Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Layout
2.2. Acquisition of UAV Aerial Images and Pre-Processing
2.3. Oversight Classification
2.3.1. ROI Creation
2.3.2. Calculation of Sample Separation
2.3.3. FVC Estimation and Accuracy Evaluation
2.4. Vegetation Index Method
2.5. Machine Learning Regression Models
2.5.1. Model Selection and Its Application to Arid Areas
2.5.2. Model Validation and Evaluation
3. Results Analysis
3.1. Supervisory Classification
3.2. Otsu Vegetation Index Method
3.3. Constructing Machine Learning Models Using Multiple Feature Parameters
4. Discussions
4.1. Extraction of FVC in Plots
4.2. Discussion on the Applicability of VIs in Arid Regions with Sparse Vegetation
4.3. Assessment of Model Transferability and Ecological Adaptability in ML
4.4. Limitations and Future Prospects
5. Conclusions
- (1)
- In conducting regression analysis utilizing the UAV VI and FVCT, it was discerned that the MVIs provided a notably superior fit compared to the VVIs. Furthermore, the MVIs exhibited a significant positive correlation with FVCT. However, the correlations between the VVIs and FVCT were extremely weak, and even negative in some cases. In contrast, MVIs were relatively more effective in capturing vegetation variation in low-FVC areas and provided more accurate vegetation information. These findings offer useful references for future vegetation studies in similar regions.
- (2)
- Among the ML regression models examined, the RF and LASSO models exhibited strong stability across both the training and testing sets, regardless of changes in moisture or elevation gradients. Among them, the RF model achieved the best fitting performance. Both XGBoost and KNN have weak generalization ability and low prediction accuracy. SVM’s prediction accuracy fluctuates with changes in the gradient, demonstrating insufficient stability. The three models were not suitable for this study area. This research confirmed that the RF model remains the optimal choice under conditions of severe desertification with low FVC and small sample sizes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
VI | F (F-Statistic) | p Value | R2 | Heteroscedasticity | WLS_R2 |
SRRededge | F (1, 190) = 160 | <0.001 | 0.61 | TRUE | 0.73 |
NDVI | F (1, 190) = 542 | <0.001 | 0.66 | TRUE | 0.78 |
MSAVI | F (1, 190) = 203 | <0.001 | 0.62 | FALSE | / |
ARVI | F (1, 190) = 327 | <0.001 | 0.59 | TRUE | 0.70 |
SAVI | F (1, 190) = 238 | <0.001 | 0.68 | TRUE | 0.77 |
RVI | F (1, 190) = 404 | <0.001 | 0.56 | TRUE | 0.70 |
DVI | F (1, 190) = 24 | <0.001 | 0.16 | FALSE | / |
VDVI | F (1, 190) = 67 | <0.001 | 0.19 | FALSE | / |
EXG | F (1, 190) = 56 | <0.001 | 0.15 | FALSE | / |
NGRDI | F (1, 190) = 32 | <0.001 | 0.29 | TRUE | 0.33 |
NGBDI | F (1, 190) = 33 | <0.001 | 0.29 | FALSE | / |
RGRI | F (1, 190) = 16 | <0.001 | 0.28 | TRUE | 0.29 |
GRRI | F (1, 190) = 33 | <0.001 | 0.29 | FALSE | / |
VARI | F (1, 190) = 16 | <0.001 | 0.16 | TRUE | 0.10 |
CIVE | F (1, 190) = 17 | <0.001 | 0.17 | TRUE | 0.17 |
MGRVI | F (1, 190) = 32 | <0.001 | 0.29 | TRUE | 0.33 |
EGRBDI | F (1, 190) = 2 | >0.05 | 0.01 | TRUE | 0.01 |
References
- Goetz, A.F.; Rock, B.N.; Rowan, L.C. Remote sensing for exploration; an overview. Econ. Geol. 1983, 78, 573–590. [Google Scholar] [CrossRef]
- Wu, H.; Li, Z.-L. Scale issues in remote sensing: A review on analysis, processing and modeling. Sensors 2009, 9, 1768–1793. [Google Scholar] [CrossRef]
