Ionospheric Statistical Study of the ULF Band Electric Field and Electron Density Variations Before Strong Earthquakes Based on CSES Data
Abstract
1. Introduction
2. Data
3. Analysis Results
3.1. Analysis of Earthquake Cases: The 2021 Yangbi and Maduo Earthquakes in China
3.1.1. Analysis of Pre-Seismic Ionospheric Electron Density Anomalies
- Linear interpolation: For all ascending orbital tracks passing within ±40° longitude of the epicenters during the three months prior to the earthquakes, linear interpolation is performed at intervals of 0.1°latitude for each track. Similarly, the longitude data for each track are interpolated based on the longitudinal span of the track. This ensures that each interpolated ionospheric electron density value corresponds precisely to a specific latitude and longitude.
- Grouping by revisit tracks: All tracks are grouped into n sets based on their revisit cycles to enable consistent temporal analysis.
- Background field calculation: For each set of revisit tracks during the three months preceding the earthquakes, the median background field and interquartile range (IQR) of electron density are calculated to establish a reference for identifying anomalies. As shown in Figure 1, multiple revisit orbits pass over a specific satellite orbit of CSES. Therefore, in this study, all revisit orbit data along this orbit within three months before the earthquake were grouped together to calculate the median background field and anomalous perturbations. In addition, since the revisit cycle of the CSES is 5 days, using revisit orbits within three months before the earthquake to calculate the background field in this study ensures that more than ten orbits are included in the calculation, which helps maximize the reliability of anomalies.
- Anomaly percentage calculation: The percentage anomaly of the observed ionospheric electron density relative to the median background field is computed using the following formula:
- For the calculated , values exceeding 50% are defined as anomalies. However, since the satellite observations may be affected by operations such as instrument mode switching or flight attitude adjustments, which can cause abrupt jumps in data values and excessively large amplitude changes, an upper limit was determined after testing multiple thresholds. The final anomaly definition rule is as follows: values exceeding 50% but not exceeding 200% are considered anomalies.
3.1.2. Analysis of Pre-Seismic Ionospheric Electric Field Anomalies
3.2. Statistical Analysis of Ms ≥ 6.0 Earthquakes in China and Adjacent Regions from 2019 to 2021
3.2.1. Ionospheric Electron Density Anomalies Before Ms ≥ 6.0 Earthquakes in China and Adjacent Regions from 2019 to 2021
3.2.2. Ionospheric Electric Field Power Spectral Density Anomalies Before Ms ≥ 6.0 Earthquakes in China and Adjacent Regions from 2019 to 2021
3.3. Statistical Analysis of Ms ≥ 7.0 Earthquakes Worldwide from 2019 to 2021
3.4. Statistical Analysis of Pre-Seismic Ionospheric Electric Field and Electron Density for Oceanic and Continental Earthquakes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Q.; Zhao, Z.; Liu, L.; Granger, D.E.; Wang, H.; Cohen, D.J.; Wu, X.; Ye, M.; Bar-Yosef, O.; Lu, B.; et al. Outburst flood at 1920 BCE supports historicity of China’s Great Flood and the Xia dynasty. Science 2016, 353, 579–582. [Google Scholar] [CrossRef]
- Guo, A.; Huang, X.; Ren, D.; Zhang, W. Textual Evidence for the Existence of the Houfeng Seismograph Based on the Two Capitals System in Ancient China. China Earthq. Eng. J. 2014, 36, 1003–1007. [Google Scholar]
- Pulinets, S. The synergy of earthquake precursors. Earthq. Sci. 2011, 24, 535–548. [Google Scholar] [CrossRef]
- Gousheva, M.; Glavcheva, R.; Danov, D.; Angelov, P.; Hristov, P.; Kirov, B.; Georgieva, K. Satellite monitoring of anomalous effects in the ionosphere probably related to strong earthquakes. In Natural Hazards and Oceanographic Processes from Satellite Data; Singh, R.P., Shea, M.A., Eds.; Advances in Space Research-Series; Elsevier: Amsterdam, The Netherlands, 2006; Volume 37, pp. 660–665. [Google Scholar]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Phenomena preceding major earthquakes interconnected through a physical model. Ann. Geophys. 2019, 37, 315–324. [Google Scholar] [CrossRef]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Kouris, S.S.; Spalla, P.; Zolesi, B. Could ionospheric variations be precursors of a seismic event? A short discussion. Annali Di Geofisica 2001, 44, 395–402. [Google Scholar] [CrossRef]
