase and Vegetation Encroachment on Flood Hazard in the Biobío River, Chile. Water 2022, 14, 4098. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araya-Cornejo, C.; Aedo, D.; Martínez, C.; Melnick, D. LiDAR and GPR Data Reveal the Holocene Evolution of a Strandplain in a Tectonically Active Coast. Remote Sens. 2025, 17, 2798. https://doi.org/10.3390/rs17162798
Araya-Cornejo C, Aedo D, Martínez C, Melnick D. LiDAR and GPR Data Reveal the Holocene Evolution of a Strandplain in a Tectonically Active Coast. Remote Sensing. 2025; 17(16):2798. https://doi.org/10.3390/rs17162798
Chicago/Turabian StyleAraya-Cornejo, Cristian, Diego Aedo, Carolina Martínez, and Daniel Melnick. 2025. "LiDAR and GPR Data Reveal the Holocene Evolution of a Strandplain in a Tectonically Active Coast" Remote Sensing 17, no. 16: 2798. https://doi.org/10.3390/rs17162798
APA StyleAraya-Cornejo, C., Aedo, D., Martínez, C., & Melnick, D. (2025). LiDAR and GPR Data Reveal the Holocene Evolution of a Strandplain in a Tectonically Active Coast. Remote Sensing, 17(16), 2798. https://doi.org/10.3390/rs17162798