- Li, L.; Xin, X.; Zhao, J.; Yang, A.; Wu, S.; Zhang, H.; Yu, S. Remote sensing monitoring and assessment of global vegetation status and changes during 2016–2020. Sensors 2023, 23, 8452. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Haertel, V.F.; Shimabukuro, Y. Spectral linear mixing model in low spatial resolution image data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 2555–2562. [Google Scholar] [CrossRef]
- Zhu, W.-Q.; Pan, Y.-Z.; Zhang, J.-S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Chin. J. Plant Ecol. 2007, 31, 413. [Google Scholar]
- Räsänen, A.; Virtanen, T. Data and resolution requirements in mapping vegetation in spatially heterogeneous landscapes. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- Jiapaer, G.; Xi, C.; Bao, A.-M. Coverage extraction and up-scaling of sparse desert vegetation in arid area. Yingyong Shengtai Xuebao 2009, 20, 2925–2934. [Google Scholar]
- Jia, X.; Li, J.; Ye, J.; Fei, B.; Bao, F.; Xu, X.; Zhang, L.; Wu, B. Estimating carbon storage of desert ecosystems in China. Int. J. Digit. Earth 2023, 16, 4113–4125. [Google Scholar] [CrossRef]
- Zhao, X.; Tan, S.; Li, Y.; Wu, H.; Wu, R. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecol. Indic. 2024, 158, 111529. [Google Scholar] [CrossRef]
- Munson, S.; Webb, R.; Hubbard, J. A comparison of methods to assess long-term changes in Sonoran Desert vegetation. J. Arid Environ. 2011, 75, 1228–1231. [Google Scholar] [CrossRef]
- Shupe, S.M.; Marsh, S.E. Cover-and density-based vegetation classifications of the Sonoran Desert using Landsat TM and ERS-1 SAR imagery. Remote Sens. Environ. 2004, 93, 131–149. [Google Scholar] [CrossRef]
- Wei, H.; Yang, X.; Zhang, B.; Ding, F.; Zhang, W.; Liu, S.; Chen, F. Hyper-spectral characteristics of rolled-leaf desert vegetation in the Hexi Corridor, China. J. Arid Land 2019, 11, 332–344. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Lu, D. Detecting fractional land-cover change in arid and semiarid urban landscapes with multitemporal Landsat Thematic mapper imagery. GIScience Remote Sens. 2015, 52, 700–722. [Google Scholar] [CrossRef]
- Deng, M.; Meng, X.; Lu, Y.; Li, Z.; Zhao, L.; Niu, H.; Chen, H.; Shang, L.; Wang, S.; Sheng, D. The response of vegetation to regional climate change on the Tibetan Plateau based on remote sensing products and the dynamic global vegetation model. Remote Sens. 2022, 14, 3337. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Yan, K.; Gao, S.; Chi, H.; Qi, J.; Song, W.; Tong, Y.; Mu, X.; Yan, G. Evaluation of the vegetation-index-based dimidiate pixel model for fractional vegetation cover estimation. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Jiapaer, G.; Chen, X.; Bao, A.J.A.; Meteorology, F. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For. Meteorol. 2011, 151, 1698–1710. [Google Scholar] [CrossRef]
- Zhaoming, W. A theoretical review of vegetation extraction methods based on UAV. IOP Conf. Ser. Earth Environ. Sci. 2020, 546, 032019. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.; van Leeuwen, W.J. The use of vegetation indices in forested regions: Issues of linearity and saturation. In Proceedings of the IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; pp. 1966–1968. [Google Scholar]