- Borisov, N.; Chmyrev, V.; Rybachek, S. A new ionospheric mechanism of electromagnetic ELF precursors to earthquakes. J. Atmos. Sol.-Terr. Phys. 2001, 63, 3–10. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K.A.; Lomonosov, A.M.; Khegai, V.V.; Lyu, I.Y. Ionospheric precursors to earthquakes: A preliminary analysis of the foF2 critical frequencies at Chung-Li ground-based station for vertical sounding of the ionosphere (Taiwan Island). Geomagn. Aeron. 2002, 42, 508–513. [Google Scholar]
- Pulinets, S.A.; Legen’ka, A.D.; Gaivoronskaya, T.V.; Depuev, V.K. Main phenomenological features of ionospheric precursors of strong earthquakes. J. Atmos. Sol.-Terr. Phys. 2003, 65, 1337–1347. [Google Scholar] [CrossRef]
- Zhang, Z.-X.; Li, X.-Q.; Wu, S.-G.; Ma, Y.-Q.; Shen, X.-H.; Chen, H.-R.; Wang, P.; You, X.-Z.; Yuan, Y.-H. DEMETER satellite observations of energetic particle prior to Chile earthquake. Chin. J. Geophys.-Chin. Ed. 2012, 55, 1581–1590. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Wang, L.; Chen, H.; Wu, Y.; Yuan, S.; Shen, J.; Zhao, S.; Qian, J.; Ding, J. The earthquake-related disturbances in ionosphere and project of the first China seismo-electromagnetic satellite. Earthq. Sci. 2011, 24, 639–650. [Google Scholar] [CrossRef]
- Sarkar, S.; Gwal, A.K.; Parrot, M. Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1524–1540. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Liu, J.; Shen, X.; Miao, Y.; Du, X.; Qian, J. Ground-based and satellite DC-ULF electric field anomalies around Wenchuan M8.0 earthquake. Adv. Space Res. 2012, 50, 85–95. [Google Scholar] [CrossRef]
- Zolotov, O.V. Ionosphere quasistatic electric fields disturbances over seismically active regions as inferred from satellite-based observations: A review. Russ. J. Phys. Chem. B 2015, 9, 785–788. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Piscini, A.; Jin, S. Anomalous seismo-LAI variations potentially associated with the 2017 Mw=7.3 Sarpol-e Zahab (Iran) earthquake from Swarm satellites, GPS-TEC and climatological data. Adv. Space Res. 2019, 64, 143–158. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Ionospheric generation mechanism of geomagnetic pulsations observed on the Earth’s surface before earthquake. J. Atmos. Sol.-Terr. Phys. 2003, 65, 21–29. [Google Scholar] [CrossRef]
- Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.; et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and ionosphere. Nat. Hazards Earth Syst. Sci. 2004, 4, 757–767. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yaschenko, A.K.; Hayakawa, M. Formation mechanism of the lower-ionospheric disturbances by the atmosphere electric current over a seismic region. J. Atmos. Sol.-Terr. Phys. 2006, 68, 1260–1268. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, X.; Zhima, Z.; Zhou, C. The very low-frequency transmitter radio wave anomalies related to the 2010 Ms 7.1 Yushu earthquake observed by the DEMETER satellite and the possible mechanism. Ann. Geophys. 2020, 38, 969–981. [Google Scholar] [CrossRef]
- Xue-min, Z.; Xu-hui, S.; Xin-yan, O.; Ji-nan, C.A.I.; Jian-ping, H.; Jing, L.I.U.; Shu-fan, Z. Ionosphere VLF electric field anomalies before Wenchuan M 8 earthquake. Chin. J. Radio Sci. 2009, 24, 1024–1032. [Google Scholar]
- Denisenko, V.V.; Ampferer, M.; Pomozov, E.V.; Kitaev, A.V.; Hausleitner, W.; Stangl, G.; Biernat, H.K. On electric field penetration from ground into the ionosphere. J. Atmos. Sol.-Terr. Phys. 2013, 102, 341–353. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Huang, J.; Yin, H.; Jia, J. Research on Pre-Seismic Feature Recognition of Spatial Electric Field Data Recorded by CSES. Atmosphere 2022, 13, 179. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Isaev, N.V.; Yaschenko, A.K.; Chmyrev, V.M.; Hayakawa, M. Strong DC electric field formation in the low latitude ionosphere over typhoons. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1269–1279. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Legen’ka, A.D. Spatial-temporal characteristics of large scale disturbances of electron density observed in the ionospheric F-region before strong earthquakes. Cosm. Res. 2003, 41, 221–229. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Liu, J.Y.; Oyama, K.I.; Yen, N.L.; Wang, Y.H.; Miau, J.J. Ionospheric electron density anomaly prior to the December 26, 2006 M7.0 Pingtung earthquake doublet observed by FORMOSAT-3/COSMIC. Phys. Chem. Earth 2009, 34, 474–478. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Pulinets, S.A.; Tsai, Y.B.; Chuo, Y.J. Seismo-ionospheric signatures prior to M≥6.0 Taiwan earthquakes. Geophys. Res. Lett. 2000, 27, 3113–3116. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Tsai, Y.-B.; Ma, K.-F.; Chen, Y.-I.; Tsai, H.-F.; Lin, C.-H.; Kamogawa, M.; Lee, C.-P. Ionospheric GPS total electron content (TEC) disturbances triggered by the 26 December 2004 Indian Ocean tsunami. J. Geophys. Res.-Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Jhuang, H.K.; Lin, Y.H. Ionospheric foF2 and TEC anomalous days associated with M≥5.0 earthquakes in Taiwan during 1997–1999. Terr. Atmos. Ocean. Sci. 2004, 15, 371–383. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ito, T.; Smirnova, N. Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on August 8, 1993. Geophys. Res. Lett. 1999, 26, 2797–2800. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Subionospheric VLF signal perturbations possibly related to earthquakes. J. Geophys. Res.-Space Phys. 1998, 103, 17489–17504. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Ouzounov, D.; Ciraolo, L.; Singh, R.; Cervone, G.; Leyva, A.; Dunajecka, M.; Karelin, A.V.; Boyarchuk, K.A.; Kotsarenko, A. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M7.8 earthquake of 21 January 2003. Ann. Geophys. 2006, 24, 835–849. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Zhang, X.; Zeren, Z.; Parrot, M.; Battiston, R.; Qian, J.; Shen, X. ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Adv. Space Res. 2011, 47, 991–1000. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X.; Liu, J.; Ouyang, X.; Qian, J.; Zhao, S. Ionospheric perturbations of electron density before the Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3559–3569. [Google Scholar] [CrossRef]
- Stanica, D.A.; Stanica, D.; Blecki, J.; Ernst, T.; Jozwiak, W.; Slominski, J. Pre-seismic geomagnetic and ionosphere signatures related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016. Acta Geophys. 2018, 66, 167–177. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, X.; Parrot, M.; Zeren, Z.; Ouyang, X.; Liu, J.; Qian, J.; Zhao, S.; Miao, Y. Phenomena of electrostatic perturbations before strong earthquakes (2005–2010) observed on DEMETER. Nat. Hazards Earth Syst. Sci. 2012, 12, 75–83. [Google Scholar] [CrossRef]
- Li, M.; Parrot, M. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas. Adv. Space Res. 2018, 61, 974–984. [Google Scholar] [CrossRef]
- An, Z.; Fan, Y.; Liu, J.; Tan, D.; Chen, J.; Zheng, G.; Xie, T. Analysis on ion temperature variation detected by DEMETER before 2008 Wenchuan MS8.0 earthquake. Acta Seismol. Sin. 2010, 32, 754–759. [Google Scholar]
- De Santis, A.; Balasis, G.; Pavon-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef]
- Marchetti, D.; Akhoondzadeh, M. Analysis of Swarm satellites data showing seismo-ionospheric anomalies around the time of the strong Mexico (Mw=8.2) earthquake of 08 September 2017. Adv. Space Res. 2018, 62, 614–623. [Google Scholar] [CrossRef]
- Wei, L.; Li, J.; Liu, L.; Huang, L.; Zheng, D.; Tian, X.; Huang, L.; Zhou, L.; Ren, C.; He, H. Lithosphere Ionosphere Coupling Associated with Seismic Swarm in the Balkan Peninsula from ROB-TEC and GPS. Remote Sens. 2022, 14, 4759. [Google Scholar] [CrossRef]
- Ambrosi, G.; Bartocci, S.; Basara, L.; Battiston, R.; Burger, W.J.; Carfora, L.; Castellini, G.; Cipollone, P.; Conti, L.; Contin, A.; et al. The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci. China-Technol. Sci. 2018, 61, 643–652. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, X.; Liao, L.; Zeren, Z. A lithosphere-atmosphere-ionosphere coupling model for ELF electromagnetic waves radiated from seismic sources and its possibility observed by the CSES. Sci. China-Technol. Sci. 2021, 64, 2551–2559. [Google Scholar] [CrossRef]
- Isaev, N.V.; Sorokin, V.M.; Chmyrev, V.M.; Serebryakova, O.N.; Yashchenko, A.K. Disturbance of the electric field in the ionosphere by sea storms and typhoons. Cosm. Res. 2002, 40, 547–553. [Google Scholar] [CrossRef]
- Lozbin, A.; Fedun, V.; Kryakunova, O. Complex analysis of the ionosphere variations during the geomagnetic storm at 20 January 2010 performed by Detection of Ionosphere Anomalies (DIA) software and DEMETER satellite data. Ann. Geophys. 2022, 40, 55–65. [Google Scholar] [CrossRef]