- Dawelbait, M.; Morari, F. Limits and potentialities of studying dryland vegetation using the optical remote sensing. Ital. J. Agron. 2008, 3, 97–106. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Fadaei, H.; Suzuki, R.; Sakai, T.; Torii, K. A proposed new vegetation index, the total ratio vegetation index (TRVI), for arid and semi-arid regions. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 403–407. [Google Scholar] [CrossRef]
- Almalki, R.; Khaki, M.; Saco, P.M.; Rodriguez, J.F. Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: A review. Remote Sens. 2022, 14, 5143. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Lyon, R.J. Influence of rock-soil spectral variation on the assessment of green biomass. Remote Sens. Environ. 1985, 17, 265–279. [Google Scholar] [CrossRef]
- Khdery, G.A.; Farg, E.; Arafat, S.M. Natural vegetation cover analysis in Wadi Hagul, Egypt using hyperspectral remote sensing approach. Egypt. J. Remote Sens. Space Sci. 2019, 22, 253–262. [Google Scholar] [CrossRef]
- Aburaed, N.; Alkhatib, M.Q.; Marshall, S.; Zabalza, J.; Al Ahmad, H. A review of spatial enhancement of hyperspectral remote sensing imaging techniques. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2275–2300. [Google Scholar] [CrossRef]
- Li, X.-S.; Gao, Z.-H.; Li, Z.-Y.; Bai, L.-N.; Wang, B.-Y. Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decompositon. Yingyong Shengtai Xuebao 2010, 21, 152–158. [Google Scholar]
- Okin, G.S.; Roberts, D.A.; Murray, B.; Okin, W.J. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments. Remote Sens. Environ. 2001, 77, 212–225. [Google Scholar] [CrossRef]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef]
- Melville, B.; Fisher, A.; Lucieer, A. Ultra-high spatial resolution fractional vegetation cover from unmanned aerial multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 14–24. [Google Scholar] [CrossRef]
- Choi, S.K.; Lee, S.K.; Jung, S.H.; Choi, J.W.; Choi, D.Y.; Chun, S.J. Estimation of fractional vegetation cover in sand dunes using multi-spectral images from fixed-wing UAV. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 431–441. [Google Scholar] [CrossRef]
- Dash, J.P.; Pearse, G.D.; Watt, M.S. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sens. 2018, 10, 1216. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, X.; Wang, Y.; Zheng, Z.; Zheng, S.; Zhao, D.; Bai, Y. UAV-based individual shrub aboveground biomass estimation calibrated against terrestrial LiDAR in a shrub-encroached grassland. Int. J. Appl. Earth Obs. 2021, 101, 102358. [Google Scholar] [CrossRef]
- Osco, L.P.; De Arruda, M.d.S.; Junior, J.M.; Da Silva, N.B.; Ramos, A.P.M.; Moryia, É.A.S.; Imai, N.N.; Pereira, D.R.; Creste, J.E.; Matsubara, E.T. A convolutional neural network approach for counting and geolocating citrus-trees in UAV multispectral imagery. ISPRS J. Photogramm. Remote Sens. 2020, 160, 97–106. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, T.; Fang, S.; Han, B.; He, Q. Investigation of the vertical distribution characteristics and microphysical properties of summer mineral dust masses over the taklimakan desert using an unmanned aerial vehicle. Remote Sens. 2023, 15, 3556. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, Y.; Zhang, Y. Review of desert mobility assessment and desertification monitoring based on remote sensing. Remote Sens. 2023, 15, 4412. [Google Scholar] [CrossRef]
- Yang, H.; Du, J. Classification of desert steppe species based on unmanned aerial vehicle hyperspectral remote sensing and continuum removal vegetation indices. Optik 2021, 247, 167877. [Google Scholar] [CrossRef]
- Zhang, T.; Bi, Y.; Zhu, X.; Gao, X. Identification and classification of small sample desert grassland vegetation communities based on dynamic graph convolution and UAV hyperspectral imagery. Sensors 2023, 23, 2856. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Chen, J.; Lou, P.; Yi, S.; Qin, Y.; You, H.; Han, X. Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features. Plant Methods 2021, 17, 96. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Y.; Wei, X.; Zhou, M.; Wang, H.; Bai, Y. UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecol. Indic. 2022, 141, 109155. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, Y.; Guan, W.; Cao, X.; Li, Z.; Ding, J. Using unmanned aerial vehicles to quantify spatial patterns of dominant vegetation along an elevation gradient in the typical Gobi region in Xinjiang, Northwest China. Glob. Ecol. Conserv. 2021, 27, e01571. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices. ISPRS J. Photogramm. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Liang, Y.; Kou, W.; Lai, H.; Wang, J.; Wang, Q.; Xu, W.; Wang, H.; Lu, N. Improved estimation of aboveground biomass in rubber plantations by fusing spectral and textural information from UAV-based RGB imagery. Ecol. Indic. 2022, 142, 109286. [Google Scholar] [CrossRef]
- Zhang, J. Investigation on Distribution and Quantity of Rock Sheep in Summer in Hatengtaohai National Nature Reserve of Inner Mongolia. Inn. Mong. For. Investig. Des. 2022, 45, 67–69. [Google Scholar]
- Zhao, N. Evaluation Research on Shrubs Resources—Take Caraganakorshinskiikom in Dengkou, Bayannaoer City as an Example. Master’s Thesis, Inner Mongolia Agricultural University, Inner Mongolia, China, 2011. [Google Scholar]
- Yue, J.; Guo, W.; Yang, G.; Zhou, C.; Feng, H.; Qiao, H. Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing. Plant Methods 2021, 17, 51. [Google Scholar] [CrossRef]
- Al-Ali, Z.; Abdullah, M.; Asadalla, N.; Gholoum, M. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environ. Monit. Assess. 2020, 192, 389. [Google Scholar] [CrossRef]
- Zhou, H.; Fu, L.; Sharma, R.P.; Lei, Y.; Guo, J. A hybrid approach of combining random forest with texture analysis and VDVI for desert vegetation mapping Based on UAV RGB Data. Remote Sens. 2021, 13, 1891. [Google Scholar] [CrossRef]
- Fonseca, L.M.G.; Namikawa, L.M.; Castejon, E.F. Digital image processing in remote sensing. In Proceedings of the 2009 Tutorials of the XXII Brazilian Symposium on Computer Graphics and Image Processing, IEEE Computer Society1730 Massachusetts Ave., Washington, DC, USA, 11–14 October 2009; pp. 59–71. [Google Scholar]
- Lins, R.D.; de Almeida, M.M.; Bernardino, R.B.; Jesus, D.; Oliveira, J.M. Assessing binarization techniques for document images. In Proceedings of the 2017 ACM Symposium on Document Engineering, Valletta, Malta, 4–7 September 2017; pp. 183–192. [Google Scholar]
- Mustafa, W.A.; Aziz, H.; Khairunizam, W.; Ibrahim, Z.; Shahriman, A.; Razlan, Z.M. Review of different binarization approaches on degraded document images. In Proceedings of the 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA), Kuching, Malaysia, 15–17 August 2018; pp. 1–8. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Dutta, K.; Talukdar, D.; Bora, S.S. Segmentation of unhealthy leaves in cruciferous crops for early disease detection using vegetative indices and Otsu thresholding of aerial images. Measurement 2022, 189, 110478. [Google Scholar] [CrossRef]