- Liu, J.-Y.T.; Shen, X.; Chang, F.-Y.; Chen, Y.-I.; Sun, Y.-Y.; Chen, C.-H.; Pulinets, S.; Hattori, K.; Ouzounov, D.; Tramutoli, V.; et al. Spatial analyses on pre-earthquake ionospheric anomalies and magnetic storms observed by China seismo-electromagnetic satellite in August 2018. Geosci. Lett. 2024, 11, 4. [Google Scholar] [CrossRef]
- Tramutoli, V.; Di Bello, G.; Pergola, N.; Piscitelli, S. Robust satellite techniques for remote sensing of seismically active areas. Annali Di Geofisica 2001, 44, 295–312. [Google Scholar] [CrossRef]
- Nagao, T.; Enomoto, Y.; Fujinawa, Y.; Hata, M.; Hayakawa, M.; Huang, Q.; Izutsu, J.; Kushida, Y.; Maeda, K.; Oike, K.; et al. Electromagnetic anomalies associated with 1995 Kobe earthquake. J. Geodyn. 2002, 33, 401–411. [Google Scholar] [CrossRef]
- Omori, Y.; Yasuoka, Y.; Nagahama, H.; Kawada, Y.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Anomalous radon emanation linked to preseismic electromagnetic phenomena. Nat. Hazards Earth Syst. Sci. 2007, 7, 629–635. [Google Scholar] [CrossRef]
- Pulinets, S.A.; Boyarchuk, K.A.; Hegai, V.V.; Kim, V.P.; Lomonosov, A.M. Quasielectrostatic model of atmosphere-thermosphere-ionosphere coupling. In Middle Atmosphere and Lower Thermosphere Electrodynamics; Gupta, S.P., Ed.; Advances in Space Research-Series; Elsevier: Amsterdam, The Netherlands, 2000; Volume 26, pp. 1209–1218. [Google Scholar]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Electrodynamic model of the lower atmosphere and the ionosphere coupling. J. Atmos. Sol.-Terr. Phys. 2001, 63, 1681–1691. [Google Scholar] [CrossRef]
- Harrison, R.G.; Aplin, K.L.; Rycroft, M.J. Atmospheric electricity coupling between earthquake regions and the ionosphere. J. Atmos. Sol.-Terr. Phys. 2010, 72, 376–381. [Google Scholar] [CrossRef]
- Weaver, P.F.; Yuen, P.C.; Prolss, G.W.; Furumoto, A.S. Acoustic coupling into the ionosphere from seismic waves of the earthquake at Kurile Islands on August 11, 1969. Nature 1970, 226, 1239–1241. [Google Scholar] [CrossRef]
- Hegai, V.V.; Kim, V.P.; Liu, J.Y. The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake. In Natural Hazards and Oceanographic Processes from Satellite Data; Singh, R.P., Shea, M.A., Eds.; Advances in Space Research; Elsevier: Amsterdam, The Netherlands, 2006; Volume 37, pp. 653–659. [Google Scholar]
- Yang, S.-S.; Asano, T.; Hayakawa, M. Abnormal Gravity Wave Activity in the Stratosphere Prior to the 2016 Kumamoto Earthquakes. J. Geophys. Res.-Space Phys. 2019, 124, 1410–1425. [Google Scholar] [CrossRef]
- Wang, C.; Rosen, I.G.; Tsurutani, B.T.; Verkhoglyadova, O.P.; Meng, X.; Mannucci, A.J. Statistical characterization of ionosphere anomalies and their relationship to space weather events. J. Space Weather Space Clim. 2016, 6, A5. [Google Scholar] [CrossRef]
- Alcay, S.; Gungor, M. Investigation of ionospheric TEC anomalies caused by space weather conditions. Astrophys. Space Sci. 2020, 365, 150. [Google Scholar] [CrossRef]
- Bulbul, S. Investigation of TEC anomalies possibly caused by the 6 February 2023 Kahramanmaraş(Turkey) earthquakes with space weather conditions. Bull. Geophys. Oceanogr. 2024, 65, 513–534. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Liu, J.-Y.; Hattori, K.; Han, P. Multiparameter Assessment of Pre-Earthquake Atmospheric Signals. In Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies; Ouzounov, D., Pulinets, S., Hattori, K., Taylor, P., Eds.; Geophysical Monograph Book Series; Wiley: Hoboken, NJ, USA, 2018; Volume 234, pp. 339–359. [Google Scholar]
- Yadav, K.; Karia, S.P.; Pathak, K.N. Anomalous Variation in GPS TEC, Land and Ocean Parameters Prior to 3 Earthquakes. Acta Geophys. 2016, 64, 43–60. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Chakrabarti, S.K. Comparative study of charged particle precipitation from Van Allen radiation belts as observed by NOAA satellites during a land earthquake and an ocean earthquake. Adv. Space Res. 2019, 64, 719–732. [Google Scholar] [CrossRef]
- Riabova, S.A.; Shalimov, S.L. Geomagnetic Variations Observed on the Earth’s Surface and Associated with Strong Earthquakes. Izv.-Phys. Solid Earth 2022, 58, 469–483. [Google Scholar] [CrossRef]
- Yao, Y.B.; Chen, P.; Zhang, S.; Chen, J.J.; Yan, F.; Peng, W.F. Analysis of pre-earthquake ionospheric anomalies before the global M=7.0+ earthquakes in 2010. Nat. Hazards Earth Syst. Sci. 2012, 12, 575–585. [Google Scholar] [CrossRef]