- Li, H.; Shi, Q.; Wan, Y.; Shi, H.; Imin, B. Influence of surface water on desert vegetation expansion at the landscape scale: A case study of the Daliyabuyi Oasis, Taklamakan desert. Sustainability 2021, 13, 9522. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Xiao, C.; Qi, S.; Du, W.; Zhu, D.; Altan, O. Integrating remote sensing and spatiotemporal analysis to characterize artificial vegetation restoration suitability in desert areas: A Case Study of Mu Us Sandy Land. Remote Sens. 2022, 14, 4736. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef]
- Li, X. Quantitive Retrieval of Sparse Vegetation Cover in Arid Regions Using Hyperspectral Data. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2008. [Google Scholar]
- Naji, T.A. Study of vegetation cover distribution using DVI, PVI, WDVI indices with 2D-space plot. J. Phys. Conf. Ser. 2018, 1003, 012083. [Google Scholar] [CrossRef]
- Yuan, H.; Liu, Z.; Cai, Y.; Zhao, B. Research on vegetation information extraction from visible UAV remote sensing images. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar]
- Kerkech, M.; Hafiane, A.; Canals, R. Deep leaning approach with colorimetric spaces and vegetation indices for vine diseases detection in UAV images. Comput. Electron. Agric. 2018, 155, 237–243. [Google Scholar] [CrossRef]
- Schneider, P.; Roberts, D.; Kyriakidis, P. A VARI-based relative greenness from MODIS data for computing the Fire Potential Index. Remote Sens. Environ. 2008, 112, 1151–1167. [Google Scholar] [CrossRef]
- Beniaich, A.; Silva, M.L.N.; Avalos, F.A.P.; de Menezes, M.D.; Cândido, B.M. Determination of vegetation cover index under different soil management systems of cover plants by using an unmanned aerial vehicle with an onboard digital photographic camera. Semin. Ciênc. Agrár. 2019, 40, 49–66. [Google Scholar] [CrossRef]
- Evstatiev, B.; Mladenova, T.; Valov, N.; Zhelyazkova, T.; Gerdzhikova, M.; Todorova, M.; Grozeva, N.; Sevov, A.; Stanchev, G. Fast pasture classification method using ground-based camera and the modified green red vegetation index (mgrvi). Int. J. Adv. Comput. Sci. Appl. 2023, 14, 45–51. [Google Scholar] [CrossRef]
- Xu, X.; Liu, L.; Han, P.; Gong, X.; Zhang, Q. Accuracy of vegetation indices in assessing different grades of grassland desertification from UAV. Int. J. Environ. Res. Public Health 2022, 19, 16793. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, J.; Wang, X. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [Google Scholar] [CrossRef]
- Jeon, G. Advanced Machine Learning and Deep Learning Approaches for Remote Sensing. Remote Sens. 2023, 15, 2876. [Google Scholar] [CrossRef]
- Song, D.-X.; Wang, Z.; He, T.; Wang, H.; Liang, S. Estimation and validation of 30 m fractional vegetation cover over China through integrated use of Landsat 8 and Gaofen 2 data. Sci. Remote Sens. 2022, 6, 100058. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Pei, C.; Zhao, X.; Li, Y.; Hu, S.; Bu, C.; Zhang, Q. Multisource remote sensing monitoring and analysis of the driving forces of vegetation restoration in the Mu Us sandy land. Land 2022, 11, 1553. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Y.; Qin, X.; Cai, J.; Cai, M.; Hou, X.; Yang, K.; Zhang, H. Assessing the Potential of UAV for Large-Scale Fractional Vegetation Cover Mapping with Satellite Data and Machine Learning. Remote Sens. 2024, 16, 3587. [Google Scholar] [CrossRef]
- Sun, F.; Chen, D.; Li, L.; Zhang, Q.; Yuan, X.; Liao, Z.; Xiang, C.; Liu, L.; Zhou, J.; Shrestha, M. Machine Learning Models Based on UAV Oblique Images Improved Above-Ground Biomass Estimation Accuracy Across Diverse Grasslands on the Qinghai–Tibetan Plateau. Land Degrad. Dev. 2025, 36, 585–598. [Google Scholar] [CrossRef]
- Jiang, F.; Smith, A.R.; Kutia, M.; Wang, G.; Liu, H.; Sun, H. A modified KNN method for mapping the leaf area index in arid and semi-arid areas of China. Remote Sens. 2020, 12, 1884. [Google Scholar] [CrossRef]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Udelhoven, T. A review of hybrid approaches for quantitative assessment of crop traits using optical remote sensing: Research trends and future directions. Remote Sens. 2022, 14, 3515. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Q.; Huang, C. Vegetation change and its response to climate extremes in the arid region of Northwest China. Remote Sens. 2021, 13, 1230. [Google Scholar] [CrossRef]
- Huang, W.; Li, W.; Xu, J.; Ma, X.; Li, C.; Liu, C. Hyperspectral monitoring driven by machine learning methods for grassland above-ground biomass. Remote Sens. 2022, 14, 2086. [Google Scholar] [CrossRef]
- Sun, C.; Ma, Y.; Pan, H.; Wang, Q.; Guo, J.; Li, N.; Ran, H. Methods for Extracting Fractional Vegetation Cover from Differentiated Scenarios Based on Unmanned Aerial Vehicle Imagery. Land 2024, 13, 1840. [Google Scholar] [CrossRef]
- Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametr. Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
- Ahmad, G.N.; Fatima, H.; Ullah, S.; Saidi, A.S. Efficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCV. IEEE Access 2022, 10, 80151–80173. [Google Scholar] [CrossRef]
- Sisodia, P.S.; Tiwari, V.; Kumar, A. Analysis of supervised maximum likelihood classification for remote sensing image. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; pp. 1–4. [Google Scholar]
- Gao, S.-h.; Yan, Y.-z.; Yuan, Y.; Zhang, N.; Ma, L.; Zhang, Q. Comprehensive degradation index for monitoring desert grassland using UAV multispectral imagery. Ecol. Indic. 2024, 165, 112194. [Google Scholar] [CrossRef]
- Silver, M.; Tiwari, A.; Karnieli, A. Identifying vegetation in arid regions using object-based image analysis with RGB-only aerial imagery. Remote Sens. 2019, 11, 2308. [Google Scholar] [CrossRef]
- Jensen, J.R. Remote Sensing of the Environment: An Earth Resource Perspective 2/e; Pearson Education India: Chennai, India, 2009. [Google Scholar]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Song, Z.; Lu, Y.; Ding, Z.; Sun, D.; Jia, Y.; Sun, W. A new remote sensing desert vegetation detection index. Remote Sens. 2023, 15, 5742. [Google Scholar] [CrossRef]
- Salih, A.M.; Raisi-Estabragh, Z.; Galazzo, I.B.; Radeva, P.; Petersen, S.E.; Lekadir, K.; Menegaz, G. A perspective on explainable artificial intelligence methods: SHAP and LIME. Adv. Intell. Syst. 2025, 7, 2400304. [Google Scholar] [CrossRef]