- Namgaladze, A.A. Earthquakes and global electrical circuit. Russ. J. Phys. Chem. B 2013, 7, 589–593. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D. Ionospheric precursors of earthquakes and Global Electric Circuit. Adv. Space Res. 2014, 53, 709–723. [Google Scholar] [CrossRef]
- Yan, X.-X.; Shan, X.-J.; Cao, J.-B.; Tang, J. Statistical analysis of electron density anomalies before global Mw ≥ 7.0 earthquakes (2005–2009) using data of DEMETER satellite. Chin. J. Geophys.-Chin. Ed. 2014, 57, 364–376. [Google Scholar] [CrossRef]
- Shah, M.; Jin, S. Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw ≥ 5.0 earthquakes (1998–2014). J. Geodyn. 2015, 92, 42–49. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Chen, C.-H.; Lin, C.-H.; Tsai, H.-F.; Chen, C.-H.; Kamogawa, M. Ionospheric disturbances triggered by the 11 March 2011 M9.0 Tohoku earthquake. J. Geophys. Res.-Space Phys. 2011, 116, A6. [Google Scholar] [CrossRef]
- Karpov, M.I.; Namgaladze, A.A.; Zolotov, O.V. Modeling of total electron content disturbances caused by electric currents between the Earth and the ionosphere. Russ. J. Phys. Chem. B 2013, 7, 594–598. [Google Scholar] [CrossRef]
- Hayakawa, M.; Schekotov, A.; Izutsu, J.; Yang, S.-S.; Solovieva, M.; Hobara, Y. Multi-Parameter Observations of Seismogenic Phenomena Related to the Tokyo Earthquake (M = 5.9) on 7 October 2021. Geosciences 2022, 12, 265. [Google Scholar] [CrossRef]
- Wang, Y.D.; Pi, D.C.; Zhang, X.M.; Shen, X.H. Seismo-ionospheric precursory anomalies detection from DEMETER satellite data based on data mining. Nat. Hazards 2015, 76, 823–837. [Google Scholar] [CrossRef]
- Li, Z.; Yang, B.; Huang, J.; Yin, H.; Yang, X.; Liu, H.; Zhang, F.; Lu, H. Analysis of Pre-Earthquake Space Electric Field Disturbance Observed by CSES. Atmosphere 2022, 13, 934. [Google Scholar] [CrossRef]
- Yang, M.; Qian, G.; Zhang, X.; Kong, X.; Shen, X.; Zhang, M.; Zhai, L.; Jin, Y. Spatio-Temporal Evolution of Electric Field Pre-and Post-Earthquakes Based on the CSES Satellite:MS5.1Earthquakes in Songyuan, Jilin Province and Tangshan, Hebei Province. J. Geod. Geodyn. 2022, 42, 1161–1165. [Google Scholar]
- De Santis, A.; Marchetti, D.; Perrone, L.; Campuzano, S.A.; Cianchini, G.; Cesaroni, C.; DiMauro, D.; Orlando, M.; Piscini, A.; Sabbagh, D.; et al. Statistical correlation analysis of strong earthquakes and ionospheric electron density anomalies as observed by CSES-01. Il Nuovo Cim. C—Colloq. Commun. Phys. 2021, 44, 1–4. [Google Scholar] [CrossRef]
- Alfonsi, L.; Ambroglini, F.; Ambrosi, G.; Ammendola, R.; Assante, D.; Badoni, D.; Belyaev, V.A.; Burger, W.J.; Cafagna, A.; Cipollone, P.; et al. The HEPD particle detector and the EFD electric field detector for the CSES satellite. Radiat. Phys. Chem. 2017, 137, 187–192. [Google Scholar] [CrossRef]
- Akhoondzadeh, M. Analyses of data from the first Chinese seismo electromagnetic satellite (CSES-01) together with other earthquake precursors associated with the Turkey earthquakes (February 6, 2023). J. Appl. Geod. 2024, 19, 11–23. [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol.-Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Ouyang, X.Y.; Parrot, M.; Bortnik, J. ULF Wave Activity Observed in the Nighttime Ionosphere Above and Some Hours Before Strong Earthquakes. J. Geophys. Res.-Space Phys. 2020, 125, e2020JA028396. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; De Santis, A.; Perrone, L.; Xiong, P.; Zhang, X.; Du, X. Lithosphere-atmosphere-ionosphere coupling associated with four Yutian earthquakes in China from GPS TEC and electromagnetic observations onboard satellites. J. Geodyn. 2023, 155, 101943. [Google Scholar] [CrossRef]
- Wen, Y.; Tao, D.; Wang, G.; Zong, J.; Cao, J.; Battiston, R.; ZeRen, Z.; Shen, X. Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data. Earth Planet. Phys. 2022, 6, 313–328. [Google Scholar] [CrossRef]
- Tao, D.; Cao, J.; Battiston, R.; Li, L.; Ma, Y.; Liu, W.; Zhima, Z.; Wang, L.; Dunlop, M.W. Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M7.7 south of Java earthquake. Ann. Geophys. 2017, 35, 589–598. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X. Ionospheric Disturbances Possibly Associated with Yangbi Ms6.4 and Maduo Ms7.4 Earthquakes in China from China Seismo Electromagnetic Satellite. Atmosphere 2022, 13, 438. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Liu, J.; Yang, M.; Yang, X.; Du, X.; Lu, J.; Xiao, J. Seismo-Ionospheric Effects Prior to Two Earthquakes in Taiwan Detected by the China Seismo-Electromagnetic Satellite. Atmosphere 2022, 13, 1523. [Google Scholar] [CrossRef]
- Koz, I.; Doganalp, S. Investigation of Ionospheric Anomalies in Relation to Earthquakes during High and Low Solar Activity Periods in Years 2002 and 2021. Geomagn. Aeron. 2023, 63, 93–104. [Google Scholar] [CrossRef]
- Liu, J.; Qiao, X.; Zhang, X.; Wang, Z.; Zhou, C.; Zhang, Y. Using a Spatial Analysis Method to Study the Seismo-Ionospheric Disturbances of Electron Density Observed by China Seismo-Electromagnetic Satellite. Front. Earth Sci. 2022, 10, 811658. [Google Scholar] [CrossRef]
- Masci, F.; Thomas, J.N. On the reliability of the Spatial Scintillation Index to detect earthquake precursors in the ionosphere. Radio Sci. 2015, 50, 745–753. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Chen, Y.; Le, H. Solar activity effects of the ionosphere: A brief review. Chin. Sci. Bull. 2011, 56, 1202–1211. [Google Scholar] [CrossRef]
- Zhima, Z.; Yan, R.; Lin, J.; Wang, Q.; Yang, Y.; Lv, F.; Huang, J.; Cui, J.; Liu, Q.; Zhao, S.; et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sens. 2022, 14, 905. [Google Scholar] [CrossRef]
- Dobrovolsky, I.P.; Zubkov, S.I.; Miachkin, V.I. Estimation of the Size of Earthquake Preparation Zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Liu, J.; Wan, W.-X.; Huang, J.-P.; Zhang, X.-M.; Zhao, S.-F.; Ouyang, X.-Y.; Zeren, Z.-M. Electron density perturbation before Chile M8.8 earthquake. Chin. J. Geophys.-Chin. Ed. 2011, 54, 2717–2725. [Google Scholar] [CrossRef]
- Nie, L.; Zhang, X. Identification and Analysis of Multi-Station Atmospheric Electric Field Anomalies before the Yangbi Ms 6.4 Earthquake on 21 May 2021. Atmosphere 2023, 14, 1579. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Xin, D. A Composite Catalog of Damaging Earthquakes for Mainland China. Seismol. Res. Lett. 2021, 92, 3767–3777. [Google Scholar] [CrossRef]
- Raghavarao, R.; Sivaraman, M.R. Ionization Ledges in Equatorial Ionosphere. Nature 1974, 249, 331–332. [Google Scholar] [CrossRef]
- Raghavarao, R.; Nageswararao, M.; Sastri, J.H.; Vyas, G.D.; Sriramarao, M. Role of Equatorial Ionization Anomaly in the Initiation of Equatorial Spread-F. J. Geophys. Res.-Space Phys. 1988, 93, 5959–5964. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Sun, Y.-Y. Seismo-traveling ionospheric disturbances of ionograms observed during the 2011 Mw 9.0 Tohoku Earthquake. Earth Planets Space 2011, 63, 897–902. [Google Scholar] [CrossRef]
- Liu, J.; Du, X.-B.; Zlotnicki, J.; Fan, Y.-Y.; An, Z.-H.; Xie, T.; Zheng, G.-L.; Tan, D.-C.; Chen, J.-Y. The changes of the ground and ionosphere electric/magnetic fields before several great earthquakes. Chin. J. Geophys.-Chin. Ed. 2011, 54, 2885–2897. [Google Scholar] [CrossRef]
- Bumrungkit, A.; Supnithi, P.; Saito, S. Statistical Analysis of Separation Distance Between Equatorial Plasma Bubbles Near Suvarnabhumi International Airport, Thailand. J. Geophys. Res.-Space Phys. 2018, 123, 7858–7870. [Google Scholar] [CrossRef]
- Shi, K.; Ding, H.; Guo, J.; Yu, T. Refined seismic-ionospheric effects: Case study of Mw 8.2 Chiapas earthquake on September 7, 2017. GPS Solut. 2021, 25, 87. [Google Scholar] [CrossRef]
- Essien, P.; Oliveira Barros Figueiredo, C.A.; Takahashi, H.; Browne Klutse, N.A.; Wrasse, C.M.; Afonso, J.M.d.S.; Quispe, D.P.; Lomotey, S.O.; Ayorinde, T.T.; Sobral, J.H.A.; et al. Intertropical Convergence Zone as the Possible Source Mechanism for Southward Propagating Medium-Scale Traveling Ionospheric Disturbances over South American Low-Latitude and Equatorial Region. Atmosphere 2022, 13, 1836. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Yaschenko, A.K.; Chmyrev, V.M.; Hayakawa, M. DC electric field formation in the mid-latitude ionosphere over typhoon and earthquake regions. Phys. Chem. Earth 2006, 31, 454–461. [Google Scholar] [CrossRef]
- Depueva, A.K.; Rotanova, N.M. Modification of the low-latitude and equatorial ionosphere before earthquakes. Geomagn. Aeron. 2000, 40, 728–732. [Google Scholar]
- Sobolev, G.A.; Husamiddinov, S.S. Pulsed Electromagnetic Earth and Ionosphere Field Disturbances Accompanying Strong Earthquakes. Earthq. Predict. Res. 1985, 3, 33–45. [Google Scholar]
- Liperovsky, V.A.; Pokhotelov, O.A.; Meister, C.V.; Liperovskaya, E.V. Physical models of coupling in the lithosphere-atmosphere-ionosphere system before earthquakes. Geomagn. Aeron. 2008, 48, 795–806. [Google Scholar] [CrossRef]