- Gholami, H.; Darvishi, E.; Moradi, N.; Mohammadifar, A.; Song, Y.; Li, Y.; Niu, B.; Kaskaoutis, D.; Pradhan, B. An interpretable (explainable) model based on machine learning and SHAP interpretation technique for mapping wind erosion hazard. Environ. Sci. Pollut. Res. 2024, 31, 64628–64643. [Google Scholar] [CrossRef]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Xu, Y.; Shu, X.; Tao, M.; Sun, Y.; Liu, W.; Dong, G.; He, Q.; Li, J.; Li, Y.; Deng, L.; et al. Vegetation Information Extraction for Restoration of Sandy Land in Northwest Sichuan Based on Unmanned Aerial Vehicles and Machine Learning. J. Sichuan Agric. Univ. 2024, 42, 181–187. [Google Scholar]
- Xia, L.; Zhang, R.; Chen, L.; Huang, Y.; Xu, G.; Wen, Y.; Yi, T. Monitor cotton budding using SVM and UAV images. Appl. Sci. 2019, 9, 4312. [Google Scholar] [CrossRef]
- Agarwal, A.; Singh, A.K.; Kumar, S.; Singh, D. Critical analysis of classification techniques for precision agriculture monitoring using satellite and drone. In Proceedings of the 2018 IEEE 13th International Conference on Industrial and Information Systems (ICIIS), Rupnagar, India, 1–2 December 2018; pp. 83–88. [Google Scholar]
- Foody, G.M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens. 1996, 17, 1317–1340. [Google Scholar] [CrossRef]
- Vahidi, M.; Shafian, S.; Thomas, S.; Maguire, R. Pasture biomass estimation using ultra-high-resolution RGB UAVs images and deep learning. Remote Sens. 2023, 15, 5714. [Google Scholar] [CrossRef]
- Asner, G.P. Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens. Environ. 1998, 64, 234–253. [Google Scholar] [CrossRef]
- Franklin, J.; Duncan, J.; Turner, D.L. Reflectance of vegetation and soil in Chihuahuan desert plant communities from ground radiometry using SPOT wavebands. Remote Sens. Environ. 1993, 46, 291–304. [Google Scholar] [CrossRef]
- Batadlan, B.D.; Paringit, E.C.; Santillan, J.R.; Caparas, A.S.; Fabila, J.L. Analysis of background variations in computed spectral vegetation indices and its implications for mapping mangrove forests using satellite imagery. In Proceedings of the 4th ERDT Conference, Manila, Philippines, 11 September 2009. [Google Scholar]
- Abdullah, M.M.; Addae-Wireko, L.; Tena-Gonzalez, G.A. Assessing native desert vegetation recovery in a war-affected area using multispectral and hyperspectral imagery: A case study of the Sabah Al-Ahmad Nature Reserve, Kuwait. Restor. Ecol. 2017, 25, 982–993. [Google Scholar] [CrossRef]
- Dahy, B.; Issa, S.; Saleous, N. Random forest for classifying and monitoring 50 Years of vegetation dynamics in three desert cities of the uae. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, 43, 69–76. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, C.; Zhao, S.; Hu, M.; Zhang, S.; Li, J. Classification of salt marsh vegetation in the Yangtze River Delta of China using the pixel-level time-series and XGBoost algorithm. J. Remote Sens. 2023, 3, 0036. [Google Scholar] [CrossRef]
- Ma, N.; Cao, S.; Bai, T.; Yang, Z.; Cai, Z.; Sun, W. Assessment of Vegetation Dynamics in Xinjiang Using NDVI Data and Machine Learning Models from 2000 to 2023. Sustainability 2025, 17, 306. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, N.; Wei, X.; Zhou, M.; Wang, H.; Bai, Y. Desert oasis vegetation information extraction by PLANET and unmanned aerial vehicle image fusion. Ecol. Indic. 2024, 166, 112516. [Google Scholar] [CrossRef]
Name | Abbreviation | Formula | References |
---|---|---|---|