- Grimalsky, V.V.; Hayakawa, M.; Ivchenko, V.N.; Rapoport, Y.G.; Zadorozhnii, V.I. Penetration of an electrostatic field from the lithosphere into the ionosphere and its effect on the D-region before earthquakes. J. Atmos. Sol.-Terr. Phys. 2003, 65, 391–407. [Google Scholar] [CrossRef]
- Shi, K.; Liu, X.; Guo, J.; Liu, L.; You, X.; Wang, F. Pre-Earthquake and Coseismic Ionosphere Disturbances of the Mw 6.6 Lushan Earthquake on 20 April 2013 Monitored by CMONOC. Atmosphere 2019, 10, 216. [Google Scholar] [CrossRef]
- Oyama, K.I.; Chen, C.H.; Bankov, L.; Minakshi, D.; Ryu, K.; Liu, J.Y.; Liu, H. Precursor effect of March 11, 2011 off the coast of Tohoku earthquake on high and low latitude ionospheres and its possible disturbing mechanism. Adv. Space Res. 2019, 63, 2623–2637. [Google Scholar] [CrossRef]
- Pulinets, S. Low-Latitude Atmosphere-Ionosphere Effects Initiated by Strong Earthquakes Preparation Process. Int. J. Geophys. 2012, 2012, 131842. [Google Scholar] [CrossRef]
- Gousheva, M.N.; Glavcheva, R.P.; Danov, D.L.; Hristov, P.L.; Kirov, B.B.; Georgieva, K.Y. Electric field and ion density anomalies in the mid latitude ionosphere: Possible connection with earthquakes? Adv. Space Res. 2008, 42, 206–212. [Google Scholar] [CrossRef]
- Gousheva, M.; Danov, D.; Hristov, P.; Matova, M. Quasi-static electric fields phenomena in the ionosphere associated with pre- and post earthquake effects. Nat. Hazards Earth Syst. Sci. 2008, 8, 101–107. [Google Scholar] [CrossRef]
- Horie, T.; Yamauchi, T.; Yoshida, M.; Hayakawa, M. The wave-like structures of ionospheric perturbation associated with Sumatra earthquake of 26 December 2004, as revealed from VLF observation in Japan of NWC signals. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1021–1028. [Google Scholar] [CrossRef]
- Boudjada, M.Y.; Biagi, P.F.; Eichelberger, H.U.; Nico, G.; Galopeau, P.H.M.; Ermini, A.; Solovieva, M.; Hayakawa, M.; Lammer, H.; Voller, W.; et al. Analysis of Pre-Seismic Ionospheric Disturbances Prior to 2020 Croatian Earthquakes. Remote Sens. 2024, 16, 529. [Google Scholar] [CrossRef]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, C.; Zhao, Z.; Zhao, S.; Zhang, X.; Kong, J. Seismo-ionospheric Disturbance Based on LAIC Electric Field Penetration and SAMI2Simulation. Earthquake 2018, 38, 74–83. [Google Scholar]
- Meng, X.; Verkhoglyadova, O.P.; Komjathy, A.; Savastano, G.; Mannucci, A.J. Physics-Based Modeling of Earthquake-Induced Ionospheric Disturbances. J. Geophys. Res.-Space Phys. 2018, 123, 8021–8038. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Ruzhin, Y.Y. Electrodynamic model of atmospheric and ionospheric processes on the eve of an earthquake. Geomagn. Aeron. 2015, 55, 626–642. [Google Scholar] [CrossRef]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res.-Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Sharma, G. Manifestation of earthquake preparation zone in the ionosphere before 2021 Sonitpur, Assam earthquake revealed by GPS-TEC data. Geod. Geodyn. 2022, 13, 230–237. [Google Scholar] [CrossRef]
- Shah, M.; Jin, S. Pre-seismic ionospheric anomalies of the 2013 Mw = 7.7 Pakistan earthquake from GPS and COSMIC observations. Geod. Geodyn. 2018, 9, 378–387. [Google Scholar] [CrossRef]
Earthquake Time * | Magnitude (M) | Latitude (°) | Longitude (°) | Reference Location |
---|---|---|---|---|
05:06:14 20 December 2021 | 6 | 19.6 | 101.4 | Laos |
07:45:42 26 November 2021 | 6.1 | 22.7 | 93.4 | Myanmar |
13:11:34 24 October 2021 | 6.3 | 24.55 | 121.8 | Yilan, Taiwan Province, China |
04:33:31 16 September 2021 | 6 | 29.2 | 105.34 | Luxian, Luzhou, Sichuan Province, China |
02:04:11 22 May 2021 | 7.4 | 34.59 | 98.34 | Maduo, Guoluo Prefecture, Qinghai Province, China |
21:48:34 21 May 2021 | 6.4 | 25.67 | 99.87 | Yangbi, Dali Prefecture, Yunnan Province, China |
22:14:38 18 April 2021 | 6.1 | 23.94 | 121.43 | Hualien, Taiwan Province, China |
14:11:26 19 March 2021 | 6.1 | 31.94 | 92.74 | Biru, Nagqu, Tibet Province, China |
04:07:20 23 July 2020 | 6.6 | 33.19 | 86.81 | Nima, Nagqu, Tibet Province, China |
05:05:20 26 June 2020 | 6.4 | 35.73 | 82.33 | Yutian, Hotan Prefecture, Xinjiang Province, China |
21:27:55 19 January 2020 | 6.4 | 39.83 | 77.21 | Jiashi, Kashgar Prefecture, Xinjiang Province, China |
07:50:45 21 November 2019 | 6 | 19.5 | 101.35 | Laos |
19:01:55 24 September 2019 | 6 | 33.15 | 73.78 | Kashmir Region |
05:28:02 8 August 2019 | 6.4 | 24.52 | 121.96 | Waters off Yilan, Taiwan Province, China |
22:55:43 17 June 2019 | 6 | 28.34 | 104.9 | Changning, Yibin, Sichuan Province, China |
04:15:48 24 April 2019 | 6.3 | 28.4 | 94.61 | Motuo, Nyingchi, Tibet Province, China |
13:01:05 18 April 2019 | 6.7 | 24.02 | 121.65 | Waters off Hualien, Taiwan Province, China |
Earthquake Time * | Magnitude (M) | Latitude (°) | Longitude (°) | Reference Location |
---|---|---|---|---|
05:06:14 20 August 2021 | 6 | 19.6 | 101.4 | Laos |
07:45:42 26 July 2021 | 6.1 | 22.7 | 93.4 | Myanmar |
13:11:34 24 March 2021 | 6.3 | 24.55 | 121.8 | Yilan, Taiwan Province, China |
04:33:31 16 April 2021 | 6 | 29.2 | 105.34 | Luxian, Luzhou, Sichuan Province, China |
02:04:11 22 November 2021 | 7.4 | 34.59 | 98.34 | Maduo, Guoluo Prefecture, Qinghai Province, China |
21:48:34 21 November 2020 | 6.4 | 25.67 | 99.87 | Yangbi, Dali Prefecture, Yunnan Province, China |
22:14:38 18 October 2020 | 6.1 | 23.94 | 121.43 | Hualien, Taiwan Province, China |
14:11:26 19 September 2020 | 6.1 | 31.94 | 92.74 | Biru, Nagqu, Tibet Province, China |
04:07:20 23 February 2020 | 6.6 | 33.19 | 86.81 | Nima, Nagqu, Tibet Province, China |
05:05:20 26 December 2019 | 6.4 | 35.73 | 82.33 | Yutian, Hotan Prefecture, Xinjiang Province, China |
21:27:55 19 August 2019 | 6.4 | 39.83 | 77.21 | Jiashi, Kashgar Prefecture, Xinjiang Province, China |
07:50:45 10 July 2019 | 6 | 19.5 | 101.35 | Laos |
19:01:55 24 May 2019 | 6 | 33.15 | 73.78 | Kashmir Region |
05:28:02 8 March 2019 | 6.4 | 24.52 | 121.96 | Waters off Yilan, Taiwan Province, China |
22:55:43 17 November 2019 | 6 | 28.34 | 104.9 | Changning, Yibin, Sichuan Province, China |
04:15:48 24 May 2020 | 6.3 | 28.4 | 94.61 | Motuo, Nyingchi, Tibet Province, China |
13:01:05 18 April 2020 | 6.7 | 24.02 | 121.65 | Waters off Hualien, Taiwan Province, China |
Earthquake Time * | Magnitude (M) | Latitude (°) | Longitude (°) | Reference Location |
---|---|---|---|---|
20:58:28 14 May 2019 | 7.6 | −4.15 | 152.52 | New Britain Region |
06:55:00 16 June 2019 | 7.2 | −30.8 | −178.1 | Kermadec Islands, New Zealand |
17:10:49 14 July 2019 | 7.1 | −0.52 | 128.17 | Halmahera Island, Indonesia |
00:17:40 15 November 2019 | 7.2 | 1.55 | 126.48 | Northern Molucca Sea, Indonesia |
03:10:22 29 January 2020 | 7.7 | 19.46 | −78.79 | Southern Waters off Cuba |
10:49:19 25 March 2020 | 7.5 | 48.93 | 157.74 | Kuril Islands |
20:49:54 18 June 2020 | 7.3 | −33.35 | −177.85 | Southern Waters off Kermadec Islands, New Zealand |
23:29:04 23 June 2020 | 7.4 | 16.14 | −95.75 | Mexico |
14:12:41 22 July 2020 | 7.8 | 55.05 | −158.5 | Southern Waters off Alaska, USA |
06:29:21 19 August 2020 | 7 | −4.31 | 101.15 | Southern Waters off Sumatra Island, Indonesia |
04:54:40 20 October 2020 | 7.5 | 54.74 | −159.75 | Southern Waters off Alaska, USA |
07:36:52 24 January 2021 | 7 | −61.7 | −55.6 | South Shetland Islands |
22:07:50 13 February 2021 | 7.1 | 37.7 | 141.8 | Off the East Coast of Honshu, Japan |
21:27:32 4 March 2021 | 7.3 | −37.41 | 179.5 | Waters off the North Island, New Zealand |
02:04:11 22 May 2021 | 7.4 | 34.59 | 98.34 | Maduo, Guoluo Prefecture, Qinghai Province, China |
14:15:46 29 July 2021 | 8.1 | 55.4 | −158 | Southern Waters off Alaska, USA |
20:29:07 14 August 2021 | 7.3 | 18.35 | −73.45 | Haiti Region |
05:33:21 23 August 2021 | 7 | −60.55 | −24.9 | South Sandwich Islands |
09:47:50 8 September 2021 | 7.1 | 17.12 | −99.6 | Mexico |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, L.; Zhang, X.; Liu, H.; Wang, S. Ionospheric Statistical Study of the ULF Band Electric Field and Electron Density Variations Before Strong Earthquakes Based on CSES Data. Remote Sens. 2025, 17, 2677. https://doi.org/10.3390/rs17152677
Nie L, Zhang X, Liu H, Wang S. Ionospheric Statistical Study of the ULF Band Electric Field and Electron Density Variations Before Strong Earthquakes Based on CSES Data. Remote Sensing. 2025; 17(15):2677. https://doi.org/10.3390/rs17152677
Chicago/Turabian StyleNie, Lei, Xuemin Zhang, Hong Liu, and Shukai Wang. 2025. "Ionospheric Statistical Study of the ULF Band Electric Field and Electron Density Variations Before Strong Earthquakes Based on CSES Data" Remote Sensing 17, no. 15: 2677. https://doi.org/10.3390/rs17152677
APA StyleNie, L., Zhang, X., Liu, H., & Wang, S. (2025). Ionospheric Statistical Study of the ULF Band Electric Field and Electron Density Variations Before Strong Earthquakes Based on CSES Data. Remote Sensing, 17(15), 2677. https://doi.org/10.3390/rs17152677