Normalized difference vegetation index | NDVI | 1 | [61] |
Red-edge simple ratio vegetation index | 1 | [62,63] | |
Ratio vegetation index | RVI | 1 | [64] |
Soil conditioning vegetation index | SAVI | 2 | [24] |
Modified soil adjusted vegetation index | MSAVI | 1 | [25] |
Atmospherically resistant vegetation index | ARVI | 2 | [65] |
Difference vegetation index | DVI | 1 | [66] |
Visible-band difference vegetation index | VDVI | 1 | [67] |
Normalized green–blue difference index | NGBDI | 1 | [67] |
Normalized green–red difference index | NGRDI | 1 | [67] |
Excess green | EXG | 1 | [68] |
Red–green ratio index | RGRI | 1 | [67] |
Blue–green ratio index | BGRI | 1 | [67] |
Visible atmospheric resistant index | VARI | 1 | [69] |
Color index of vegetation extraction | CIVE | 1 | [70] |
Modified green–red vegetation index | MGRVI | 1 | [71] |
Excess green–red–blue difference index | EGRBDI | [72] |
Method | Accuracy | Kappa | Precision | Recall |
---|---|---|---|---|
Triangle | 0.979 | 0.709 | 0.992 | 0.563 |
Otsu | 0.977 | 0.671 | 0.997 | 0.518 |
Yen | 0.952 | 0.001 | 1.000 | 0.001 |
Adaptive + Otsu | 0.765 | 0.222 | 0.168 | 0.974 |
Local Adaptive | 0.342 | 0.001 | 0.049 | 0.682 |
Isodata | 0.388 | 0.044 | 0.070 | 0.944 |
Mean | 0.846 | 0.322 | 0.233 | 0.950 |
Minimum Error | 0.359 | 0.039 | 0.068 | 0.956 |
Maximum Entropy | 0.975 | 0.643 | 0.998 | 0.487 |
Moments | 0.509 | 0.032 | 0.064 | 0.675 |
Triangle Method | 0.979 | 0.709 | 0.992 | 0.563 |
Flood Number | NO. 1 | NO. 2 | ||||
---|---|---|---|---|---|---|
Location | Apex | Middle | Edge | Apex | Middle | Edge |
Plot number | 1 | 2 | 3 | 4 | 5 | 6 |
OA (%) | 99.526 | 98.985 | 95.821 | 99.460 | 93.498 | 97.886 |
Kappa | 0.981 | 0.977 | 0.929 | 0.965 | 0.884 | 0.933 |
FVC (%) | 9.1662 | 11.4111 | 13.5288 | 5.8605 | 14.2587 | 9.4482 |
Flood Number | NO. 3 | NO. 4 | ||||
Location | Apex | Middle | Edge | Apex | Middle | Edge |
Plot number | 7 | 8 | 9 | 10 | 11 | 12 |
OA (%) | 98.859 | 94.104 | 98.430 | 99.457 | 98.795 | 91.214 |
Kappa | 0.894 | 0.810 | 0.966 | 0.977 | 0.949 | 0.838 |
FVC (%) | 6.492 | 8.978 | 15.880 | 17.945 | 11.639 | 11.085 |
Model | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | MAE | R2 | RMSE | MAE | |
RF | 0.970 | 0.008 | 0.006 | 0.876 | 0.020 | 0.016 |
XGBoost | 0.972 | 0.009 | 0.006 | 0.808 | 0.020 | 0.015 |
LASSO | 0.818 | 0.021 | 0.015 | 0.805 | 0.025 | 0.020 |
SVM | 0.968 | 0.009 | 0.007 | 0.874 | 0.020 | 0.017 |
KNN | 0.911 | 0.016 | 0.011 | 0.784 | 0.021 | 0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Zhu, J.; Cao, X.; Xi, L.; Qi, Z.; Li, Y.; Wang, X.; Zou, J. Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing. Remote Sens. 2025, 17, 2665. https://doi.org/10.3390/rs17152665
Han J, Zhu J, Cao X, Xi L, Qi Z, Li Y, Wang X, Zou J. Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing. Remote Sensing. 2025; 17(15):2665. https://doi.org/10.3390/rs17152665
Chicago/Turabian StyleHan, Jie, Jinlei Zhu, Xiaoming Cao, Lei Xi, Zhao Qi, Yongxin Li, Xingyu Wang, and Jiaxiu Zou. 2025. "Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing" Remote Sensing 17, no. 15: 2665. https://doi.org/10.3390/rs17152665
APA StyleHan, J., Zhu, J., Cao, X., Xi, L., Qi, Z., Li, Y., Wang, X., & Zou, J. (2025). Extraction of Sparse Vegetation Cover in Deserts Based on UAV Remote Sensing. Remote Sensing, 17(15), 2665. https://doi.org/10.3390/rs17152665